JPH02123756A - Thin film circuit substrate of aluminum nitride - Google Patents

Thin film circuit substrate of aluminum nitride

Info

Publication number
JPH02123756A
JPH02123756A JP27793188A JP27793188A JPH02123756A JP H02123756 A JPH02123756 A JP H02123756A JP 27793188 A JP27793188 A JP 27793188A JP 27793188 A JP27793188 A JP 27793188A JP H02123756 A JPH02123756 A JP H02123756A
Authority
JP
Japan
Prior art keywords
layer
thin film
base material
film conductor
conductor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27793188A
Other languages
Japanese (ja)
Other versions
JP2664744B2 (en
Inventor
Yasuaki Yasumoto
恭章 安本
Nobuo Iwase
岩瀬 暢男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP27793188A priority Critical patent/JP2664744B2/en
Priority to EP89101189A priority patent/EP0326077B1/en
Priority to DE68922118T priority patent/DE68922118T2/en
Priority to US07/300,944 priority patent/US4963701A/en
Publication of JPH02123756A publication Critical patent/JPH02123756A/en
Application granted granted Critical
Publication of JP2664744B2 publication Critical patent/JP2664744B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Printed Wiring (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Insulated Metal Substrates For Printed Circuits (AREA)

Abstract

PURPOSE:To enhance the adhesion strength of a thin film conductor layer to an AlN base material and to prevent peeling and disconnection at the time of high temperature cycles by providing the thin film conductor layer through a ground layer wherein a TiN layer and a Ti layer are sequentially laminated or a ground layer wherein a CrN layer and a Cr layer are sequentially laminated on an aluminum nitride base material. CONSTITUTION:A thin film conductor layer 4 is formed through a ground layer wherein a TiN layer (or a CrN layer) 2 and a Ti layer (or a Cr layer) are sequentially laminated on an AlN base material 1. Thus an AlN thin film circuit board is formed. When the thin film conductor layer is formed on the ground layer in this way, the adhesion strength of the thin film conductor layer for the AlN base material can be improved. When 0.02-30atomic% oxygen is added into the lower layer (TiN layer or CrN layer) of the ground layers which are in direct contact with the AlN base material, the adhesion strength for the lower AlN base material layer can be further improved. Peeling, wire breakdown and the like of the thin film conductor layer in use can be prevented.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、窒化アルミニウム(AiN)薄膜回路基板に
関する。
DETAILED DESCRIPTION OF THE INVENTION OBJECTS OF THE INVENTION Field of Industrial Application The present invention relates to aluminum nitride (AiN) thin film circuit boards.

(従来の技術) 従来、半導体モジュールに使用される薄膜回路基板の基
材としては、アルミナが主に用いられている。しかしな
がら、実装される能動素子の性能向上に伴って稼働時の
素子からの発熱量が増大する傾向にあり、アルミナの熱
伝導率では能動素子の実装個数が制約されるという問題
があった。
(Prior Art) Conventionally, alumina has been mainly used as a base material for thin film circuit boards used in semiconductor modules. However, as the performance of mounted active elements improves, the amount of heat generated from the elements during operation tends to increase, and the thermal conductivity of alumina limits the number of active elements that can be mounted.

