JPH02307259A - High voltage generation circuit - Google Patents

High voltage generation circuit

Info

Publication number
JPH02307259A
JPH02307259A JP1129408A JP12940889A JPH02307259A JP H02307259 A JPH02307259 A JP H02307259A JP 1129408 A JP1129408 A JP 1129408A JP 12940889 A JP12940889 A JP 12940889A JP H02307259 A JPH02307259 A JP H02307259A
Authority
JP
Japan
Prior art keywords
circuit
voltage
high voltage
potential
oscillation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1129408A
Other languages
Japanese (ja)
Inventor
Akira Maruyama
明 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP1129408A priority Critical patent/JPH02307259A/en
Publication of JPH02307259A publication Critical patent/JPH02307259A/en
Pending legal-status Critical Current

Links

Landscapes

  • Read Only Memory (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Dc-Dc Converters (AREA)

Abstract

PURPOSE:To make an elevated voltage constant without depending upon a source voltage by a method wherein a constant potential supply circuit which supplies a potential to an oscillation signal which is the output of an oscillating circuit is provided. CONSTITUTION:A high voltage generating circuit is composed of an oscillating circuit 2 which outputs an oscillation signal and a voltage elevating circuit 1 which is driven by the oscillation signal. A constant potential supply circuit 8 which supplies a potential to the oscillation signal which is the output of the oscillating circuit 2 is added to the high voltage generating circuit. For instance, a voltage V8 is supplied to the sources of the P-type channel transistors 6 and 7 of inverters 4 and 5 in the oscillating circuit 2 which output the oscillation signals CL and -CL by the constant potential supply circuit 8 composed of a P-type channel transistor 9 and N-type channel transistors 10-12. With this constitution, an elevated voltage does not depend upon a source voltage, so that the deterioration of the reliability on the high voltage source side caused by the high voltage application stress of a memory cell can be suppressed and, further, writing and erasing characteristics can be stabilized.

Description

【発明の詳細な説明】 [産業上の利用分野1 本発明は不揮発性半導体メモリーの中で特に電気的に書
き込み、消去可能なリードオンリーメモリー(以下、E
2FROMと記す)の書き込み、消去に必要な高電圧を
発生させるための高電圧発生回路に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field 1] The present invention is applicable to electrically writable and erasable read-only memories (hereinafter referred to as E) among non-volatile semiconductor memories.
The present invention relates to a high voltage generation circuit for generating a high voltage necessary for writing and erasing a 2FROM.

[従来の技術] E2FROMのデータの書き込み、消去には供給電源電
圧よりも高い電圧(15■〜25v)が必要である。第
7図は従来の高電圧発生回路である。1は昇圧電圧を発
生させるための昇圧回路で、いわゆるチャージポンプ回
路(例えば文献JOURNAL  OF  5OLID
  5TATECIRCUITS、VOL、5C−16
,N。
[Prior Art] Writing and erasing data in an E2FROM requires a voltage (15V to 25V) higher than the supply voltage. FIG. 7 shows a conventional high voltage generation circuit. 1 is a booster circuit for generating a boosted voltage, a so-called charge pump circuit (for example, the reference JOURNAL OF 5OLID
5TATECIRCUITS, VOL, 5C-16
,N.

