JP2703276B2 - Aluminum nitride thin film circuit board - Google Patents

Aluminum nitride thin film circuit board

Info

Publication number
JP2703276B2
JP2703276B2 JP20860288A JP20860288A JP2703276B2 JP 2703276 B2 JP2703276 B2 JP 2703276B2 JP 20860288 A JP20860288 A JP 20860288A JP 20860288 A JP20860288 A JP 20860288A JP 2703276 B2 JP2703276 B2 JP 2703276B2
Authority
JP
Japan
Prior art keywords
layer
conductor
aln
thin film
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP20860288A
Other languages
Japanese (ja)
Other versions
JPH0257680A (en
Inventor
恭章 安本
暢男 岩瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP20860288A priority Critical patent/JP2703276B2/en
Priority to DE68922118T priority patent/DE68922118T2/en
Priority to EP89101189A priority patent/EP0326077B1/en
Priority to US07/300,944 priority patent/US4963701A/en
Publication of JPH0257680A publication Critical patent/JPH0257680A/en
Application granted granted Critical
Publication of JP2703276B2 publication Critical patent/JP2703276B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)
  • Physical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、窒化アルミニウム(AlN)薄膜回路基板に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to an aluminum nitride (AlN) thin film circuit board.

(従来の技術) 従来、半導体モジュールに使用される薄膜回路基板の
基材としては、アルミナが主に用いられている。しかし
ながら、実装される能動素子の性能向上に伴って稼働時
の素子からの発熱量が増大する傾向にあり、アルミナの
熱伝導率では能動素子の実装個数が制約されるという問
題があった。
(Prior Art) Conventionally, alumina is mainly used as a base material of a thin film circuit board used for a semiconductor module. However, the amount of heat generated from the active element during operation tends to increase with the improvement in the performance of the mounted active element, and there has been a problem that the thermal conductivity of alumina limits the number of mounted active elements.

このようなことから、アルミナに代わり高熱伝導率を
もつBeOを基材とした薄膜回路基板が使用されてきた
が、かかるBeOは製造時、研磨時の毒性が強いため、基
材としての応用範囲が限定される。このため、代替材料
としてAlNが広く用いられている。このAlNは、無害であ
り、製造、部品化、廃棄の制約がないという利点を持
ち、特に熱伝導率が70〜280W/m・kの広い範囲、つまり
放熱性がアルミナの3.5倍から場合によってはBeOより優
れたレベルまで調製可能であるため、アルミナ基材を用
いた薄膜回路基板に比べて高い実装密度を実現できるば
かりか、能動素子の高密度化に合せて所望の熱伝導性を
付与できる利点を有する。かかるAlN基材を用いた薄膜
回路基板の薄膜導体は、従来よりAu/Pt/Ti、Au/Pd/Ti、
Au/Pt/Cr等が一般に使用されている。しかしながら、こ
れらの導体を前記AlN基材上に形成するには王水、弗酸
等の腐蝕性の強いエッチントを用いて選択エッチングす
る手法が採用されるため、該AlN基材もエッチングされ
るという問題があった。即ち、AlN材料はアルミナやSi
に比べて強酸、強アルカリに対する耐食性が低く、容易
に分解するため、前記エッチングによる導体の形成時に
誘導体周辺のAlN基材表面にピットやトレンチを生じ、
導体を安定的な形状でかつ信頼性よく形成することが困
難となる。
For this reason, instead of alumina, thin-film circuit boards based on BeO, which has a high thermal conductivity, have been used.However, such BeO is highly toxic during manufacturing and polishing. Is limited. For this reason, AlN is widely used as an alternative material. This AlN is harmless and has the advantage that there is no restriction on production, parts and disposal, and in particular, the thermal conductivity is in a wide range of 70 to 280 W / m ・ k, that is, the heat dissipation is 3.5 times that of alumina, depending on the case. Can be prepared to a level superior to BeO, so not only can a higher mounting density be achieved than a thin film circuit board using an alumina base material, but also the desired thermal conductivity can be provided in accordance with the higher density of active elements Have the advantages that can be. The thin film conductor of the thin film circuit board using such an AlN base material is conventionally Au / Pt / Ti, Au / Pd / Ti,
Au / Pt / Cr and the like are generally used. However, in order to form these conductors on the AlN substrate, a method of selective etching using a highly corrosive etchant such as aqua regia or hydrofluoric acid is adopted, and therefore, the AlN substrate is also etched. There was a problem. That is, AlN material is alumina or Si
Corrosion resistance to strong acids and strong alkalis is lower than that, and it is easily decomposed, so that pits and trenches are formed on the surface of the AlN base material around the derivative when the conductor is formed by the etching,
It is difficult to form the conductor in a stable shape and with high reliability.