このようなことから、アルミナに代わり高熱伝導率をも
つBeOを基材とした薄膜回路基板が使用されてきたが
、かかるBeOは製造時、研磨時の毒性が強いため、基
材としての応用範囲が限定される。このため、代替材料
としてAiNが広く用いられている。このAiNは、無
害であり、製造、部品化、廃棄の制約がないという利点
を持ち、特に熱伝導率が70〜280W/m−にの広い
範囲、つまり放熱性がアルミナの3.5倍から場合によ
ってはBeOより優れたレベルまで調整可能であるため
、アルミナ基材を用いた薄膜回路基板に比べて高い実装
密度を実現できるはかりか、能動素子の高密度化に合せ
て所望の熱伝導性を付与できる利点を有する。かかるA
ノN基材を用いた薄膜回路基板では、従来よりAノN基
材上にT1下地層を介してNl/Au薄膜導体層、Ti
下地層を介してPt/Au薄膜導体層、又はCr下地層
を介してCu/Au薄・膜導体層を形成した構造のもの
が知られている。しかしながら、かかる構造の回路基板
では薄膜導体層とA、f’N基材との密着強度が不充分
であるため、基材表面から薄膜導体層が剥離したり、断
線する欠点があった。また、AノN基材は結晶方位によ
りエツチング速度が異なり、結晶方位の異なる粒界に段
差が生じるため、前記基材に対する薄膜導体層の密着強
度が不充分であると、該薄膜導体層が段差上で断線を生
じる問題があった。
For these reasons, thin film circuit boards based on BeO, which has high thermal conductivity, have been used instead of alumina, but BeO is highly toxic during manufacturing and polishing, so the range of application as a base material has been limited. is limited. For this reason, AiN is widely used as an alternative material. This AiN has the advantage of being harmless and having no restrictions on manufacturing, componentization, or disposal.In particular, it has a wide range of thermal conductivity from 70 to 280 W/m-, which means its heat dissipation is 3.5 times that of alumina. In some cases, it can be adjusted to levels superior to BeO, making it possible to achieve higher packaging density than thin-film circuit boards using alumina substrates, or to achieve desired thermal conductivity as the density of active elements increases. It has the advantage of being able to provide Such A
Conventionally, in thin film circuit boards using NON substrates, Nl/Au thin film conductor layers, Ti
Structures in which a Pt/Au thin film conductor layer is formed through an underlayer or a Cu/Au thin film conductor layer is formed through a Cr underlayer are known. However, in a circuit board having such a structure, the adhesion strength between the thin film conductor layer and the A, f'N base material is insufficient, resulting in the drawback that the thin film conductor layer may peel off from the surface of the base material or may be disconnected. In addition, the etching rate of the A/N base material varies depending on the crystal orientation, and steps occur at grain boundaries with different crystal orientations. Therefore, if the adhesion strength of the thin film conductor layer to the base material is insufficient, the thin film conductor layer may There was a problem of wire breakage occurring on steps.

(発明が解決しようとする課題) 本発明は、上記従来の課題を解決するためになされたも
ので、A、ffN基材への薄膜導体層の密着強度を向上
し、温度サイクル時での剥離や断線を防止し得るAノN
薄膜回路基板を提供しようとするものである。
(Problems to be Solved by the Invention) The present invention has been made to solve the above-mentioned conventional problems, and it improves the adhesion strength of the thin film conductor layer to the A, ffN base material and prevents peeling during temperature cycles. A/N that can prevent wire breakage
The present invention aims to provide a thin film circuit board.

[発明の構成] (課題を解決するための手段) 本発明は、窒化アルミニウム基村上にTiN層及びTi
層を順次積層した下地層、又はCrN層及びCr層を順
次積層した下地層を介して薄膜導体層を設けたことを特
徴とする窒化アルミニウム薄膜回路基板である。
[Structure of the Invention] (Means for Solving the Problem) The present invention provides a TiN layer and a TiN layer on an aluminum nitride base layer.
This is an aluminum nitride thin film circuit board characterized in that a thin film conductor layer is provided through a base layer formed by sequentially laminating layers, or a base layer formed by sequentially laminating a CrN layer and a Cr layer.

上記下地層の構成材料であるAI!N基材側に配置され
る下層のTiN層又はCrN層は該基材に対する密性性
を高める作用をなし、上層の71層又はCr層は前記T
iN層又はCrN層と前記薄膜導体層との密着性を高め
る作用を有する。かかる下地層中の下層(TI N層又
はCrN層)の厚さについては、5〜500 nmとす
ることが望ましい。
AI which is the constituent material of the above base layer! The lower TiN layer or CrN layer disposed on the N base material side has the effect of increasing the density with respect to the base material, and the upper layer 71 or Cr layer has the effect of increasing the density with respect to the base material.
It has the effect of increasing the adhesion between the iN layer or CrN layer and the thin film conductor layer. The thickness of the lower layer (TIN layer or CrN layer) in the base layer is preferably 5 to 500 nm.

