JPH02123599A - Nonvolatile semiconductor memory device - Google Patents

Nonvolatile semiconductor memory device

Info

Publication number
JPH02123599A
JPH02123599A JP63276616A JP27661688A JPH02123599A JP H02123599 A JPH02123599 A JP H02123599A JP 63276616 A JP63276616 A JP 63276616A JP 27661688 A JP27661688 A JP 27661688A JP H02123599 A JPH02123599 A JP H02123599A
Authority
JP
Japan
Prior art keywords
oscillation
erasing
inverter
circuit
writing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63276616A
Other languages
Japanese (ja)
Inventor
Akira Maruyama
明 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP63276616A priority Critical patent/JPH02123599A/en
Publication of JPH02123599A publication Critical patent/JPH02123599A/en
Pending legal-status Critical Current

Links

Landscapes

  • Read Only Memory (AREA)

Abstract

PURPOSE:To fix rising time for boosted voltage by making the frequency of an oscillation circuit variable when the title nonvolatile semiconductor memory is composed of the oscillation circuit to output an oscillation signal having a constant frequency and a boosting circuit to be driven by the output of the oscillation circuit. CONSTITUTION:In reading out, since a W/E control signal becomes an H level, the level of V2 is fixed, and no boosted voltage is generated. In byte writing and reproducing, the W/E control signal becomes an L level, and a B/C control signal becomes the H level. Consequently, since the output of a clock gate type inverter 12 becomes a high impedance state, and a circuit 13 works as an inverter, an oscillating operation for 6 steps of the inverter is generated in an oscillation circuit 2, and its output V2 becomes constant. On the other hand, in chip writing and erasing, since the number of the steps of the inverter becomes different from that in the above-mentioned byte writing and erasing, while the voltage V2 is not changed, its oscillation frequency becomes different. thus, in the chip writing and erasing, the number of the steps of the inverter is decreased, and the rising time of the boosted voltage is fixed.

Description

【発明の詳細な説明】 [産業上の利用分野1 本発明は不揮発性情体メモリの中で特に電気的に書き込
み、消去可能なリードオンリーメモリ、即ちE” PR
OM (以下E2PROMと記す)の書き込み、消去に
必要となる高電圧を発生させるための昇圧回路に関する
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field 1] The present invention is directed to electrically writable and erasable read-only memory among non-volatile informational memories, that is, E"PR.
The present invention relates to a booster circuit for generating a high voltage necessary for writing and erasing an OM (hereinafter referred to as E2PROM).

[従来の技術I E2FROMのデータの書き込み、消去には供給量#i
電圧よりも高い電圧(15V〜25V)が必要である。
[Conventional technology I For writing and erasing data in E2FROM, supply amount #i
A higher voltage (15V to 25V) is required.

第3図は従来の昇圧回路図である。1は昇圧電圧を発生
させるための昇圧回路で、いわゆるチャージポンプ回路
(例えば文献JOURNAL OF 5OLID 5T
ATE CIRCUITS、 VOL、 5C−16、
NO,3JUNE 1981のA1.5V Singl
e−3upply 0neTransistor 0M
O5EEPROM記載)で、3はその負荷容量であり、
2は昇圧回路lを駆動させる信号を供給するための一定
の周波数を発振する発振回路である。2の発振回路は、
インバータ5〜lOとN0R4から成っている。N0R
4の1入力には書き込み、消去制御信号(以下、Vl/
E制御信号と記す)が人力されている。また、ここでは
インバータを6段としたが、これは6段に限らず偶数段
であれば何段でも構わないし、N0R4についてもW/
E制御信号のロジックによりNANDであっても構わな
い。
FIG. 3 is a diagram of a conventional booster circuit. 1 is a booster circuit for generating a boosted voltage, a so-called charge pump circuit (for example, reference JOURNAL OF 5OLID 5T
ATE CIRCUITS, VOL, 5C-16,
NO, 3 JUNE 1981 A1.5V Single
e-3uply 0neTransistor 0M
O5EEPROM description), 3 is its load capacity,
Reference numeral 2 denotes an oscillation circuit that oscillates at a constant frequency for supplying a signal for driving the booster circuit l. The second oscillation circuit is
It consists of inverters 5 to 1O and N0R4. N0R
One input of 4 is a write/erase control signal (hereinafter referred to as Vl/
E control signal) is manually operated. Also, here the inverter is set to 6 stages, but this is not limited to 6 stages, any number of stages may be used as long as it is an even number, and N0R4 also has W/
It may be NAND depending on the logic of the E control signal.