3’、June  1981のA  1.5V  Si
ngle  5upply  One  Transi
stor CMO5EEPROM記載)でNchトラン
ジスタと容量からなる。3はメモリセル等の負荷容量で
あり、2は昇圧回路1を駆動させる信号を供給するため
の発振信号CL、CLを出力する発振回路である。2の
発振回路はインパークとNORから成っている。NOH
の1人力には書き込み、消去制御信号(以下、W / 
E fli制御信号と記す)が入力されている。NOH
についてはW/E制御信号のロジックによりNANDで
あっても構わない。動作を説明すると、読み出し時には
w / E 1lil制御信号はHレベルとなるため発
振回路2の発振信号CL、CLはそれぞれHレベル、L
レベルに固定されるため、昇圧回路1は駆動されず昇圧
電圧は発生しない。書き込み、消去時にはW/E制御信
号はLレベルとなるため、発振回路2では発振動作が生
じ発振信号CL、CLが出力される。その結果、昇圧回
路1が駆動され昇圧電圧が発生する。
3', June 1981 A 1.5V Si
ngle 5uply One Transi
stor CMO5EEPROM) and consists of an Nch transistor and a capacitor. 3 is a load capacitance such as a memory cell, and 2 is an oscillation circuit that outputs oscillation signals CL and CL for supplying a signal for driving the booster circuit 1. The second oscillation circuit consists of impark and NOR. NOH
The writing and erasing control signals (hereinafter referred to as W/
An E fli control signal) is input. NOH
may be NAND depending on the logic of the W/E control signal. To explain the operation, when reading, the w/E 1lil control signal is at H level, so the oscillation signals CL and CL of the oscillation circuit 2 are at H level and L level, respectively.
Since the level is fixed, the booster circuit 1 is not driven and no boosted voltage is generated. During writing and erasing, the W/E control signal is at L level, so the oscillation circuit 2 performs an oscillation operation and outputs oscillation signals CL, CL. As a result, the booster circuit 1 is driven and a boosted voltage is generated.

[発明が解決しようとする課題] 従来技術での高電圧発生回路では昇圧回路lの昇圧電圧
値が主に発振回路2から供給される発振信号の振幅電位
、即ち電源電圧値に依存するため、電源電圧が高(なる
程発信信号の振幅電位も増え昇圧電圧値が高くなった。
[Problems to be Solved by the Invention] In the conventional high voltage generation circuit, the boosted voltage value of the booster circuit l mainly depends on the amplitude potential of the oscillation signal supplied from the oscillation circuit 2, that is, the power supply voltage value. The power supply voltage is high (I see, the amplitude potential of the transmitted signal has also increased, and the boosted voltage value has become high.

そのため電源電圧が高い場合にはメモリトランジスタの
高電圧印加によるストレスによる信頼性の劣化が生じた
。また、昇圧電圧値の電源電圧依存による昇圧電圧値の
変動によって書き込み、消去特性の変動が生じた。ある
いは、この様な昇圧電圧値の電源電圧依存を無(すため
に、昇圧電圧出力端にツェナーダイオード等を設けて昇
圧電圧をある電位でカットオ〕させて一定とする必要が
あった。本発明はこの様な課題を解決すべく、昇圧電圧
値を電lf!A電圧に依存せず一定とすることを目的と
する。
Therefore, when the power supply voltage is high, reliability deteriorates due to stress caused by high voltage application to the memory transistor. Furthermore, fluctuations in the boosted voltage value due to dependence of the boosted voltage value on the power supply voltage caused variations in writing and erasing characteristics. Alternatively, in order to eliminate such dependence of the boosted voltage value on the power supply voltage, it was necessary to provide a Zener diode or the like at the boosted voltage output terminal to cut off the boosted voltage at a certain potential to keep it constant.The present invention In order to solve such problems, the object of the present invention is to make the boosted voltage value constant without depending on the electric lf!A voltage.

[課題を解決するための手段1 本発明の高電圧発生回路は発振信号を出力する発振回路
と該発振信号により駆動する昇圧回路から成る高電圧発
生回路において、該発振回路の出力である発振信号に電
位を供給する一定電位供給回路を具備したことを特徴と
する。
[Means for Solving the Problems 1] The high voltage generation circuit of the present invention includes an oscillation circuit that outputs an oscillation signal and a booster circuit that is driven by the oscillation signal. The device is characterized in that it is equipped with a constant potential supply circuit that supplies a potential to the device.

[作 用] 本発明の上記の構成によれば、発振信号の振幅電位が電
源電圧に依らず一定電位となるため、これにより駆動さ
れる昇圧回路の昇圧電圧値も電源電圧に依存せず一定電
圧値となる。
[Function] According to the above configuration of the present invention, since the amplitude potential of the oscillation signal is a constant potential regardless of the power supply voltage, the boosted voltage value of the booster circuit driven thereby is also constant and independent of the power supply voltage. voltage value.