この理由は、該下層の厚さを5nl11未満にするとA
、f’N基材に対する均一な密着強度を得ることが困難
となり、かといってその厚さが500 nmを越えると
バターニングのためのエツチングによる除去が困難とな
るからである。前記下地層の上層(71層又はCr)の
厚さについては10〜900 nmとすることが望まし
い。この理由は、上層の厚さを10層m未満にするとT
iN層又はCrN層との充分な化学反応性が得難く、充
分な密着強度を達成できなくなる恐れがあり、かといっ
てその厚さが900 nmを越えるとその内部応力のた
めに基材から、7’ll Mし易くなる恐れがあるから
である。また、前記下層であるTiN層又はCrN層に
は酸素が0.02〜30at%の範囲で含有されている
ことが望ましい。この理由は、含有される酸素量を0.
02at%未虜にするとAノN基材と上層である71層
又はCr層とに対する化学反応性を充分に高めることが
困難となり、強固な密着力を付与し難く、かといって酸
素量が30 atm%を越えるとA1N基材と上層であ
るTi層又はCr層との間でのAノ203含有量が多く
なり、薄膜導体層が基材から剥離し易くなるからである
The reason for this is that if the thickness of the lower layer is less than 5nl11,
, f'N It becomes difficult to obtain uniform adhesion strength to the base material, and if the thickness exceeds 500 nm, it becomes difficult to remove by etching for buttering. The thickness of the upper layer (71 layer or Cr) of the base layer is preferably 10 to 900 nm. The reason for this is that when the thickness of the upper layer is less than 10 m, T
It is difficult to obtain sufficient chemical reactivity with the iN layer or CrN layer, and there is a risk that sufficient adhesion strength cannot be achieved.On the other hand, if the thickness exceeds 900 nm, the internal stress will cause the material to separate from the base material. This is because there is a possibility that it becomes easy to perform 7'll M. Further, it is desirable that the lower TiN layer or CrN layer contains oxygen in a range of 0.02 to 30 at%. The reason for this is that the amount of oxygen contained is 0.
If 02at% is used, it becomes difficult to sufficiently increase the chemical reactivity between the A-N base material and the upper layer 71 or Cr layer, making it difficult to provide strong adhesion, and on the other hand, the amount of oxygen is 30%. This is because if it exceeds atm%, the A203 content between the A1N base material and the upper Ti layer or Cr layer will increase, making it easier for the thin film conductor layer to peel off from the base material.

上記薄膜導体層としては、例えばNi/Au。The thin film conductor layer is made of, for example, Ni/Au.

Cu /Au 、Ni /Pd SNi /Pd /A
u 。
Cu/Au, Ni/Pd SNi/Pd/A
u.

PL/Au等を挙げることができる。Examples include PL/Au.

なお、回路基板を多層薄膜導体層構造とする場合には、
−層目の薄膜導体層を含むA、f7N基材上に該A、f
?Nと同組成のAiNからなる誘電体層を形成し、この
上に下地層を介して二層目の薄膜導体層を形成すること
によって実現される。
In addition, when the circuit board has a multilayer thin film conductor layer structure,
- the A, f on the A, f7N substrate containing the thin film conductor layer of the
? This is achieved by forming a dielectric layer made of AiN having the same composition as N, and forming a second thin film conductor layer thereon with an underlying layer interposed therebetween.

次に、本発明のA、fl’N薄膜M薄膜坂路基板方法を
簡単に説明する。
Next, the A, fl'N thin film M thin film slope substrate method of the present invention will be briefly described.

