JPH03292791A - Wiring board - Google Patents

Wiring board

Info

Publication number
JPH03292791A
JPH03292791A JP9527690A JP9527690A JPH03292791A JP H03292791 A JPH03292791 A JP H03292791A JP 9527690 A JP9527690 A JP 9527690A JP 9527690 A JP9527690 A JP 9527690A JP H03292791 A JPH03292791 A JP H03292791A
Authority
JP
Japan
Prior art keywords
aluminum nitride
wiring
base
alumina film
nitride substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9527690A
Other languages
Japanese (ja)
Inventor
Norimi Kikuchi
菊池 紀實
Hiroyuki Kawamura
裕之 川村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Electronics Engineering Corp
Original Assignee
Toshiba Corp
Toshiba Material Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Material Engineering Co Ltd filed Critical Toshiba Corp
Priority to JP9527690A priority Critical patent/JPH03292791A/en
Publication of JPH03292791A publication Critical patent/JPH03292791A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Printed Wiring (AREA)

Abstract

PURPOSE:To obtain a wiring board where a wiring formed on a base is uniform in resistance throughout the base by a method wherein the surface of a ceramic base formed of a ceramic burned body is formed Ra of 0.03-0.5mum in average roughness. CONSTITUTION:An alumina film 2 is formed on a aluminum nitride base 1, and a wiring 3 is formed on the surface of the alumina film 2. The surface of the aluminum nitride base 1 is set ranging in average roughness Ra from 0.03mum to 0.5mum. Aluminum sheets are laminated to form a green sheet, through- holes are provided to the green sheet, and the green sheet provided with through-holes is burned into the aluminum nitride base 1. In succession, the base 1 is subjected to a polishing process and then an oxidation process to form an alumina film 2 on it. Then, a wiring 3 is formed on the surface of the alumina film 2 through a thin film method such as sputtering or the like or a thick film method such as screen printing. In a polishing process, a grindstone intermediate in roughness not to cause particles to separate off from the surface of the aluminum nitride base 1 is used for polishing first, and then a fine grindstone is used for finishing.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明はセラミックス焼成体からなるセラミックス基体
の表面に配線を形成してなる配線基板に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a wiring board in which wiring is formed on the surface of a ceramic base made of a fired ceramic body.

(従来の技術) 電子機器にはセラミックス基体の表面に配線を形成した
配線基板が用いられており、この配線基板においては、
セラミックス基体として従来からアルミナ(Ai)20
3)が使用されてきたが、最近では熱伝導性に優れた窒
化アルミニウム(l N)が用いられつつある。
(Prior Art) Electronic devices use wiring boards in which wiring is formed on the surface of a ceramic substrate.
Alumina (Ai) 20 has traditionally been used as a ceramic substrate.
3) has been used, but recently aluminum nitride (lN), which has excellent thermal conductivity, has been used.

このように窒化アルミニウムからなるセラミックス基体
を用いた配線基板は次に述べる製造方法により製造され
る。
A wiring board using a ceramic substrate made of aluminum nitride as described above is manufactured by the manufacturing method described below.

すなわち、窒化アルミニウムのシートを積層してグリー
ンシートを成形し、このグリーンシートにスルーホール
を成形した後グリーンシートを焼成して窒化アルミニウ
ム基体を得る。次いで、この窒化アルミニウム基体に表
面加工を施し、その後窒化アルミニウム基体に酸化処理
を施して基体表面に酸化膜すなわちアルミナ膜を形成す
る。次いて、窒化アルミニウム基体のアルミナ膜の表面
に導電材料を用いて薄膜配線また厚幕配線を形成して配
線基板を製造する方法である。
That is, sheets of aluminum nitride are laminated to form a green sheet, through holes are formed in the green sheet, and then the green sheet is fired to obtain an aluminum nitride substrate. Next, this aluminum nitride base is subjected to surface processing, and then an oxidation treatment is performed on the aluminum nitride base to form an oxide film, that is, an alumina film on the surface of the base. Next, a conductive material is used on the surface of the alumina film of the aluminum nitride substrate to form thin film wiring or thick film wiring, thereby manufacturing a wiring board.