(発明が解決しようとする課題) 本発明は、上記従来の課題を解決するためになされた
もので、導体形成のためのパターニングに際してのエッ
チング時にAlN基材表面へのエッチングを抑制して安定
した形状で信頼性の高い導体を実現でき、かつ該導体の
AlN基材への密着性を向上したAlN薄膜回路基板を提供し
ようとするものである。
(Problems to be Solved by the Invention) The present invention has been made in order to solve the above-mentioned conventional problems, and suppresses the etching of the AlN base material surface during the etching at the time of patterning for forming the conductor, thereby achieving a stable operation. A highly reliable conductor can be realized with the shape, and the conductor
An object of the present invention is to provide an AlN thin film circuit board having improved adhesion to an AlN substrate.

[発明の構成] (課題を解決するための手段) 本発明は、平均線表面粗さが150nm以下の窒化アルミ
ニウム基材上にTi層、Ni層及びAu層をこの順序で積層し
た三層構造の導体を形成したことを特徴とする窒化アル
ミニウム薄膜回路基板である。
[Constitution of the Invention] (Means for Solving the Problems) The present invention provides a three-layer structure in which a Ti layer, a Ni layer, and an Au layer are laminated in this order on an aluminum nitride substrate having an average line surface roughness of 150 nm or less. An aluminum nitride thin-film circuit board characterized by forming the above conductor.

上記AlN基材の平均線表面粗さ(Ra)を150nm以下に限
定した理由は、その表面粗さが150nmを越えると導体の
断線や、該導体を形成するためのパターニング工程にお
いて幅が不均一となり、更に導体のAlN基材に対する密
着性が低下して薄膜回路基板の信頼性を低下させるから
である。このような表面粗さに調整するには、サブミロ
ンのAlN粒子原料を用いた焼結操作や焼結基材の研磨に
より達成できる。
The reason for limiting the average line surface roughness (Ra) of the AlN base material to 150 nm or less is that if the surface roughness exceeds 150 nm, the conductor breaks or the width becomes uneven in the patterning step for forming the conductor. This is because the adhesion of the conductor to the AlN substrate is further reduced, and the reliability of the thin film circuit board is reduced. Adjustment to such a surface roughness can be achieved by a sintering operation using a submillon AlN particle raw material or polishing of a sintered base material.

上記AlN基材の結晶粒径は、0.5〜20μmの範囲にする
ことが望ましい。この理由は、結晶粒径を0.5μm未満
にするとAlN基材の熱伝導率の向上化が望めなくなるば
かりか、焼結時のうねりや反りが大きくなって導体形成
工程でのマスク露光精度を低下させる恐れがあり、一方
結晶粒径が20μmを越えると基材表面の研磨の際、結晶
粒の脱落などにより表面のRaが150nm以下の基材を得る
ことが困難となる恐れがあるからである。
The AlN substrate preferably has a crystal grain size in the range of 0.5 to 20 μm. The reason for this is that if the crystal grain size is less than 0.5 μm, the thermal conductivity of the AlN substrate cannot be improved, and the undulation and warpage during sintering will increase, resulting in a decrease in mask exposure accuracy in the conductor formation process. On the other hand, if the crystal grain size exceeds 20 μm, when polishing the surface of the base material, it may be difficult to obtain a base material having a surface Ra of 150 nm or less due to dropout of crystal grains and the like. .

上記導体の構成材料であるAlN基材側に配置される下
層のTi層は該基材に対する密着性を高める作用をなし、
中間に配置されるNi層は下層のTi層が上層のAu層に拡散
するのを防止するバリアとして作用し、上層のAu層は導
体そのものの特性である低抵抗性を付与する機能を有す
る。かかる導体を構成する各金属層の厚さについては、
Ti層を10〜200nm、Ni層を100nm〜1μm、Au層を50nm〜
4μmにすることが望ましい。
The lower Ti layer disposed on the AlN substrate side, which is a constituent material of the conductor, serves to enhance the adhesion to the substrate,
The Ni layer disposed in the middle acts as a barrier to prevent the lower Ti layer from diffusing into the upper Au layer, and the upper Au layer has a function of imparting low resistance, which is a characteristic of the conductor itself. Regarding the thickness of each metal layer constituting such a conductor,
Ti layer 10 ~ 200nm, Ni layer 100nm ~ 1μm, Au layer 50nm ~
Desirably, it is 4 μm.