まず、所望の熱伝導率を有し、表面粗さが下地層や薄膜
導体層を形成するのに適した値をもつA、i’N基材を
用意する。表面粗さの調節は、焼結AI!N基材の研磨
もしくはサブミクロン粒子を原料として製造された焼結
AノN基材を用いることにより達成できる。
First, an A, i'N base material having a desired thermal conductivity and a surface roughness suitable for forming an underlayer or a thin film conductor layer is prepared. Adjust the surface roughness with sintering AI! This can be achieved by polishing the N base material or by using a sintered A-N base material manufactured using submicron particles as a raw material.

次いで、前記基材上にTI N層又はCrN層を真空蒸
着法、スパッタ蒸着法等の一般的な成膜技術により形成
する。この時、必要に応じて基材1M度、雰囲気、真空
度、成膜速度を調整する。
Next, a TIN layer or a CrN layer is formed on the base material by a general film forming technique such as a vacuum deposition method or a sputter deposition method. At this time, the substrate 1M degree, atmosphere, degree of vacuum, and film-forming speed are adjusted as necessary.

TiN層又はCrN層の成膜に先だって基材表面を湿式
洗浄法、逆スパツタ法などで充分な洗浄を行なうが、A
 、f? N 基材は強酸、強アルカリに対して不安定
であるため、洗浄液の選定に注意が必要で、通常中性洗
浄液を用いることが望ましい。また、TiN層又はCr
N層中に含有させる酸素は成膜雰囲気、成膜材料の純度
等により調整する。
Before forming a TiN layer or a CrN layer, the surface of the base material is thoroughly cleaned using a wet cleaning method, a reverse sputtering method, etc.
, f? Since the N base material is unstable to strong acids and strong alkalis, care must be taken in selecting a cleaning liquid, and it is usually desirable to use a neutral cleaning liquid. In addition, TiN layer or Cr
Oxygen contained in the N layer is adjusted depending on the film forming atmosphere, the purity of the film forming material, etc.

つづいて、真空を破らずにTi層又はCr層を形成する
。ひきつづき、真空を破らずに上述した材料からなる薄
膜導体材料層を連続して形成する。
Subsequently, a Ti layer or a Cr layer is formed without breaking the vacuum. Subsequently, a thin film conductive material layer made of the above-mentioned material is continuously formed without breaking the vacuum.

この後、これらの層をレジストを用いたフォトエツチン
グ技術によりパターニングすることにより、第1図に示
すようにlt’N基材l上に718層(又はCrN層)
2及び71層(又はCr層)3を順次積層した下地層を
介して薄膜導体層4を形成してAノN薄膜回路基板を製
造する。このフォトエツチング時には、Au層はに1+
12+脱イオン水のエッチャント、Ni層はCuSO4
+HCI!十エチルアルコール+脱イオン水のエッチャ
ント、71層及び718層はHF十脱イオン水のエッチ
ャント、Cr層及びCrN層はH2SO4+脱イオン水
のエッチャントを用いて行なう。
Thereafter, by patterning these layers by photoetching technology using resist, 718 layers (or CrN layers) are formed on the lt'N base material l as shown in FIG.
A thin film conductor layer 4 is formed through a base layer in which layers 2 and 71 (or Cr layer) 3 are sequentially laminated to produce an A/N thin film circuit board. During this photoetching, the Au layer is
12+ deionized water etchant, Ni layer is CuSO4
+HCI! An etchant of 10 ethyl alcohol + deionized water is used for the 71st and 718th layers, an etchant of HF deionized water is used for the 71st and 718th layers, and an etchant of H2SO4 + deionized water is used for the Cr and CrN layers.

(作用) 本発明によれば、A7N基材上にTiN薄膜及び71層
を順次積層した下地層、又はCrN薄膜及びCr層を順
次積層した下地層を介して薄膜導体層を設けることによ
って、該基材に対して薄膜導体層を極めて高い密着強度
で形成できる。即ち、一般に薄膜層をAノN基材に高い
密着強度で形成する場合には、薄膜層と基材との格子定
数、線膨張係数の差、化学反応性の存無に左右される。
(Function) According to the present invention, a thin film conductor layer is provided on an A7N base material via a base layer in which a TiN thin film and 71 layers are successively laminated, or a base layer in which a CrN thin film and a Cr layer are successively laminated. A thin film conductor layer can be formed on a base material with extremely high adhesion strength. That is, in general, when forming a thin film layer on an A/N base material with high adhesion strength, it depends on the difference in lattice constant and linear expansion coefficient between the thin film layer and the base material, and the presence or absence of chemical reactivity.