このような製造方法において、表面加工は、窒化アルミ
ニウム基体の表面の表面粗度を高め、後工程である酸化
処理により窒化アルミニウム基体の表面にできるだけ均
一な膜厚のアルミナ膜を形成できるようにすることを目
的として行なうもので、具体的には窒化アルミニウム基
体の表面を研摩加工している。
In this manufacturing method, surface processing increases the surface roughness of the surface of the aluminum nitride substrate, and the post-process oxidation treatment enables the formation of an alumina film with as uniform a thickness as possible on the surface of the aluminum nitride substrate. Specifically, the surface of the aluminum nitride substrate is polished.

酸化処理は、窒化アルミニウム基体の表面にアルミナ膜
(酸化膜)を形成して窒化アルミニウム基体の表面を覆
い、後工程である配線を形成する工程においてエツチン
グ液を使用する時にエツチング液が窒化アルミニウム基
体の表面に直接触れることを防止することをひとつの目
的として行うものである。仮に窒化アルミニウム基体の
表面に直接導電材料を塗布して配線を形成すると、エツ
チングを行なう時にエツチング液が窒化アルミニウム基
体の表面に直接触れることになる。エツチング液はアル
カリ性であるが、しかし窒化アルミニウムはアルカリ性
に弱くアルカリ性のエツチングが触れると腐食して形成
した配線が剥離することがある。
The oxidation process forms an alumina film (oxide film) on the surface of the aluminum nitride substrate to cover the surface of the aluminum nitride substrate, and when an etching solution is used in the subsequent process of forming wiring, the etching solution is used to form an alumina film (oxide film) on the surface of the aluminum nitride substrate. One purpose is to prevent direct contact with the surface of the If a conductive material is directly applied to the surface of the aluminum nitride substrate to form wiring, the etching solution will come into direct contact with the surface of the aluminum nitride substrate during etching. The etching solution is alkaline, but aluminum nitride is not sensitive to alkalinity, and if it comes into contact with alkaline etching, it may corrode and the formed wiring may peel off.

従って、窒化アルミニウム基体の表面にアルミナ膜を形
成してその上に配線を形成すれば、窒化アルミニウム基
体の表面を腐食させずに良好に配線を形成できる。
Therefore, if an alumina film is formed on the surface of the aluminum nitride substrate and wiring is formed thereon, the wiring can be formed satisfactorily without corroding the surface of the aluminum nitride substrate.

(発明が解決しようとする課題) しかし、従来の製造方法により製造された配線基板にお
いては、アルミナ膜の表面に形成した配線を調べると、
部分的に予め設定した必要とする所定の抵抗値の範囲に
入らない箇所が存在し、配線全体として抵抗値にばらつ
きが生じて抵抗値が不均一なことがあることが判った。
(Problem to be Solved by the Invention) However, in a wiring board manufactured by a conventional manufacturing method, when examining the wiring formed on the surface of the alumina film,
It has been found that there are portions that do not fall within the necessary predetermined resistance value range, and that the resistance values of the entire wiring may vary, resulting in non-uniform resistance values.

このように配線の抵抗値が不均一であると、配線基板に
形成した配線で構成する回路の電気的特性が不安定とな
る。
If the resistance values of the wiring are non-uniform in this way, the electrical characteristics of a circuit made up of the wiring formed on the wiring board become unstable.

本発明は前記事情に基づいてなされたもので、線基板を
提供することを目的とする。
The present invention was made based on the above-mentioned circumstances, and an object of the present invention is to provide a line board.