上記AlN基材と導体のTi層の間には、酸素を0.02〜30a
tm%含む少なくともAlNの構成材料(Al、N等)及びTi
からなる化合物層を介在させることが望ましい。かかる
化合物層中の酸素量を限定した理由は、その量を0.02at
m%未満にすると導体をAlN基材に対して充分な強度で密
着させることが困難となり、かといって酸素の量が30at
m%を越えると基材の導体間の熱膨脹係数の差、格子歪
み等により導体が基材表面から剥離するからである。
Between the AlN substrate and the Ti layer of the conductor, oxygen is 0.02 to 30a.
tm% at least constituent materials of AlN (Al, N, etc.) and Ti
It is desirable to interpose a compound layer consisting of The reason for limiting the amount of oxygen in such a compound layer is that the amount is set to 0.02 at.
If it is less than m%, it becomes difficult to adhere the conductor to the AlN substrate with sufficient strength, but the amount of oxygen is 30at.
If the amount exceeds m%, the conductor is separated from the surface of the substrate due to a difference in thermal expansion coefficient between the conductors of the substrate and lattice distortion.

次に、本発明のAlN薄膜回路基板の製造方法を簡単に
説明する。
Next, a method for manufacturing an AlN thin film circuit board of the present invention will be briefly described.

まず、所望の熱伝導率を有し、表面のRaが150nm以下
のAlN基材を用意する。つづいて、この基材上に蒸着
法、スパッタリング法等の一般的な成膜技術によりTi
層、Ni層及びAu層を順次成膜する。この時、必要に応じ
て基材温度、雰囲気、真空度、パワー密度、ポート電流
を調整し、脱ガスが不充分な場合には所望の温度に基材
を加熱して基材表面を清浄な状態とする。また、Ti層の
成膜に先だって基材表面をプラズマによりエッチングし
て表面の活性化を高める。更に、AlN基材とTi層の界面
に前述した化合物層を形成するために酸素を蒸着雰囲気
中に供給する。次いで、前記三層をレジストを用いたフ
ォトエッチング技術によりパターニングしてAlN基材上
に三層構造の導体を形成してAlN薄膜回路基板を製造す
る。このフォトエッチング時には、Au層はKI+I2+脱イ
オン水、Ni層はCuSO4+HCl+エチルアルコール+脱イオ
ン水、HCl+FeCl2+エチルアルコール+脱イオン水、Cu
SO4+脱イオン水等、TiはHF+脱イオン水等、のエッチ
ャントを用いて行なう。
First, an AlN base material having a desired thermal conductivity and having a surface Ra of 150 nm or less is prepared. Subsequently, Ti is formed on the substrate by a general film forming technique such as an evaporation method or a sputtering method.
A layer, a Ni layer, and an Au layer are sequentially formed. At this time, the substrate temperature, atmosphere, degree of vacuum, power density, and port current are adjusted as necessary, and if degassing is insufficient, the substrate is heated to a desired temperature to clean the substrate surface. State. Prior to the formation of the Ti layer, the surface of the base material is etched by plasma to enhance the activation of the surface. Further, oxygen is supplied into the vapor deposition atmosphere to form the above-described compound layer at the interface between the AlN base material and the Ti layer. Next, the three layers are patterned by a photo-etching technique using a resist to form a conductor having a three-layer structure on the AlN substrate to manufacture an AlN thin film circuit board. During this photoetching, the Au layer is KI + I 2 + deionized water, the Ni layer is CuSO 4 + HCl + ethyl alcohol + deionized water, HCl + FeCl 2 + ethyl alcohol + deionized water, Cu
The etching is performed using an etchant such as SO 4 + deionized water and Ti is used with HF + deionized water.