このうち格子定数に注目すると、A、tPN基材に直接
接触する下地層の下層のTiN又はCrNはNaCl型
立方構造をとるが、[1111方向の最密面を考えた場
合、六方構造となりA)Nの格子定数に近い値をもつ。
Among these, focusing on the lattice constant, the lower layer of TiN or CrN in the underlayer that is in direct contact with the tPN base material has a NaCl-type cubic structure, but when considering the close-packed plane in the [1111 direction, it has a hexagonal structure. ) has a value close to the lattice constant of N.

この場合、AiNの格子定数とのミスフィツトの割合も
低く、718層又はCrN層はAノN基材に対して強固
に密着させることが可能となる。また、下地層の上層の
71層又はCr層は下層の718層、CrN層に対して
充分な化学反応性を有し、かつ該Ti層、Cr層をその
上に積層される薄膜導体層に対しても良好な密着性を示
す。従って、かかる下地層上に薄膜導体層を形成するこ
とによって、既述したようにAI!N基材に対する薄膜
導体層の密着強度を向上できる。
In this case, the misfit ratio with the lattice constant of AiN is also low, and the 718 layer or CrN layer can be firmly adhered to the A/N base material. In addition, the upper layer 71 or Cr layer of the base layer has sufficient chemical reactivity with the lower layer 718 and CrN layer, and the Ti layer and Cr layer are bonded to the thin film conductor layer laminated thereon. It also shows good adhesion. Therefore, by forming a thin film conductor layer on such an underlayer, AI! The adhesion strength of the thin film conductor layer to the N base material can be improved.

更に、AノN基材と直接接触する下地層の下層(Ti 
N層又はCrN層)に酸素を0.02〜30 atm%
含有させることによって、該下層のA、t’N基材に対
する密着強度を著しく向上できる。
Furthermore, the lower layer of the underlayer (Ti
0.02 to 30 atm% of oxygen to N layer or CrN layer)
By containing it, the adhesion strength of the lower layer to the A, t'N base material can be significantly improved.

従って、本発明によれば薄膜導体層をAノN基材に対し
て高い密着強度で設けることができるため、使用時での
薄膜導体層の剥離や断線等を防止でき、能動素子等の高
密度実装が可能な半導体モジュールに有用な高信頼性の
AノN薄膜回路基板を得ることができる。
Therefore, according to the present invention, the thin film conductor layer can be provided with high adhesion strength to the A/N base material, so it is possible to prevent the thin film conductor layer from peeling off or disconnection during use, and it is possible to prevent the thin film conductor layer from peeling off or disconnecting during use. A highly reliable A/N thin film circuit board useful for semiconductor modules capable of dense packaging can be obtained.

(実施例) 以下、本発明の実施例を詳細に説明する。(Example) Examples of the present invention will be described in detail below.