[発明の構成コ (課題を解決するための手段と作用] 本発明の発明者は窒化アルミニウム基体に形成する配線
について研究を重ねてきた。
[Structure of the Invention (Means and Effects for Solving the Problems)] The inventor of the present invention has conducted repeated research on wiring formed on an aluminum nitride substrate.

まず、発明者は従来の方法において窒化アルミニウム基
体に形成した配線の抵抗値が不均一になる現象について
調べた結果、次のことが判った。
First, the inventor investigated the phenomenon in which the resistance value of wiring formed on an aluminum nitride substrate becomes non-uniform in the conventional method, and found the following.

発明者は、まず配線において抵抗値か所定の範囲に収ま
らない部分、具体的には抵抗値が所定の範囲より高い部
分の膜厚に着目して厚さを調べた。
The inventor first investigated the thickness of the wiring by focusing on the film thickness of the portion where the resistance value does not fall within a predetermined range, specifically, the portion where the resistance value is higher than the predetermined range.

この結果、この部分の膜厚は抵抗値が所定範囲に収まっ
ている部分の膜厚よりも薄いことが判った。
As a result, it was found that the film thickness in this part was thinner than the film thickness in the part where the resistance value was within a predetermined range.

配線は膜厚を必要とする抵抗値の範囲に対応した所定の
範囲に設定している。
The film thickness of the wiring is set within a predetermined range corresponding to the required resistance value range.

そして、配線の膜厚のばらつきは配線を形成するアルミ
ナ膜の凹凸の状態に規定されるものであり、さらにアル
ミナ膜の凹凸の状態はアルミナ膜を形成する窒化アルミ
ニウム基体の表面の粗度に規定されていることを見出し
た。
The variation in the thickness of the wiring is determined by the unevenness of the alumina film that forms the wiring, and the unevenness of the alumina film is also determined by the roughness of the surface of the aluminum nitride substrate on which the alumina film is formed. I found out that it is.

すなわち、従来の配線基板では窒化アルミニウム基体の
表面の凸部の突端および凹部の底部分の影響でアルミナ
膜に膜厚が所定の範囲から外れて薄肉となる部分か生し
ることがあり、さらにアルミナ膜の膜厚が所定の範囲か
ら外れて薄肉となる部分の影響で配線に厚さが所定の範
囲から外れて薄肉となる部分が生じることがあることを
見出した。
In other words, in conventional wiring boards, the thickness of the alumina film may deviate from a predetermined range due to the influence of the tips of the convex parts and the bottom parts of the concave parts on the surface of the aluminum nitride base, resulting in thinner parts. It has been found that, due to the effect of a thin portion where the thickness of the alumina film deviates from a predetermined range, a portion where the thickness of the alumina film deviates from a predetermined range and becomes thin may occur in the wiring.

そこで、発明者は窒化アルミニウム基体の表面粗度に着
目して、窒化アルミニウム基体の表面粗度をアルミナ膜
の膜厚にばらつきを生じさせない範囲、すなわち配線の
膜厚にばらつきを生じさせない範囲に設定することによ
り、配線における抵抗値をばらつきを抑えることができ
ることを見出し、種々研究を重ねた結果、配線の抵抗値
を配線全体にわたり所定の範囲に収めることができる窒
化アルミニウム基体の表面粗度の範囲を見出した。
Therefore, the inventor focused on the surface roughness of the aluminum nitride substrate and set the surface roughness of the aluminum nitride substrate to a range that does not cause variations in the thickness of the alumina film, that is, a range that does not cause variations in the film thickness of the wiring. As a result of various research, we found that the range of surface roughness of the aluminum nitride substrate that can keep the resistance value of the wiring within a predetermined range over the entire wiring has been found. I found out.

すなわち、本発明の配線基板は、セラミックス焼成体か
らなるセラミックス基体の表面に配線を形成してなる配
線基板において、セラミックス基体の表面の平均粗度が
Ra=0.03〜0.51であることを特徴とするもの
である。
That is, the wiring board of the present invention is a wiring board in which wiring is formed on the surface of a ceramic base made of a fired ceramic body, and the average roughness of the surface of the ceramic base is Ra = 0.03 to 0.51. It is characterized by:

本発明の配線基板について説明する。The wiring board of the present invention will be explained.