動作を説明すると、読み出し時にはW/E制(卸信号は
Hレベルとなるため発振回路2の出力v2はLレベル固
定となり、昇圧回路lは駆動されず昇圧電圧は発生しな
い、書き込み、消去時にはW/E制御信号はLレベルと
なるため1発振回路2では発振動作が生じ、その出力V
、には一定の周波数の発振信号が出力される。したがっ
て、昇圧回路lが駆動され昇圧電圧が発生する。
To explain the operation, when reading, the W/E system is used (the wholesale signal is at H level, so the output v2 of the oscillation circuit 2 is fixed at L level, the booster circuit l is not driven and no boosted voltage is generated, and when writing and erasing, the W/E system is used). Since the /E control signal becomes L level, oscillation occurs in the 1 oscillation circuit 2, and its output V
, an oscillation signal of a constant frequency is output. Therefore, the booster circuit 1 is driven and a boosted voltage is generated.

[発明が解決しようとする課題] 従来の技術での昇圧回路では1発振回路2の発振信号の
周波数が一定であるので、昇圧回路lの昇圧電圧供給能
力が一定となる。そのため、E2PROMのバイト単位
の書き込み、消去時とチップ全体の一括の書き込み、消
去時との負荷容量3の大きさの違いにより、昇圧電圧の
立ち上り時間に差が生じた。つまり、発振信号の周波数
をバイト単位の書き込み、消去に合せて設定すると、チ
ップ全体の一括の書き込み、消去ではその負荷容量が増
すため立ち上り時間が長(なり、書き込み、消去時間の
増大につながった。また、発振信号の周波数をチップ全
体の一括の書き込み、消去に合せて設定すると、バイト
単位の書き込み、消去ではその負荷容量が減るため立ち
上り時間が短くなり、メモリセルの高電圧印加のストレ
ス増による信頼性の低下につながった。
[Problems to be Solved by the Invention] In the conventional booster circuit, since the frequency of the oscillation signal of the single oscillation circuit 2 is constant, the boosted voltage supply capability of the booster circuit 1 is constant. Therefore, due to the difference in the size of the load capacitance 3 during byte-by-byte writing and erasing of the E2PROM and when writing and erasing the entire chip at once, a difference occurred in the rise time of the boosted voltage. In other words, if the frequency of the oscillation signal is set to match byte-by-byte writing and erasing, the load capacity increases when writing and erasing the entire chip at once, resulting in a longer rise time (which leads to an increase in writing and erasing times). In addition, if the frequency of the oscillation signal is set to match the batch writing and erasing of the entire chip, the load capacity will be reduced for byte-by-byte writing and erasing, which will shorten the rise time and increase the stress of applying high voltage to memory cells. This led to a decrease in reliability.

そこで本発明はこの様な課題を解決すべく、E” FR
OMのバイト単位の書き込み、消去時にも、チップ全体
の一括の書き込み、消去時にも昇圧電圧の立ち上り時間
を一定にすることを目的とする。
Therefore, in order to solve such problems, the present invention
The purpose is to make the rise time of the boosted voltage constant both when writing and erasing in byte units of OM and when writing and erasing the entire chip at once.

[課題を解決するための手段] 本発明の不揮発性半導体メモリは一定の周rF1iJの
発振信号を出力する発振回路と、該発振回路の出力によ
り駆動する昇圧回路とから成る不揮発性半導体メモリ装
置において、該発振回路が制御信号を入力とする、発振
信号の周波数可変の発振回路であることを、特徴とする
[Means for Solving the Problems] A nonvolatile semiconductor memory device of the present invention includes an oscillation circuit that outputs an oscillation signal with a constant frequency rF1iJ, and a booster circuit that is driven by the output of the oscillation circuit. , the oscillation circuit is characterized in that the oscillation circuit receives a control signal as an input and is capable of variable frequency of an oscillation signal.

[作 用] 本発明の上記の構成によれば、E2PROMのバイト書
き込み、消去時と、チップ書き込み、消去時とで発振信
号の周波数を変λる、つまり、バイト書き込み、消去時
には周波数を小さく、チップ書き込み、消去時には周波
数を大きくすることでチャージポンプの昇圧電圧供給能
力を変λ、昇圧電圧の立ち上り時間を一定にすることが
できる。
[Function] According to the above configuration of the present invention, the frequency of the oscillation signal is varied between E2PROM byte writing and erasing and chip writing and erasing, that is, the frequency is decreased during byte writing and erasing. By increasing the frequency during chip writing and erasing, the charge pump's ability to supply boosted voltage can be varied λ and the rise time of the boosted voltage can be made constant.