実施例1〜5 まず、熱伝導率280 W/ m −KのAノN基材を
平均線表面粗さが150 nsとなるようにラッピング
、ポリッシングを行なった後、該基材表面を湿式洗浄、
逆スパツタを行なった。つづいて、AI!N基材表面に
下記第1表に示す条件で下地層及び薄膜導体層を成膜し
た。次いで、薄膜導体層に写真蝕刻法によりレジストパ
ターンを形成した後、該パターンをマスクとしてA’u
層をKI+12+脱イオン水のエッチャント、Ni層を
Cu SO4+HCi+エチルアルコール+脱イオン水
のエッチャント、Cu層をHNO3+脱イオン水のエッ
チャント、Pt層を王水+脱イオン水のエッチャント、
71層及び718層をIF十脱イオン水のエッチャント
、Cr層及びCrN層をH2SO4+脱イオン水のエッ
チャントにより順次エツチングして下地層を介して薄膜
導体層を形成し、A、t’N薄膜回路基板を製造した。
Examples 1 to 5 First, an A-N base material with a thermal conductivity of 280 W/m-K was lapped and polished so that the average linear surface roughness was 150 ns, and then the surface of the base material was wet-cleaned. ,
I did a reverse spatsuta. Next, AI! A base layer and a thin film conductor layer were formed on the surface of the N base material under the conditions shown in Table 1 below. Next, after forming a resist pattern on the thin film conductor layer by photolithography, A'u
layer with KI + 12 + deionized water etchant, Ni layer with Cu SO4 + HCi + ethyl alcohol + deionized water etchant, Cu layer with HNO3 + deionized water etchant, Pt layer with aqua regia + deionized water etchant,
The 71st layer and the 718th layer were sequentially etched with an IF-deionized water etchant, and the Cr layer and CrN layer were etched with an H2SO4+ deionized water etchant to form a thin film conductor layer through the underlying layer, forming an A, t'N thin film circuit. The substrate was manufactured.

比較例1.2 まず、熱伝導率20W/m−にのA!N基材を平均線表
面粗さが150111以下となるようにラッピング、ポ
リッシングを行なった後、該基材表面を湿式洗浄、逆ス
パツタを行なった。つづいて、AiN基材表面に下記第
1表に示す条件で下地層(T1層)及び薄膜導体層(N
l/Au)を成膜した。次いで、薄膜導体層に写真蝕刻
法によりレジストパターンを形成した後、該パターンを
マスクとしてAu層をKI+I2+脱イオン水のエッチ
ャント、N1層をCu SO4+HC1+エチルアルコ
ール+脱イオン水のエッチャント、T1層をHF十脱イ
オン水のエッチャントにより順次エツチングして下地層
を介して薄膜導体層を形成し、AノN薄膜回路基板を製
造した。
Comparative Example 1.2 First, A with a thermal conductivity of 20 W/m-! After lapping and polishing the N base material so that the average linear surface roughness was 150111 or less, the surface of the base material was wet-cleaned and reverse sputtered. Next, a base layer (T1 layer) and a thin film conductor layer (N
1/Au) was formed into a film. Next, after forming a resist pattern on the thin film conductor layer by photolithography, using the pattern as a mask, the Au layer was treated with KI + I2 + deionized water etchant, the N1 layer was treated with Cu SO4 + HC1 + ethyl alcohol + deionized water etchant, and the T1 layer was treated with HF. A thin film conductor layer was formed through the underlayer by sequential etching with an etchant of 10 deionized water, and an A/N thin film circuit board was manufactured.

しかして、本実施例1〜5及び比較例1.2の薄膜回路
基板について引張り試験による薄膜導体層の密着強度及
び1000時間の温度サイクル試験(−50℃〜150
℃、30分間保持)後の薄膜導体層の断線の有無を調べ
た。その結果を同第1表に併記した。
For the thin film circuit boards of Examples 1 to 5 and Comparative Example 1.2, the adhesion strength of the thin film conductor layer was determined by a tensile test and a 1000 hour temperature cycle test (-50°C to 150°C).
The presence or absence of disconnection in the thin film conductor layer was examined after the test was held at 30°C for 30 minutes. The results are also listed in Table 1.