ここでは窒化アルミニウム基体を用いた配線基板を代表
例として第1図を参照して説明する。
Here, a wiring board using an aluminum nitride substrate will be described as a representative example with reference to FIG.

基体としては窒化アルミニウム焼成体からなる基体1を
用いる。窒化アルミニウム基体1の表面にはアルミナ膜
2を形成し、さらにアルミナ膜2の表面には配線3を形
成する。
As the base body, a base body 1 made of a fired aluminum nitride body is used. An alumina film 2 is formed on the surface of the aluminum nitride substrate 1, and a wiring 3 is further formed on the surface of the alumina film 2.

窒化アルミニウム基体1の表面の平均粗度Raは0.0
3〜0.5−の範囲に設定する。これは次の理由による
ものである。表面粗度Raが0.5xを越えると、窒化
アルミニウム基体1の表面の凹凸が強すぎ、この凹凸部
の影響で配線3の膜厚が所定の範囲に収まるように形成
することが困難となる。
The average roughness Ra of the surface of the aluminum nitride substrate 1 is 0.0
Set in the range of 3 to 0.5-. This is due to the following reason. When the surface roughness Ra exceeds 0.5x, the unevenness of the surface of the aluminum nitride substrate 1 is too strong, and it becomes difficult to form the wiring 3 so that the film thickness falls within a predetermined range due to the influence of the unevenness. .

つまり、窒化アルミニウム基体1の表面の凹凸部の影響
により基体の表面に形成するアルミナ膜2に、膜厚が所
定の範囲より薄くなる部分が生じることがあり、このア
ルミナ膜2の膜厚が所定の範囲より薄くなる部分の影響
で、配線3の膜厚が所定の範囲より薄くなる部分が生じ
ることがある。
In other words, due to the unevenness of the surface of the aluminum nitride substrate 1, the alumina film 2 formed on the surface of the substrate may have a portion where the film thickness is thinner than a predetermined range. Due to the influence of the portion where the thickness is thinner than the range, there may be a portion where the film thickness of the wiring 3 is thinner than the predetermined range.

また、表面が平滑過ぎるとアルミナ膜を強固に形成する
ことが困難になる。
Furthermore, if the surface is too smooth, it will be difficult to form a strong alumina film.

アルミナ膜2は窒化アルミニウム基体1の表面を保護で
きる所定の範囲の膜厚で形成する。
The alumina film 2 is formed to have a thickness within a predetermined range that can protect the surface of the aluminum nitride substrate 1.

配線3は所定の抵抗が得られる所定の範囲の膜厚で形成
する。
The wiring 3 is formed to have a thickness within a predetermined range that provides a predetermined resistance.

しかして、このように構成した配線基板は、窒化アルミ
ニウム基体1の表面の平均粗度をアルミナ膜2が均一に
形成できる範囲に設定しであるので、窒化アルミニウム
基体1の表面にアルミナ膜2を均一な膜厚で形成するこ
とができ、これによりアルミナ膜2の表面に配線3を均
一な膜厚で形成することができる。
In the wiring board configured as described above, the average roughness of the surface of the aluminum nitride base 1 is set within a range where the alumina film 2 can be uniformly formed. It can be formed with a uniform film thickness, and thereby the wiring 3 can be formed on the surface of the alumina film 2 with a uniform film thickness.

従って、配線全体にわたり所定の範囲に収まる均一な抵
抗値を有する配線基板を得ることができる。
Therefore, it is possible to obtain a wiring board having a uniform resistance value within a predetermined range over the entire wiring.

本発明の配線基板は次に述べる方法により形成する。The wiring board of the present invention is formed by the method described below.