(作用) 本発明によれば、平均線表面粗さが150nm以下のAlN基
材を用いることによって、該基材上に形成される導体の
断線、該導体をパターニングする工程での導体幅の不均
一化を防止できると共に、導体の基材に対する密着力を
向上できる。
(Action) According to the present invention, by using an AlN substrate having an average line surface roughness of 150 nm or less, disconnection of a conductor formed on the substrate and inconsistency of a conductor width in a step of patterning the conductor are achieved. Uniformity can be prevented, and the adhesion of the conductor to the substrate can be improved.

また、導体をTi層、Ni層及びAu層をこの順序で積層し
た三層構造とすることによって、該導体(特にNi層)の
パターニングに際して既述した組成を有し、AlN基材に
対して腐蝕性の低いエッチャントを用いることができる
ため、安定した形状をもつ高信頼性の導体をAlN基材表
面に形成することができる。即ち、AlN基材としては既
述したように導体のパターン精度を向上するために表面
を鏡面状態にしている。しかしながら、この鏡面とはマ
クロ的なレベルの表現であり、ミクロ的には第1図に示
すように導体1が形成されるAlN基材2は結晶粒子3の
粒界及び粒界相などの異相面4、不純物等の原因による
凹凸が生じ、各結晶粒子3の研磨位置は不連続な表面
(段差)5が形成されている。従来のようにAlN基材に
与える影響の大きなエッチャントを用いて導体薄層をパ
ターニングすると、該エッチャントは配向面で異なるエ
ッチング性を有する各結晶粒子のエッチング速度差を助
長して前述した不連続面4の段差度合を拡大し、結果的
には安定した形状の導体を信頼性よく形成することが困
難となる。これに対し、前述したTi層、Ni層及びAu層か
らなる三層構造の導体は、腐蝕性の小さいエッチャント
によるパターニングが可能となり、AlN基材表面のエッ
チング(特に不連続面での段差度合のエッチングによる
拡大)を防止できるため、安定した形状をもつ高信頼性
の導体をAlN基材表面に形成することができる。
In addition, by forming the conductor into a three-layer structure in which a Ti layer, a Ni layer, and an Au layer are laminated in this order, the conductor has the composition described above when patterning the conductor (particularly, the Ni layer), and Since an etchant with low corrosiveness can be used, a highly reliable conductor having a stable shape can be formed on the AlN substrate surface. That is, as described above, the surface of the AlN substrate is mirror-finished in order to improve the pattern accuracy of the conductor. However, this mirror surface is a macroscopic expression, and microscopically, the AlN base material 2 on which the conductor 1 is formed as shown in FIG. The surface 4 has irregularities due to impurities and the like, and a discontinuous surface (step) 5 is formed at the polishing position of each crystal particle 3. When a conductor thin layer is patterned using an etchant having a large effect on the AlN substrate as in the conventional case, the etchant promotes a difference in the etching rate of each crystal grain having a different etching property in the orientation plane, and the discontinuous plane described above is promoted. 4 is increased, and as a result, it is difficult to reliably form a conductor having a stable shape. On the other hand, the above-mentioned three-layered conductor composed of the Ti layer, the Ni layer and the Au layer enables patterning with an etchant having low corrosiveness, and allows etching of the AlN base material surface (particularly, the degree of step difference at a discontinuous surface). (Enlargement by etching) can be prevented, so that a highly reliable conductor having a stable shape can be formed on the surface of the AlN base material.

更に、AlN基材と導体のTi層の間に酸素を0.20〜30atm
%含む少なくともAlNの構成材料(Al、N等)及びTiか
らなる化合物層を介在することによって、導体の基材に
対する密着強度を著しく向上できる。即ち、従来のアル
ミナ基材では導体の間に酸化物層が存在し、導体をアル
ミナ基材表面に良好に密着できる。しかしながら、AlN
基材では導体との間に酸化物単体を介在させても充分な
密着強度を得ることが困難で、それら部材間で熱膨脹係
数の差等により導体が剥離し易い問題がある。これに対
し、AlN基材と導体のTi層の間に特定量の酸素を含む少
なくともAlNの構成材料(Al、N等)及びTiからなる化
合物層を介在することによって、導体の基材に対する密
着強度を著しく向上でき、基材とTiとの間の熱膨脹係数
の差等による導体の剥離を防止できる。
Further, oxygen is added between the AlN substrate and the Ti layer of the conductor by 0.20 to 30 atm.
%, By interposing a compound layer composed of at least a constituent material (Al, N, etc.) of AlN and Ti, the adhesion strength of the conductor to the base material can be significantly improved. That is, in the conventional alumina substrate, an oxide layer exists between the conductors, and the conductor can be satisfactorily adhered to the surface of the alumina substrate. However, AlN
In the base material, it is difficult to obtain a sufficient adhesion strength even when an oxide alone is interposed between the conductor and the conductor, and there is a problem that the conductor is easily peeled off due to a difference in thermal expansion coefficient between the members. On the other hand, by interposing a compound layer composed of Ti and at least a constituent material of AlN (Al, N, etc.) containing a specific amount of oxygen between the AlN substrate and the Ti layer of the conductor, the conductor adheres to the substrate. Strength can be remarkably improved, and peeling of the conductor due to a difference in thermal expansion coefficient between the base material and Ti can be prevented.