[実 施 例] 第1図は本発明の第1の実施例である。発振回路2内の
発振信号CL、CLを出力するインバータ4.5のPc
ht−ランジスタロ、7のソースには、Pchトランジ
スタ9とNchトランジスタ10〜12とで構成された
一定電位供給回路8より電圧V8が与えられている。こ
こで、NchトランジスタlO〜12の電流供給能力は
Pchhランジスク9の能力よりも十分に大きいものと
する。第2図を用いて動作について説明する。電源電圧
■。。が低い領域ではNcht−ランジスタ10〜12
の全てがオン状態ではないので、電位V8はPchトラ
ンジスタ9によりV。0と同一の電イ立が出力される。
[Example] FIG. 1 shows a first example of the present invention. Pc of the inverter 4.5 that outputs the oscillation signals CL and CL in the oscillation circuit 2
A voltage V8 is applied to the source of the ht-transistor 7 from a constant potential supply circuit 8 composed of a Pch transistor 9 and Nch transistors 10 to 12. Here, it is assumed that the current supply capacity of the Nch transistors 10 to 12 is sufficiently larger than the capacity of the Pchh transistor 9. The operation will be explained using FIG. 2. Power supply voltage ■. . In the region where Ncht-transistor 10 to 12 is low
Since not all of them are in the on state, the potential V8 is set to V by the Pch transistor 9. The same value as 0 is output.

電(原電圧V。0が高くなってNchトランジスタ10
〜12が全てオン状態になる電位Vcになると、Von
がそれより高くなってもNChトランジスタ10〜12
の電流供給能力がPch)ランジスタ9の能力よりも十
分に大きいため、電位v8はVcのまま一定電位を保ち
続ける。この一定電位Vcの値はNchhランジスタ1
0〜12のしきい値電圧値と、その和によって決定され
る。電位Vcを仕様型、FA電圧範囲の電位よりも低い
値に設定しておくと、発振回路2の出力である発振信号
CL、CLの振幅電位は第3図に示す様に仕様電源電圧
の範囲でVc一定の電位振幅となるため、昇圧回路1の
昇圧電圧値は電源電圧V。0に依存せず一定電圧値とな
る。この場合、昇圧電圧値は昇圧回路1を構成するNc
hhランジスタのしきい値電圧値で変化するが、つまり
、しきい値電圧値が高い程昇圧電圧値は低(なるが、電
位V8はNchhランジスク10〜12のしきい値電圧
値も同時に高くなることでその分高くなるため相殺し合
って、結局昇圧電圧値のNchhランジスクのしきい値
電圧値のプロセス変動による変化は少なくなる。
The current (original voltage V.0 becomes high and the Nch transistor 10
When the potential Vc becomes such that all of Von 12 are turned on, Von
Even if becomes higher than that, NCh transistors 10 to 12
Since the current supply capacity of transistor 9 (Pch) is sufficiently larger than that of transistor 9, potential v8 continues to maintain a constant potential at Vc. The value of this constant potential Vc is the value of Nchh transistor 1
It is determined by threshold voltage values from 0 to 12 and their sum. If the potential Vc is set to a value lower than the potential of the specification type and FA voltage range, the amplitude potential of the oscillation signal CL, which is the output of the oscillation circuit 2, will be within the specification power supply voltage range as shown in Figure 3. Since Vc has a constant potential amplitude, the boosted voltage value of the booster circuit 1 is the power supply voltage V. It becomes a constant voltage value without depending on 0. In this case, the boosted voltage value is Nc constituting the booster circuit 1.
It changes depending on the threshold voltage value of the hh transistor; in other words, the higher the threshold voltage value, the lower the boost voltage value (however, the potential V8 also increases the threshold voltage value of the Nchh transistors 10 to 12 at the same time. As a result, the voltage increases by that amount, so they cancel each other out, and as a result, changes in the Nchh range threshold voltage value of the boosted voltage value due to process fluctuations become smaller.