窒化アルミニウムのシートを積層してグリーンシートを
成形し、このグリーンシートにスルーホールを成形した
後グリーンシートを焼成して窒化アルミニウム基体1を
得る。
Aluminum nitride sheets are laminated to form a green sheet, through holes are formed in the green sheet, and then the green sheet is fired to obtain an aluminum nitride base 1.

次いで、この窒化アルミニウム基体1に表面加工である
研摩加工を施し、その後窒化アルミニウム基体1に酸化
処理を施して基体表面に酸化膜すなわちアルミナ膜2を
形成する。次いで、窒化アルミニウム基体1のアルミナ
膜2の表面にスバタリングなどや薄膜法またはススクリ
ーン印刷などの厚膜法により配線3を形成する。
Next, this aluminum nitride substrate 1 is subjected to a polishing process, which is a surface treatment, and then an oxidation treatment is applied to the aluminum nitride substrate 1 to form an oxide film, that is, an alumina film 2 on the surface of the substrate. Next, wiring 3 is formed on the surface of the alumina film 2 of the aluminum nitride substrate 1 by a thick film method such as sputtering, a thin film method, or screen printing.

この製造方法において重要なことは、研摩加工で窒化ア
ルミニウム基体1の表面を所定の範囲の表面粗度に収ま
るように仕上げることである。
What is important in this manufacturing method is to finish the surface of the aluminum nitride substrate 1 by polishing so that the surface roughness falls within a predetermined range.

このため、研摩加工に際しては、初めに窒化アルミニウ
ム基体1の表面から脱粒を生じさせぬ程度の中位程度の
粗度の砥石を用いて研摩を行い、次いで細かい砥石を用
いて仕上げを行うことが望ましい。
For this reason, during polishing, it is possible to first perform polishing using a grindstone with a medium roughness that does not cause grain shedding from the surface of the aluminum nitride base 1, and then finish using a fine grindstone. desirable.

また、窒化アルミニウム基体1の表面を研摩加工すると
、窒化アルミニウム基体1の表面にマイクロクラックが
発生したり、基体の表面の凹部やマイクロクラックに研
摩砥石から剥離した砥粒が入り込むことがある。
Furthermore, when the surface of the aluminum nitride substrate 1 is polished, microcracks may occur on the surface of the aluminum nitride substrate 1, or abrasive grains separated from the polishing wheel may enter into the recesses or microcracks on the surface of the substrate.

このように窒化アルミニウム基体1の表面にマイクロク
ラックや砥粒が存在していると、基体表面に形成したア
ルミナ膜2が破損してアルミナ膜2の表面に配線3を形
成することが困難になることがある。
If microcracks or abrasive grains exist on the surface of the aluminum nitride substrate 1 in this way, the alumina film 2 formed on the surface of the substrate will be damaged, making it difficult to form the wiring 3 on the surface of the alumina film 2. Sometimes.

このため、研摩加工後に窒化アルミニウム基体1の表面
からマイクロクラックや砥粒を取り除くために窒化アル
ミニウム基体11に対して洗浄や焼鈍を行なうことが望
ましい。
For this reason, it is desirable that the aluminum nitride substrate 11 be cleaned or annealed in order to remove microcracks and abrasive grains from the surface of the aluminum nitride substrate 1 after polishing.

洗浄は窒化アルミニウム基体1から砥粒およびマイクロ
クラックを除去するもので、エタノール洗浄、純水洗浄
、中性液洗浄が挙げられる。この洗浄は焼鈍の前および
後に組み合わせて行なうことが好ましい。
The cleaning is to remove abrasive grains and microcracks from the aluminum nitride substrate 1, and includes ethanol cleaning, pure water cleaning, and neutral liquid cleaning. This cleaning is preferably carried out in combination before and after annealing.