従って、本発明によれば微細線幅を有する導体がAlN
基板に対して高い密着強度で設けられ、能動素子等の高
密度実装が可能な半導体モジュールに有用な高信頼性の
AlN薄膜回路基板を得ることができる。
Therefore, according to the present invention, the conductor having a fine line width is made of AlN
Highly reliable, useful for semiconductor modules that are provided with high adhesion strength to the substrate and can be mounted at high density such as active elements
An AlN thin film circuit board can be obtained.

(実施例) 以下、本発明の実施例を詳細に説明する。(Example) Hereinafter, an example of the present invention will be described in detail.

実施例1 まず、熱伝導率280W/m・kのAlN基材を平均線表面粗
さが150nmとなるようにラッピング、ポリッシングを行
なった。つづいて、AlN基材表面を300Wのパワーにて0.5
vol%の酸素を含むArガスのプラズマエッチングを行な
ってAlN基材表面に酸素を供給した後、RFスパッタ法に
よりTi層、Ni層及びAu層を下記第1表に示す条件で成膜
した。次いで、最上層のAu層に写真蝕刻法により7μm
幅のレジストパターンを形成した後、該パターンをマス
クとしてAu層をKI+I2+脱イオン水のエッチャント、Ni
層をCuSO4+HCl+エチルアルコール+脱イオン水のエッ
チャント、Ti層をHF+脱イオン水のエッチントにより順
次エッチングして三層構造の導体を形成し、AlN薄膜回
路基板を製造した。
Example 1 First, an AlN substrate having a thermal conductivity of 280 W / m · k was lapped and polished so that the average line surface roughness became 150 nm. Then, the surface of the AlN substrate was
After oxygen gas was supplied to the AlN substrate surface by performing plasma etching of an Ar gas containing vol% of oxygen, a Ti layer, a Ni layer, and an Au layer were formed by RF sputtering under the conditions shown in Table 1 below. Next, the uppermost Au layer was formed to a thickness of 7 μm by photolithography.
After forming a resist pattern having a width, using the pattern as a mask, the Au layer is etched with KI + I 2 + deionized water etchant, Ni
The layer was successively etched by an etchant of CuSO 4 + HCl + ethyl alcohol + deionized water and an etchant of the Ti layer by an etchant of HF + deionized water to form a three-layer conductor, thereby producing an AlN thin film circuit board.

実施例2 実施例1と同様、ラッピング、ポリシング処理、酸素
を含むArガスプラズマ処理を施したAlN基材表面にRFス
パッタ法によりTi層、Ni層及びAu層を下記第1表に示す
条件で成膜し、つづいてこれらの層を実施例1と同様に
パターニングして三層構造の導体を有するAlN薄膜回路
基板を製造した。
Example 2 In the same manner as in Example 1, a Ti layer, a Ni layer and an Au layer were formed on the surface of an AlN substrate subjected to lapping, polishing, and Ar gas plasma treatment containing oxygen by RF sputtering under the conditions shown in Table 1 below. Films were formed, and then these layers were patterned in the same manner as in Example 1 to manufacture an AlN thin film circuit board having a conductor having a three-layer structure.