第1の実施例では一定電位供給回路8はN c hトラ
ンジスタlO〜12の3段構成で説明したが、一定電位
Vcの設定、あるいはN c h トランジスタのしき
い値電圧値によっては段数は変化する。
In the first embodiment, the constant potential supply circuit 8 is explained as having a three-stage configuration of Nch transistors lO to 12, but the number of stages may change depending on the setting of the constant potential Vc or the threshold voltage value of the Nch transistors. do.

一定電位供給回路8の構成は他にも第4図に示す様にP
chトランジスタ9の代りに抵抗13であってもよいし
、また、第5図に示す様にNchデプリーション型トラ
ンジスタ14と負荷Nchトランジスタ15とで構成し
ても良い。第5図の場合はN c hデプリーション型
トランジスタ14の電源供給能力なNchトランジスタ
15の能力よりも十分太きくしておくと、トランジスタ
14のデプリーションしきい値電圧値により一定電位V
cが決定される。
The configuration of the constant potential supply circuit 8 is as shown in FIG.
A resistor 13 may be used instead of the ch transistor 9, or an Nch depletion type transistor 14 and a load Nch transistor 15 may be used as shown in FIG. In the case of FIG. 5, if the power supply capacity of the Nch depletion type transistor 14 is made sufficiently thicker than the power supply capacity of the Nch transistor 15, the depletion threshold voltage value of the transistor 14 causes a constant potential V.
c is determined.

第6図は本発明の第2の実施例である。この場合はイン
バータ4.5の出力部にNchトランジスタ16〜18
.19〜21をそれぞれ接続し、P c h hランジ
スタロ、7と合せて一定電位供給回路8.8′を構成し
ている。トランジスタ16〜18.19〜21は互に同
一のものであり、また、その電源供給能力はそれぞれP
chトランジスタ6.7より十分大きいとする。第1の
実施例と同様に発振信号CL、CLの振幅電位はトラン
ジスタ16〜18.19〜21により一定電位Vcとな
るため、昇圧回路1の昇圧電圧値は電源電圧V。。に依
存せず一定電圧値となる。
FIG. 6 shows a second embodiment of the invention. In this case, Nch transistors 16 to 18 are connected to the output section of inverter 4.5.
.. 19 to 21 are connected to each other, and together with Pchh transistor 7, they constitute a constant potential supply circuit 8.8'. Transistors 16 to 18 and 19 to 21 are the same, and their power supply capabilities are P
It is assumed that it is sufficiently larger than the channel transistor 6.7. As in the first embodiment, the amplitude potential of the oscillation signals CL and CL is set to a constant potential Vc by the transistors 16 to 18 and 19 to 21, so the boosted voltage value of the booster circuit 1 is the power supply voltage V. . It becomes a constant voltage value regardless of.

[発明の効果1 以上述べた様に本発明によれば、昇圧電位値の電源電圧
依存を無(したので高電源電圧側でのメモリセルの高電
圧印加ストレスによる信頼性の劣化を抑えること、また
、古き込み、消去特性の安定化を図ることが可能となる
[Advantageous Effects of the Invention 1] As described above, according to the present invention, dependence of the boosted potential value on the power supply voltage is eliminated, thereby suppressing deterioration in reliability due to high voltage applied stress on memory cells on the high power supply voltage side. Furthermore, it becomes possible to stabilize the aging and erasing characteristics.

また、昇圧電圧値を一定とするためのツェナーダイオー
ド等も不要となるため、ツェナーダイオード等を形成す
るためのプロセス工程を減らすことが可能となる。また
、ツェナーダイオードを使用した場合のその信頼性劣化
の問題から解放される。
Further, since a Zener diode or the like for keeping the boosted voltage value constant is not required, the number of process steps for forming the Zener diode or the like can be reduced. In addition, the problem of reliability deterioration when using a Zener diode can be avoided.