[実 施 例1 第1図は本発明の第1の実施例である。ここで従来例と
同一記号は同一のものである。11はインバータ、12
.13はそれぞれクロックドゲート型インバータであり
、そのクロックにはバイト書き込み消去、チップ書き込
み消去、切り換λ制御用の信号(以下、 B/C制御信
号と記す)を使う。
[Example 1 Figure 1 shows the first example of the present invention. Here, the same symbols as in the conventional example are the same. 11 is an inverter, 12
.. 13 is a clocked gate type inverter, and a signal for byte write/erase, chip write/erase, and switching λ control (hereinafter referred to as B/C control signal) is used for the clock.

動作を説明すると、読み出し時には従来技術の説明と同
様にW/E制御信号がHレベルとなるため、■2はLレ
ベル固定となり昇圧電圧は発生しない、バイト書き込み
、消去時にはW/E制御信号がLレベル、B/C1li
llll信号がHレベルとなる。したがって、クロック
ドゲート型インバータ12の出力はハイインピーダンス
状態、13はインバータとして働くため1発振回路2で
はインバータ6段分の発振動作が生し、その出力V2に
は一定の周波数の発振信号が出力される。チップ書き込
み、消去時にはW/E制御信号がLレベル、B/C制御
信号がLレベルとなる。したがって、クロックドゲート
型インバータ13の出力はハイインピーダンス状態、1
2はインバータとして働くため、発振回路2ではインバ
ータ4段分の発振動作が生し、その出力v2には一定の
周波数の発振信号が出力される。いずれの場合も出力■
、には発振信号が生じるため、昇圧回路1が駆動され昇
圧電圧が発生するが、この様にバイト書き込み消去時と
、チップ書き込み消去時とで発振回路2のインバータの
段数が異なるため、その発振信号の周波数も異なる。そ
の結果、昇圧回路lの昇圧電圧供給能力に差が生じる。
To explain the operation, when reading, the W/E control signal is at H level as in the explanation of the conventional technology, so (2) is fixed at L level and no boosted voltage is generated.When writing and erasing bytes, the W/E control signal is at H level. L level, B/C1li
The lllll signal becomes H level. Therefore, the output of the clocked gate type inverter 12 is in a high impedance state, and since the clocked gate inverter 13 works as an inverter, one oscillation circuit 2 generates an oscillation operation equivalent to six stages of inverters, and its output V2 outputs an oscillation signal of a constant frequency. be done. During chip writing and erasing, the W/E control signal is at L level and the B/C control signal is at L level. Therefore, the output of the clocked gate type inverter 13 is in a high impedance state, 1
2 works as an inverter, the oscillation circuit 2 generates an oscillation operation equivalent to four stages of inverters, and an oscillation signal of a constant frequency is outputted as its output v2. Output in either case
Since an oscillation signal is generated in , the booster circuit 1 is driven and a boosted voltage is generated.However, since the number of inverter stages in the oscillation circuit 2 differs between byte write and erase and chip write and erase, the oscillation The frequency of the signals is also different. As a result, a difference arises in the boosted voltage supply capability of the booster circuit l.

バイト書き込み、消去時は負荷容量3が小さいので、昇
圧回路lの昇圧電圧供給能力は低くてよいので、発@信
号の周波数を小さくするためにインバータの段数を上げ
る。逆にチップ書き込み、消去時には負荷容f13が太
きいため、昇圧回路lの昇圧供給能力を高くする必要が
あるので、発振信号の周波数を大きくするために、イン
バータの段数を下げる。この様にして、昇圧電圧の立ち
上り時間を一定にするのである。ここでは、インバータ
の段数を4段、6段に切り換えて説明したが、実際には
、立ち上り時間が一定になる様に、負荷容量3とチャー
ジポンプlの昇圧電圧供給能力とを考慮して、発振周波
数を決め、それに合せてインパークの段数を、この実施
例の段数に限らず、適当に設定すればよい。
Since the load capacitance 3 is small during byte writing and erasing, the boosting voltage supply capability of the boosting circuit 1 may be low, so the number of inverter stages is increased in order to reduce the frequency of the generated @ signal. On the other hand, during chip writing and erasing, the load capacitance f13 is large, so it is necessary to increase the boost supply capability of the booster circuit l, so the number of inverter stages is reduced in order to increase the frequency of the oscillation signal. In this way, the rise time of the boosted voltage is made constant. Here, the explanation was given by switching the number of inverter stages to 4 stages and 6 stages, but in reality, in order to keep the rise time constant, the load capacitance 3 and the boost voltage supply capacity of the charge pump 1 are taken into consideration. The oscillation frequency is determined, and the number of stages of impark is not limited to the number of stages of this embodiment, but may be set appropriately in accordance with the oscillation frequency.