比較例1 まず、熱伝導率20W/m・kのAlN基材を平均線表面粗さ
が150nmとなるようにラッピング、ポリッシングを行な
った。つづいて、RFスパッタ法によりTi層、Pt層及びAu
層を下記第1表に示す条件で成膜した。次いで、最上層
のAu層に写真蝕刻法により7μm幅のレジストパターン
を形成した後、該パターンをマスクとしてAu層をKI+I2
+脱イオン水のエッチャント、Pt層をHCl+HNO3のエッ
チャント、Ti層をHF+脱イオン水のエッチントにより順
次エッチングして三層構造の導体を形成し、AlN薄膜回
路基板を製造した。
Comparative Example 1 First, lapping and polishing were performed on an AlN substrate having a thermal conductivity of 20 W / m · k so that the average line surface roughness became 150 nm. Then, Ti layer, Pt layer and Au
The layers were formed under the conditions shown in Table 1 below. Next, a resist pattern having a width of 7 μm is formed on the uppermost Au layer by photolithography, and the Au layer is then KI + I 2 using the pattern as a mask.
An etchant of + deionized water, an etchant of Pt layer of HCl + HNO 3 and an etchant of Ti layer were sequentially etched with an etchant of HF + deionized water to form a three-layer conductor, thereby producing an AlN thin film circuit board.

比較例2 まず、熱伝導率20W/m・kのAlN基材を平均線表面粗さ
が150nmとなるようにラッピング、ポリッシングを行な
った。つづいて、AlN基材表面を300Wのパワーにて50vol
%の酸素を含むArガスのプラズマエッチングを行なって
AlN基材表面に酸素を供給した後、RFスパッタ法によりT
i層、Pt層及びAu層を下記第1表に示す条件で成膜し
た。次いで、最上層のAu層に写真蝕刻法により7μm幅
のレジストパターンを形成した後、該パターンをマスク
として比較例1と同様な方法によりAu層、Pt層及びTi層
を順次エッチングして三層構造の導体を形成し、AlN薄
膜回路基板を製造した。
Comparative Example 2 First, an AlN substrate having a thermal conductivity of 20 W / m · k was lapped and polished so that the average line surface roughness became 150 nm. Subsequently, the surface of the AlN base material
% Plasma etching of Ar gas containing oxygen
After supplying oxygen to the AlN substrate surface, T
An i layer, a Pt layer, and an Au layer were formed under the conditions shown in Table 1 below. Next, a resist pattern having a width of 7 μm was formed on the uppermost Au layer by photolithography, and the Au layer, the Pt layer, and the Ti layer were sequentially etched using the pattern as a mask in the same manner as in Comparative Example 1 to form three layers. An AlN thin film circuit board was manufactured by forming a conductor having the structure.

しかして、本実施例1、2及び比較例1、2の薄膜回
路基板についてAlN基材に対する導体(Ti層)の接合強
度、導体の断線の有無を調べた。その結果を同第1表に
併記した。
Thus, the bonding strength of the conductor (Ti layer) to the AlN substrate and the presence / absence of disconnection of the conductor were examined for the thin film circuit boards of Examples 1 and 2 and Comparative Examples 1 and 2. The results are shown in Table 1.

第1表から明らかなように本実施例1、2の薄膜回路
基板は比較例1、2の薄膜回路基板に比べて導体のAlN
基材に対する密着強度が著しく高く、しかも断線のない
信頼性が極めて高いものであることがわかる。
As is evident from Table 1, the thin film circuit boards of Examples 1 and 2 have conductors of AlN compared to the thin film circuit boards of Comparative Examples 1 and 2.
It can be seen that the adhesive strength to the substrate is extremely high, and the reliability without disconnection is extremely high.

[発明の効果] 以上詳述した如く、本発明によれば導体形成のための
パターニングに際してのエッチング時にAlN基材表面へ
のエッチングを抑制して微細かつ安定した形状で信頼性
の高い導体を実現でき、かつ該導体のAlN基材への密着
性を向上でき、ひいては能動素子等の高密度実装が可能
な半導体モジュールに有用な高信頼性のAlN薄膜回路基
板を提供できる。
[Effects of the Invention] As described in detail above, according to the present invention, a highly reliable conductor having a fine and stable shape is suppressed by suppressing the etching of the AlN substrate surface during etching for patterning for conductor formation. It is possible to provide a highly reliable AlN thin-film circuit board useful for a semiconductor module capable of improving the adhesion of the conductor to an AlN base material, and thus enabling high-density mounting of active elements and the like.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、導体が形成されたAlN基材表面をミクロ的に
見た状態を示す模式図である。 1……導体、2……AlN基材、3……結晶粒子、4……
異相界面、5……不連続面。
FIG. 1 is a schematic diagram showing a microscopic view of the surface of an AlN substrate on which a conductor is formed. 1 ... conductor, 2 ... AlN base material, 3 ... crystal particles, 4 ...
Heterophase interface, 5: discontinuous surface.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H05K 1/03 630 H01L 23/12 Q ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code Reference number in the agency FI Technical display location H05K 1/03 630 H01L 23/12 Q