第1表から明らかなように本実施例1〜5の薄膜回路基
板は、薄膜導体層のAjl’N基材に対する密層強度が
2kg/ma2以上と充分であり、しかも1000時間
の温度サイクル後も断線がなく、極めて信頼性の高いも
のであることがわかる。これに対し、比較例1.2の薄
膜回路基板は薄膜導体層のAI!N基材に対する密着強
度が本実施例1〜5に比べて著しく劣り、しかも100
0時間の温度サイクル後に断線が認められた。
As is clear from Table 1, the thin film circuit boards of Examples 1 to 5 have sufficient dense layer strength of the thin film conductor layer against the Ajl'N base material of 2 kg/ma2 or more, and moreover, after 1000 hours of temperature cycling. It can be seen that there was no disconnection and that it was extremely reliable. On the other hand, the thin film circuit board of Comparative Example 1.2 has a thin film conductor layer of AI! The adhesion strength to the N base material was significantly inferior to those of Examples 1 to 5, and
Disconnection was observed after 0 hours of temperature cycling.

[発明の効果] 以上詳述した如く、本発明によればAI!N基材への薄
膜導体層の密着強度を向上して温度サイクル時での薄膜
導体層の剥離や断線等を防止でき、ひいては能動素子等
の高密度実装が可能な半導体モジュールに有用な高信頓
性のAノN薄膜回路基板を提供できる。
[Effects of the Invention] As detailed above, according to the present invention, AI! It improves the adhesion strength of the thin film conductor layer to the N base material and prevents the thin film conductor layer from peeling or disconnection during temperature cycling, and is useful for semiconductor modules that can be used for high-density mounting of active elements. A ready-to-use A/N thin film circuit board can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明に係わるAノN薄膜回路基板の一形態
を示す断面図である。 1・=−11?N基材、2−TiN層(又はCrN層) ・・・T1 層 (又はC「 層) ・・・薄膜導体 層。
FIG. 1 is a sectional view showing one form of an A/N thin film circuit board according to the present invention. 1.=-11? N base material, 2-TiN layer (or CrN layer)...T1 layer (or C" layer)...thin film conductor layer.

Claims (2)

【特許請求の範囲】[Claims] (1).窒化アルミニウム基材上にTiN層及びTi層
を順次積層した下地層、又はCrN層及びCr層を順次
積層した下地層を介して薄膜導体層を設けたことを特徴
とする窒化アルミニウム薄膜回路基板。
(1). An aluminum nitride thin film circuit board, characterized in that a thin film conductor layer is provided on an aluminum nitride base material via a base layer in which a TiN layer and a Ti layer are laminated in sequence, or a base layer in which a CrN layer and a Cr layer are laminated in sequence.
(2).下地層を構成する下層側のTiN層又はCrN
層は酸素を0.02〜30atm%含むことを特徴とす
る請求項1記載の窒化アルミニウム薄膜回路基板。
(2). The lower TiN layer or CrN that constitutes the base layer
2. The aluminum nitride thin film circuit board according to claim 1, wherein the layer contains 0.02 to 30 atm % of oxygen.
JP27793188A 1988-01-25 1988-11-02 Aluminum nitride thin film circuit board Expired - Lifetime JP2664744B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP27793188A JP2664744B2 (en) 1988-11-02 1988-11-02 Aluminum nitride thin film circuit board
EP89101189A EP0326077B1 (en) 1988-01-25 1989-01-24 Circuit board
DE68922118T DE68922118T2 (en) 1988-01-25 1989-01-24 Circuit board.
US07/300,944 US4963701A (en) 1988-01-25 1989-01-24 Circuit board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27793188A JP2664744B2 (en) 1988-11-02 1988-11-02 Aluminum nitride thin film circuit board

Publications (2)

Publication Number Publication Date
JPH02123756A true JPH02123756A (en) 1990-05-11
JP2664744B2 JP2664744B2 (en) 1997-10-22

Family

ID=17590277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27793188A Expired - Lifetime JP2664744B2 (en) 1988-01-25 1988-11-02 Aluminum nitride thin film circuit board

Country Status (1)