また、昇圧電圧の立ち上り時間の発振信号の振幅電位依
存の要因が無くなるため、立ち上り時間の電流電圧によ
る変動を抑えることができ、メモリセルの高電圧ストレ
スによる信頼性の劣化を抑えること、書き込み、消去特
性の安定化を図ることが容易となる。
In addition, since the rise time of the boosted voltage does not depend on the amplitude potential of the oscillation signal, it is possible to suppress fluctuations in the rise time due to current and voltage, suppressing deterioration of reliability due to high voltage stress of memory cells, and writing. It becomes easy to stabilize the erasing characteristics.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例を示す回路図。 第2図は第1の実施例での電位を示す特性図。第3図は
第1の実施例での信号波形を示す特性図。 第4図、第5図は第1の実施例中の一定電位供給回路8
の他の構成を示す回路図。第6図は本発明の第2の実施
例を示す回路図。第7図は従来の高電圧発生回路を示す
回路図。 l ・ ・・・昇圧回路 2 ・・・・・発振回路 8.8′  ・・一定電位供給回路 3・・・・・・負荷容量 6.7.9・・Pchhランジスタ 10〜12.15〜21 ・・・・Nchトランジスタ 13・・・・・・抵抗 14・・・・・・Nchデプリーション型トランジスタ 以  上 出願人 セイコーエプソン株式会社 代理人 弁理士 鈴 木 喜三部(他1名)算4巴  
 ス5 ■ 悌 6 m d1巳     謎 巨       −
FIG. 1 is a circuit diagram showing a first embodiment of the present invention. FIG. 2 is a characteristic diagram showing the potential in the first embodiment. FIG. 3 is a characteristic diagram showing signal waveforms in the first embodiment. 4 and 5 show the constant potential supply circuit 8 in the first embodiment.
FIG. 3 is a circuit diagram showing another configuration of the . FIG. 6 is a circuit diagram showing a second embodiment of the present invention. FIG. 7 is a circuit diagram showing a conventional high voltage generation circuit. l...Boost circuit 2...Oscillation circuit 8.8'...Constant potential supply circuit 3...Load capacitance 6.7.9...Pchh transistor 10-12.15-21 ... Nch transistor 13 ... Resistor 14 ... Nch depletion type transistor or more Applicant Seiko Epson Corporation Agent Patent attorney Kizobe Suzuki (1 other person) Total 4 Tomoe
Su5 ■ 悌 6 m d1 Snake Mysterious Giant -

Claims (1)

【特許請求の範囲】[Claims] 発振信号を出力する発振回路と該発振信号により駆動す
る昇圧回路から成る高電圧発生回路において、該発振回
路の出力である発振信号に電位を供給する一定電位供給
回路を具備したことを特徴とする高電圧発生回路。
A high voltage generation circuit comprising an oscillation circuit that outputs an oscillation signal and a booster circuit driven by the oscillation signal, characterized by comprising a constant potential supply circuit that supplies a potential to the oscillation signal that is the output of the oscillation circuit. High voltage generation circuit.
JP1129408A 1989-05-23 1989-05-23 High voltage generation circuit Pending JPH02307259A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1129408A JPH02307259A (en) 1989-05-23 1989-05-23 High voltage generation circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1129408A JPH02307259A (en) 1989-05-23 1989-05-23 High voltage generation circuit

Publications (1)

Publication Number Publication Date
JPH02307259A true JPH02307259A (en) 1990-12-20

Family

ID=15008806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1129408A Pending JPH02307259A (en) 1989-05-23 1989-05-23 High voltage generation circuit

Country Status (1)