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】平均線表面粗さが150nm以下の窒化アルミ
ニウム基材上にTi層、Ni層及びAu層をこの順序で積層し
た三層構造の導体を形成したことを特徴とする窒化アル
ミニアム薄膜回路基板。
An aluminum nitride thin film comprising a three-layer conductor formed by laminating a Ti layer, a Ni layer and an Au layer in this order on an aluminum nitride substrate having an average line surface roughness of 150 nm or less. Circuit board.
【請求項2】窒化アルミニウム基材と導体のTi層の間に
酸素を0.02〜30atm%含む少なくとも窒化アルミニウム
の構成材料及びTiからなる化合物層を介在させたことを
特徴とする請求項1記載の窒化アルミニウム薄膜回路基
板。
2. The method according to claim 1, wherein a compound layer containing at least a constituent material of aluminum nitride containing 0.02 to 30 atm% oxygen and Ti is interposed between the aluminum nitride base material and the Ti layer of the conductor. Aluminum nitride thin film circuit board.
JP20860288A 1988-01-25 1988-08-23 Aluminum nitride thin film circuit board Expired - Lifetime JP2703276B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP20860288A JP2703276B2 (en) 1988-08-23 1988-08-23 Aluminum nitride thin film circuit board
DE68922118T DE68922118T2 (en) 1988-01-25 1989-01-24 Circuit board.
EP89101189A EP0326077B1 (en) 1988-01-25 1989-01-24 Circuit board
US07/300,944 US4963701A (en) 1988-01-25 1989-01-24 Circuit board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20860288A JP2703276B2 (en) 1988-08-23 1988-08-23 Aluminum nitride thin film circuit board

Publications (2)

Publication Number Publication Date
JPH0257680A JPH0257680A (en) 1990-02-27
JP2703276B2 true JP2703276B2 (en) 1998-01-26

Family

ID=16558926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20860288A Expired - Lifetime JP2703276B2 (en) 1988-01-25 1988-08-23 Aluminum nitride thin film circuit board

Country Status (1)

Country Link
JP (1) JP2703276B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03292791A (en) * 1990-04-11 1991-12-24 Toshiba Corp Wiring board

Also Published As

Publication number Publication date
JPH0257680A (en) 1990-02-27

Similar Documents

Publication Publication Date Title
US4963701A (en) Circuit board
TWI436436B (en) Metal-ceramic composite substrate and method of manufacturing same
US4017890A (en) Intermetallic compound layer in thin films for improved electromigration resistance
US7495261B2 (en) Group III nitride semiconductor light-emitting device and method of producing the same
JP2003023239A (en) Circuit board and its manufacturing method and high output module
JPH04249326A (en) Manufacture of semiconductor device
KR100838215B1 (en) Reflective positive electrode and gallium nitride-based compound semiconductor light-emitting device using the same
JP2003124590A (en) Circuit board and its manufacturing method as well as high output module
JPH02167890A (en) Nickel film and sputtering forming same film
JP2664744B2 (en) Aluminum nitride thin film circuit board
JP2703276B2 (en) Aluminum nitride thin film circuit board
JP5606920B2 (en) Polymer laminated substrate for epitaxial growth film formation and method for producing the same
JP2002115056A (en) Manufacturing method of metal thin film consisting of large single crystal grain
JP2703276C (en)
IL106189A (en) Etching a diamond body with a molten or partially molten metal
JP2891488B2 (en) Semiconductor device and manufacturing method thereof
JP2760560B2 (en) Circuit board
JP3015491B2 (en) AlN substrate
JP3128165B2 (en) Method for forming electrode of compound semiconductor device
JP3322967B2 (en) Circuit board
JP3096461B2 (en) Semiconductor device and manufacturing method thereof
JPH01189191A (en) Circuit board
JP3367688B2 (en) Circuit board
JPH04326521A (en) Semiconductor integrated circuit device and its manufacture
JPH06163544A (en) Wiring structure of semiconductor integrated circuit and fabrication thereof

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20071003

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20081003

EXPY Cancellation because of completion of term