例えば、焼鈍の前にエタノール洗浄や純水洗浄を行ない
、焼鈍を行なった後に再びエタノール洗浄や純水洗浄、
あるいは中性液洗浄を行う。焼鈍は窒化アルミニウム基
体1のマイクロクラックを取り除くもので、基体1の材
質を考慮して加熱温度および時間を適切に設定する。
For example, before annealing, ethanol cleaning or pure water cleaning is performed, and after annealing, ethanol cleaning or pure water cleaning is performed again.
Alternatively, perform cleaning with a neutral solution. Annealing is to remove microcracks in the aluminum nitride substrate 1, and the heating temperature and time are appropriately set in consideration of the material of the substrate 1.

なお、研摩加工した窒化アルミニウム基体1の表面に存
在するマイクロクラックを観察するためには、−船釣に
走査型電子顕微鏡を用いる。発明者はこの観察に際して
、最も精度良く観察を行い基体表面に存在するマイクロ
クラックをより多く発見できる観察方法について研究を
行った。
In order to observe the microcracks present on the surface of the polished aluminum nitride substrate 1, a scanning electron microscope is used. For this observation, the inventor conducted research on an observation method that would enable the most accurate observation and discover more microcracks present on the surface of the substrate.

その結果、次に述べることを見出した。すなわち、第5
図に示すように走査型電子顕微鏡の光源方向0に対して
直角な面に窒化アルミニウム基体1を配置すると(仮想
線で示す)、発見できるマイクロクラックの数に限界が
あり、高い精度の観察を行うことができない。
As a result, we discovered the following. That is, the fifth
As shown in the figure, if the aluminum nitride substrate 1 is placed on a plane perpendicular to the light source direction 0 of the scanning electron microscope (indicated by a phantom line), there is a limit to the number of microcracks that can be found, making it difficult to observe with high precision. can't do it.

これに対して光源方向に対して直角な面を基準として3
0度ないし60度の範囲で傾斜した面に配置すると(実
線で示す)、発見できるマイクロクラックの数が増大し
て高い精度の観察を行うことができる。
On the other hand, 3
When placed on a surface inclined in the range of 0 degrees to 60 degrees (indicated by a solid line), the number of microcracks that can be found increases and observation can be performed with high accuracy.

以上は窒化アルミニウム基体を用いた配線基板について
説明したが、これに限定されずにアルミナ基体を使用し
た配線基板についても本発明を適用できる。この配線基
板ではアルミナ基体の表面に直接配線を形成する。
Although a wiring board using an aluminum nitride base has been described above, the present invention is not limited thereto, and the present invention can also be applied to a wiring board using an alumina base. In this wiring board, wiring is formed directly on the surface of the alumina base.

(実施例) 窒化アルミニウム基体を用いた配線基板を例にとり説明
する。
(Example) A wiring board using an aluminum nitride substrate will be explained as an example.

窒化アルミニウム粉末をドクタブレード法でシートに成
形し、このシートを複数個積層して2vi厚さのグリー
ンシートとした。
Aluminum nitride powder was formed into a sheet by a doctor blade method, and a plurality of sheets were laminated to form a green sheet with a thickness of 2vi.

次いで、このグリーンシートを脱脂および焼成して窒化
アルミニウム基体を形成した。
This green sheet was then degreased and fired to form an aluminum nitride substrate.

、、0.6−の3種類の試料を作製した。, , 0.6-, three types of samples were prepared.

そして、これら各資料の窒化アルミニウム基体に対して
酸化処理を行い基体表面に夫々膜厚5−のアルミナ膜を
形成し、さらに各窒化アルミニウム基体の表面のアルミ
ナ膜の表面にスパッタ法によりニッケルークロムからな
る薄膜配線を夫々形成した。
Then, the aluminum nitride substrates of each of these materials were subjected to oxidation treatment to form an alumina film with a thickness of 5 mm on the surface of each substrate, and the surface of the alumina film on the surface of each aluminum nitride substrate was further coated with nickel and chromium by sputtering. Thin film wirings were formed respectively.