第2図は本発明の第2の実施例である。ここで従来例と
同一記号は同一のものである。N1〜N6はNchトラ
ンジスタ、Cl−C6はインバータの負荷容量である。
FIG. 2 shows a second embodiment of the invention. Here, the same symbols as in the conventional example are the same. N1 to N6 are Nch transistors, and Cl-C6 is the load capacitance of the inverter.

また、トランジスタN1〜N6のゲートにはB/C制御
信号が入っている。
Further, a B/C control signal is input to the gates of the transistors N1 to N6.

動作を説明すると、バイト書き込み、消去時に+;l/
E制御信号がLレベル、B/C制御信号がHレベルとな
る。したがって、トランジスタN1〜N6がオンとなり
、インパーク5〜lOには負荷容量C1−C6がそれぞ
れ負荷されるため、発振周波数が小さ(なる。チップ書
き込み、消去時にはB/C制御信号がLレベルとなる。
To explain the operation, when writing and erasing bytes, +;l/
The E control signal becomes L level and the B/C control signal becomes H level. Therefore, the transistors N1 to N6 are turned on, and the load capacitances C1 to C6 are loaded to the imparks 5 to 1O, respectively, so the oscillation frequency becomes small. During chip writing and erasing, the B/C control signal goes to L level. Become.

したがって、トランジスタN1−N6はオフとなり、イ
ンパーク5〜10には負荷容量Cl−C6がそれぞれ負
荷されず、発振周波数が大きくなる。この様にして第1
の実施例と同様に、昇圧回路1の昇圧電圧供給能力を変
え、昇圧電圧の立ち上り時間を一定にすることが可能で
ある。
Therefore, the transistors N1-N6 are turned off, the load capacitances Cl-C6 are not loaded on the imparks 5-10, respectively, and the oscillation frequency increases. In this way, the first
Similarly to the embodiment, it is possible to change the boost voltage supply capability of the booster circuit 1 and make the rise time of the boost voltage constant.

以上、実施例1,2を用いて説明したが、本発明の本質
は、発振回路1の発振信号の周波数を変えることで、昇
圧回路lの昇圧電圧供給能力を変え、そ・の立ち上り時
間を制(卸することにある。したがって、発振信号の周
波数を変えるためには他の方法でも構わないし、また、
ビット書き込み消去時と、チップ書き込み消去時とで昇
圧電圧の立ち上り時間は必ずしも一致させる必要もなく
、任意の時間に設定しても構わない。
As explained above using Examples 1 and 2, the essence of the present invention is that by changing the frequency of the oscillation signal of the oscillation circuit 1, the boost voltage supply capability of the boost circuit 1 is changed, and its rise time is changed. Therefore, other methods may be used to change the frequency of the oscillation signal, and
The rise time of the boosted voltage does not necessarily have to be the same during bit write/erase and chip write/erase, and may be set to any desired time.

[発明の効果] 以上述べた様に本発明によれば1発振信号の周波数を変
化させることで、昇圧電圧の立ち上り時間を一定にする
ことを可能にした。
[Effects of the Invention] As described above, according to the present invention, by changing the frequency of one oscillation signal, it is possible to make the rise time of the boosted voltage constant.

このことは特にE” FROMのデータ書き込み、消去
時間の制御、ならびにメモリセルの信頼性向上に対し極
めて効果的である。
This is particularly effective for controlling the data writing and erasing time of E'' FROM and improving the reliability of memory cells.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例を示す回路図。 第2図は本発明の第2の実施例を示す回路図。 第3図は従来の昇圧回路を示す回路図。 l ・ ・ ・ ・ 2 ・ ・ ・ ・ 3 ・ ・ ・ ・ 4 ・ ・ ・ ・ 5〜l 1 ・ l 2、 l 3 14 ・ ・ ・ 15 ・ ・ ・ l 6 ・ ・ ・ N 1〜N6 昇圧回路 発振回路 負荷容量 OR インパーク クロックドゲート型インバータ W/E fri制御信号 ・B/C制御信号 ・昇圧回路出力 Net+トランジスタ Cl−C6 負荷容量 以 上 FIG. 1 is a circuit diagram showing a first embodiment of the present invention. FIG. 2 is a circuit diagram showing a second embodiment of the present invention. FIG. 3 is a circuit diagram showing a conventional booster circuit. l・・・・・ 2 ・ ・ ・ ・ 3・・・・・ 4 ・ ・・・ 5~l 1 ・ l 2, l 3 14 ・ ・ ・ 15 ・ ・ ・ l 6 ・ ・・・ N1~N6 boost circuit oscillation circuit load capacity OR Inpark clocked gate type inverter W/E fri control signal ・B/C control signal ・Boost circuit output Net+transistor Cl-C6 load capacity Below Up