Country Link
JP (1) JP2664744B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2723678A1 (en) * 1994-08-11 1996-02-16 Matra Defense Mfg. method for multilayer ceramic circuit for microelectronics
JPH10163378A (en) * 1996-12-04 1998-06-19 Toshiba Corp Wiring board and its manufacture
US6331811B2 (en) 1998-06-12 2001-12-18 Nec Corporation Thin-film resistor, wiring substrate, and method for manufacturing the same
JP2006339611A (en) * 2005-06-06 2006-12-14 Dowa Holdings Co Ltd Metal-ceramic compound substrate and manufacturing method of the same
JP2010232339A (en) * 2009-03-26 2010-10-14 Kyocera Corp Wiring board and substrate for probe card
JP2010232338A (en) * 2009-03-26 2010-10-14 Kyocera Corp Wiring board and substrate for probe card
WO2011002022A1 (en) * 2009-06-30 2011-01-06 イビデン株式会社 Printed circuit board and manufacturing method of printed circuit board

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2723678A1 (en) * 1994-08-11 1996-02-16 Matra Defense Mfg. method for multilayer ceramic circuit for microelectronics
JPH10163378A (en) * 1996-12-04 1998-06-19 Toshiba Corp Wiring board and its manufacture
US6331811B2 (en) 1998-06-12 2001-12-18 Nec Corporation Thin-film resistor, wiring substrate, and method for manufacturing the same
JP2006339611A (en) * 2005-06-06 2006-12-14 Dowa Holdings Co Ltd Metal-ceramic compound substrate and manufacturing method of the same
JP2010232339A (en) * 2009-03-26 2010-10-14 Kyocera Corp Wiring board and substrate for probe card
JP2010232338A (en) * 2009-03-26 2010-10-14 Kyocera Corp Wiring board and substrate for probe card
WO2011002022A1 (en) * 2009-06-30 2011-01-06 イビデン株式会社 Printed circuit board and manufacturing method of printed circuit board
US8436252B2 (en) 2009-06-30 2013-05-07 Ibiden Co., Ltd. Printed wiring board and method for manufacturing the same

Also Published As

Publication number Publication date
JP2664744B2 (en) 1997-10-22

Similar Documents

Publication Publication Date Title
EP0326077B1 (en) Circuit board
EP1396889B1 (en) Electronic device substrate structure and electronic device
US7105880B2 (en) Electronic device and method of fabricating the same
US7042090B2 (en) Electronic device and method of fabricating the same
JPH02123756A (en) Thin film circuit substrate of aluminum nitride
JP2005056940A (en) Electronic device, substrate therefor, and method for manufacturing them
JP2003158378A (en) Method for manufacturing electronic circuit device having multi-layer circuit board
US7436051B2 (en) Component for fabricating an electronic device and method of fabricating an electronic device
JP3391184B2 (en) Silicon wafer and method for manufacturing the same
US4588446A (en) Method for producing graded band gap mercury cadmium telluride
JP2703276B2 (en) Aluminum nitride thin film circuit board
WO2020175971A1 (en) High purity piezoelectric thin film and method of manufacturing element using same thin film
JP5606920B2 (en) Polymer laminated substrate for epitaxial growth film formation and method for producing the same
JP2703276C (en)
KR102556712B1 (en) Method of manufacturing AlxGa1-xN (0.5≤x≤1) piezoelectric thin films with high purity and their apparatus using the thin film
JP2002075705A (en) Resistor substrate
JP3322967B2 (en) Circuit board
JP2760560B2 (en) Circuit board
JPH01189191A (en) Circuit board
JPH04218950A (en) Aln substrate
JP2002134422A (en) Method for producing nitride semiconductor film, and method for producing nitride semiconductor substrate
JP3585964B2 (en) Ceramic surface wiring substrate
JPH01194490A (en) Manufacture of ceramic wiring board
KR20200113508A (en) Method of manufacturing AlxGa1-xN (0.5≤x≤1) piezoelectric thin films with high purity and their apparatus using the thin film
JPH06163544A (en) Wiring structure of semiconductor integrated circuit and fabrication thereof

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080620

Year of fee payment: 11

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

Free format text: JAPANESE INTERMEDIATE CODE: R313114

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080620

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090620

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090620

Year of fee payment: 12