そして、このように製造した各試料の配線基板における
配線の抵抗値を測定した。各試料毎に2個の配線基板を
用意し、各試料の2個の配線基板イ、0毎に夫々窒化ア
ルミニウム基体の表面上の3か所A、B、Cの配線の抵
抗値を測定した。この測定結果を第2図ないし第4図の
線図で示す。
Then, the resistance value of the wiring in the wiring board of each sample manufactured in this way was measured. Two wiring boards were prepared for each sample, and the resistance values of the wiring at three locations A, B, and C on the surface of the aluminum nitride base were measured for each of the two wiring boards A and 0 of each sample. . The measurement results are shown in the diagrams of FIGS. 2 to 4.

すなわち、これらの線図は横軸に基板の測定箇所0.5
1の場合を示し、第4図は0.61の場合を示している
In other words, these diagrams have a measurement point of 0.5 on the board on the horizontal axis.
1, and FIG. 4 shows the case of 0.61.

この線図によれば、窒化アルミニウム基体の表面粗度R
aが0 、’Y’3 tttsと0.5−の試料の場合
には、配線の抵抗値が必要とする範囲に収まっているこ
とか判り実用上問題かないといえる。しかし、表面粗度
Raが0.6−の試料の場合は、配線の抵抗値にバラツ
キが多く必要とする範囲から外れていることかあり、実
用上問題となることがある[発明の効果] 以上説明したように本発明によれば、セラミックス基体
の表面の粗度を範囲を規定することにより、抵抗値が均
一な配線を有する品質の安定した配線基板が得られる。
According to this diagram, the surface roughness R of the aluminum nitride substrate
In the case of the samples where a is 0, 'Y'3 ttts, and 0.5-, it can be seen that the resistance value of the wiring is within the required range, and there is no problem in practical use. However, in the case of a sample with a surface roughness Ra of 0.6-, there are many variations in the resistance value of the wiring, which may be out of the required range, which may pose a practical problem [Effects of the invention] As explained above, according to the present invention, by defining the roughness range of the surface of the ceramic substrate, a wiring board with stable quality and wiring having a uniform resistance value can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は配線基板の構成を拡大して示す図、第2図ない
し第4図は配線基板の配線の抵抗値を示す線図、第5図
は走査型電子顕微鏡で基体の表面状態を観察する方法を
示す図である。 1・・・基体、2・・・アルミナ膜、3・・・配線。 線の抵抗値か均一で安定した品質の配線基板を得ること
ができる。
Figure 1 is an enlarged view of the configuration of the wiring board, Figures 2 to 4 are diagrams showing the resistance values of the wiring on the wiring board, and Figure 5 is an observation of the surface condition of the substrate using a scanning electron microscope. FIG. 1... Base, 2... Alumina film, 3... Wiring. A wiring board with uniform wire resistance and stable quality can be obtained.

Claims (1)

【特許請求の範囲】[Claims] 窒化アルミニウムセラミックス焼成体からなるセラミッ
クス基体の表面に配線を形成してなる配線基板において
、セラミックス基体の表面の平均粗度がRa=0.03
〜0.5μmであることを特徴とする配線基板。
In a wiring board formed by forming wiring on the surface of a ceramic base made of a fired aluminum nitride ceramic body, the average roughness of the surface of the ceramic base is Ra = 0.03.
A wiring board characterized in that the thickness is 0.5 μm.
JP9527690A 1990-04-11 1990-04-11 Wiring board Pending JPH03292791A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9527690A JPH03292791A (en) 1990-04-11 1990-04-11 Wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9527690A JPH03292791A (en) 1990-04-11 1990-04-11 Wiring board

Publications (1)

Publication Number Publication Date
JPH03292791A true JPH03292791A (en) 1991-12-24

Family

ID=14133252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9527690A Pending JPH03292791A (en) 1990-04-11 1990-04-11 Wiring board