Claims (1)

【特許請求の範囲】[Claims] 一定の周波数の発振信号を出力する発振回路と、該発振
回路の出力により駆動する昇圧回路とから成る不揮発性
半導体メモリ装置において、該発振回路が制御信号を入
力とする、発振信号の周波数可変の発振回路であること
を特徴とする不揮発性半導体メモリ装置。
In a nonvolatile semiconductor memory device consisting of an oscillation circuit that outputs an oscillation signal of a constant frequency and a booster circuit that is driven by the output of the oscillation circuit, the oscillation circuit receives a control signal as input and the frequency of the oscillation signal is variable. A nonvolatile semiconductor memory device characterized by being an oscillation circuit.
JP63276616A 1988-11-01 1988-11-01 Nonvolatile semiconductor memory device Pending JPH02123599A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63276616A JPH02123599A (en) 1988-11-01 1988-11-01 Nonvolatile semiconductor memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63276616A JPH02123599A (en) 1988-11-01 1988-11-01 Nonvolatile semiconductor memory device

Publications (1)

Publication Number Publication Date
JPH02123599A true JPH02123599A (en) 1990-05-11

Family

ID=17571923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63276616A Pending JPH02123599A (en) 1988-11-01 1988-11-01 Nonvolatile semiconductor memory device

Country Status (1)

Country Link
JP (1) JPH02123599A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002019342A1 (en) * 2000-08-30 2002-03-07 Hitachi, Ltd. Nonvolatile memory

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002019342A1 (en) * 2000-08-30 2002-03-07 Hitachi, Ltd. Nonvolatile memory
US6791884B2 (en) 2000-08-30 2004-09-14 Renesas Technology Corp. Nonvolatile memory
US6853582B1 (en) 2000-08-30 2005-02-08 Renesas Technology Corp. Nonvolatile memory with controlled voltage boosting speed
US7130218B2 (en) 2000-08-30 2006-10-31 Renesas Technology Corp. Nonvolatile memory with controlled voltage boosting speed
US7317640B2 (en) 2000-08-30 2008-01-08 Renesas Technology Corp. Nonvolatile memory with erasable parts
JP4726033B2 (en) * 2000-08-30 2011-07-20 ルネサスエレクトロニクス株式会社 Nonvolatile memory, control method of nonvolatile memory, and IC card

Similar Documents

Publication Publication Date Title
US5553030A (en) Method and apparatus for controlling the output voltage provided by a charge pump circuit
US5946258A (en) Pump supply self regulation for flash memory cell pair reference circuit
US6990021B2 (en) Low voltage sense amplifier for operation under a reduced bit line bias voltage
JPH06309868A (en) Semiconductor storage device
US6278639B1 (en) Booster circuit having booster cell sections connected in parallel, voltage generating circuit and semiconductor memory which use such booster circuit
JPH02114717A (en) Semiconductor storage device
JPH1079191A (en) Internal step-up-voltage generator for semiconductor storage device
JPH03108196A (en) Electrically erasable writable nonvolatile semiconductor storage device
JPH0696593A (en) Semiconductor memory
US7193430B2 (en) Semiconductor integrated circuit device with filter circuit
US5880992A (en) Electrically erasable and programmable read only memory
JP2003233996A (en) Semiconductor memory device
KR900005449A (en) Semiconductor integrated circuit
US7230874B2 (en) Semiconductor storage device
JPH0766675B2 (en) Programmable ROM
JPH02123599A (en) Nonvolatile semiconductor memory device
US6430093B1 (en) CMOS boosting circuit utilizing ferroelectric capacitors
JPH1131959A (en) Semiconductor device
US5949708A (en) Integrated circuit charge coupling circuit
KR100469376B1 (en) Flash Memory Device
JPH011472A (en) boost circuit
JPH02307259A (en) High voltage generation circuit
KR100296322B1 (en) Wordline Bootstrap Circuit
JPH09282890A (en) Semiconductor memory device with boosting circuit
KR100265755B1 (en) Integrated circuit device