Country Link
JP (1) JPH02307259A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0528787A (en) * 1991-07-25 1993-02-05 Toshiba Corp Redundancy circuit for nonvolatile semiconductor memory
US5991221A (en) * 1998-01-30 1999-11-23 Hitachi, Ltd. Microcomputer and microprocessor having flash memory operable from single external power supply
US6845046B1 (en) 1997-01-31 2005-01-18 Renesas Technology Corp. Microcomputer and microprocessor having flash memory operable from single external power supply
JP2006005099A (en) * 2004-06-16 2006-01-05 Nec Electronics Corp Semiconductor circuit device
US7023729B2 (en) 1997-01-31 2006-04-04 Renesas Technology Corp. Microcomputer and microprocessor having flash memory operable from single external power supply

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0528787A (en) * 1991-07-25 1993-02-05 Toshiba Corp Redundancy circuit for nonvolatile semiconductor memory
US6407959B2 (en) 1997-01-31 2002-06-18 Hitachi, Ltd. Microcomputer and microprocessor having flash memory operable from single external power supply
US6661715B2 (en) 1997-01-31 2003-12-09 Eiichi Ishikawa Microcomputer and microprocessor having flash memory operable from single external power supply
US6845046B1 (en) 1997-01-31 2005-01-18 Renesas Technology Corp. Microcomputer and microprocessor having flash memory operable from single external power supply
US7023729B2 (en) 1997-01-31 2006-04-04 Renesas Technology Corp. Microcomputer and microprocessor having flash memory operable from single external power supply
US7236419B2 (en) 1997-01-31 2007-06-26 Renesas Technology Corp. Microcomputer and microprocessor having flash memory operable from single external power supply
US7385869B2 (en) 1997-01-31 2008-06-10 Renesas Technology Corp. Microcomputer and microprocessor having flash memory operable from single external power supply
US5991221A (en) * 1998-01-30 1999-11-23 Hitachi, Ltd. Microcomputer and microprocessor having flash memory operable from single external power supply
US6154412A (en) * 1998-01-30 2000-11-28 Hitachi, Ltd. Microcomputer and microprocessor having flash memory operable from single external power supply
US6327212B1 (en) 1998-01-30 2001-12-04 Hitachi, Ltd. Microcomputer and microprocessor having flash memory operable from single external power supply
JP2006005099A (en) * 2004-06-16 2006-01-05 Nec Electronics Corp Semiconductor circuit device
JP4571445B2 (en) * 2004-06-16 2010-10-27 ルネサスエレクトロニクス株式会社 Semiconductor circuit device

Similar Documents

Publication Publication Date Title
US6188590B1 (en) Regulator system for charge pump circuits
US6041012A (en) Semiconductor integrated circuit device having a booster circuit and a storage device
US5193198A (en) Method and apparatus for reduced power integrated circuit operation
US4883976A (en) Low power dual-mode CMOS bias voltage generator
JP4094104B2 (en) Semiconductor integrated circuit device and memory device
JPH06236686A (en) Semiconductor device
US4565932A (en) High voltage circuit for use in programming memory circuits (EEPROMs)
US4874967A (en) Low power voltage clamp circuit
US6353559B2 (en) Write circuit for a semiconductor memory device
US6359494B2 (en) Semiconductor integrated circuit device having an oscillation circuit using reference current source independent from influence of variation of power supply voltage and threshold voltage of transistor
US7439792B2 (en) High voltage generation circuit and semiconductor device having the same
KR0127318B1 (en) Back bias voltage generator
US5179296A (en) Charge pump substrate bias circuit
US4952863A (en) Voltage regulator with power boost system
JPH11308855A (en) Boosting circuit
US6297690B1 (en) Booster circuit
US5479093A (en) Internal voltage generating circuit of a semiconductor device
JPH02307259A (en) High voltage generation circuit
JP3096252B2 (en) Negative voltage drive circuit
KR100208443B1 (en) Negative voltage drive circuit
JP2912498B2 (en) Semiconductor storage device
JPH09294367A (en) Voltage supply circuit
US5670908A (en) Circuit for controlling output voltage from charge pump
US20020181310A1 (en) Semiconductor memory device internal voltage generator and internal voltage generating method
GB2292624A (en) Output voltage controlling circuit for a negative charge pump