Country Status (1)

Country Link
JP (1) JPH03292791A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011512008A (en) * 2008-02-06 2011-04-14 アッシュ・ウー・エフ Method for manufacturing a heating element by depositing a thin layer on an insulating substrate, and element obtained thereby

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63170289A (en) * 1987-01-06 1988-07-14 新日本化学工業株式会社 Aluminum nitride substrate with oxidation layer on surface
JPH01241849A (en) * 1988-03-23 1989-09-26 Noritake Co Ltd Aluminum nitride substrate with excellent surface smoothness and manufacture thereof
JPH01273381A (en) * 1988-04-25 1989-11-01 Tokin Corp Manufacture of aluminum nitride substrate
JPH0244084A (en) * 1988-08-02 1990-02-14 Asahi Glass Co Ltd Aluminum nitride substrate and production thereof
JPH0257680A (en) * 1988-08-23 1990-02-27 Toshiba Corp Thin aluminum-nitride film circuit board

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63170289A (en) * 1987-01-06 1988-07-14 新日本化学工業株式会社 Aluminum nitride substrate with oxidation layer on surface
JPH01241849A (en) * 1988-03-23 1989-09-26 Noritake Co Ltd Aluminum nitride substrate with excellent surface smoothness and manufacture thereof
JPH01273381A (en) * 1988-04-25 1989-11-01 Tokin Corp Manufacture of aluminum nitride substrate
JPH0244084A (en) * 1988-08-02 1990-02-14 Asahi Glass Co Ltd Aluminum nitride substrate and production thereof
JPH0257680A (en) * 1988-08-23 1990-02-27 Toshiba Corp Thin aluminum-nitride film circuit board

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011512008A (en) * 2008-02-06 2011-04-14 アッシュ・ウー・エフ Method for manufacturing a heating element by depositing a thin layer on an insulating substrate, and element obtained thereby
KR101496496B1 (en) * 2008-02-06 2015-02-26 아쉬.에.에프. Method for making a heating element by depositing thin layers onto an insulating substrate, and resulting element

Similar Documents

Publication Publication Date Title
US6272002B1 (en) Electrostatic holding apparatus and method of producing the same
US4146673A (en) Process of film resistor laser trimming and composition of removable coating used therein
GB2367532A (en) Layered piezoelectric unit with first and second members wherein recesses or protrusions are formed on the surface of the first member jointed to the second
US6071592A (en) Metal-ceramic composite substrate
KR20000053385A (en) Sputtering target and method for manufacture thereof
US5940110A (en) Thermal head and method for manufacturing same
JPH03292791A (en) Wiring board
US5893731A (en) Method for fabricating low cost integrated resistor capacitor combinations
US5358597A (en) Method of protecting aluminum nitride circuit substrates during electroless plating using sol-gel oxide films and article made therefrom
US4649365A (en) Platinum resistor for the measurement of temperatures
TWI386383B (en) Aluminum nitride sintered body
JP4709358B2 (en) Sputtering target and sputtering apparatus, thin film, and electronic component using the same
JPH09125228A (en) Mask, and formation of pattern of thin dielectric film using same
JPH0714341Y2 (en) Ozone generator
JP2915555B2 (en) Manufacturing method of composite member
JPH082134A (en) Printing intaglio
JPH03183151A (en) Electrostatic chuck plate
JPS58168028A (en) Slide glass for microscope and its manufacture
US5989442A (en) Wet etching
JPS6258524A (en) Electric contact part
US5306389A (en) Method of protecting aluminum nitride circuit substrates during electroless plating using a surface oxidation treatment
Glang et al. Tolerance limitations of etched film resistors
JPH0669630A (en) Manufacture of electronic component
US6713833B2 (en) Thermopile on an electrical insulating substrate
JP3197083B2 (en) Probe part processed from metal foil and method for manufacturing the same