JPH02122064A - Stainless steel stock excellent in rust resistance and its production - Google Patents

Stainless steel stock excellent in rust resistance and its production

Info

Publication number
JPH02122064A
JPH02122064A JP27247088A JP27247088A JPH02122064A JP H02122064 A JPH02122064 A JP H02122064A JP 27247088 A JP27247088 A JP 27247088A JP 27247088 A JP27247088 A JP 27247088A JP H02122064 A JPH02122064 A JP H02122064A
Authority
JP
Japan
Prior art keywords
stainless steel
ferritic stainless
steel
rust resistance
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27247088A
Other languages
Japanese (ja)
Inventor
Yoshio Taruya
芳男 樽谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP27247088A priority Critical patent/JPH02122064A/en
Publication of JPH02122064A publication Critical patent/JPH02122064A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To stably manufacture a stainless steel stock having superior rust resistance by treating a ferritic stainless steel stock with a specific composition with oxidizing acid and then forming a vapor plating phase of Al, etc., of a specific thickness on the surface of the above stock. CONSTITUTION:A ferritic stainless steel stock which has a composition consisting of, by weight, <=0.003% Al, 0.3-5% Si, 0.2-1% Mn, 8-25% Cr, and the balance essentially Fe and further containing, if necessary, one kind among 0.05-0.8% Cu, 0.05-0.8% Ni, 0.05-2.0% Nb, and 0.05-3.0% Mo is subjected to either of immersion treatment in a solution of oxidizing acid (e.g., about 30% aqueous solution of nitric acid) or peroxidizing acid and electrolytic treatment in an acid liquor. Subsequently, a coating layer in a state of single or double layer consisting of one or more kinds among Al, Ti, Si, Nb, Cr, Mo, Cu, Ni, and the nitrides and oxides thereof is formed to 200-30000Angstrom thickness on the surface of the above steel stock by means of vapor plating.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、卓越した耐銹性を示すフェライト系ステン
レス鋼材(鋼板等)、並びにその製造方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a ferritic stainless steel material (such as a steel plate) exhibiting excellent rust resistance, and a method for producing the same.

〈従来技術とその課題〉 近年、高度に成長した経済環境の中で生活様式や価値観
にも著しい多様化傾向が見られるようになり、例えば、
高価ではあるものの、美麗かつ重厚な金属光沢と優れた
耐食性を有していて独特の高級感を与えるステンレス鋼
が建材その他の分野にまで広く用いられるような状況と
なってきた。
<Prior art and its challenges> In recent years, in a rapidly growing economic environment, there has been a remarkable diversification of lifestyles and values.
Although expensive, stainless steel has a beautiful, deep metallic luster and excellent corrosion resistance, giving it a unique sense of luxury, and has come to be widely used in building materials and other fields.

しかし、このようなステンレス鋼にあっても、海岸地区
や火山灰降下地区等の如き厳しい環境で使用される場合
には表面に所謂“しみ”と呼ばれる局所的な光沢低下や
赤錆が生じるとの問題があり、「“ステンレス鋼”即ち
“錆なし”Jと言う高級品イメージが損なわれかねない
場合が散見される。
However, even with this kind of stainless steel, when used in harsh environments such as coastal areas or areas where volcanic ash has fallen, there are problems such as localized loss of gloss or red rust called "stains" on the surface. ``There are cases where the image of a high-quality product that is ``stainless steel,'' that is, ``rust-free'' may be damaged.

勿論、上記問題を解決すべく、これまでにもd)鋼の成
分として耐食性向上効果の大きいCrやMo等の合金元
素を添加し、ステンレス鋼自体の特性改善を図る手段。
Of course, in order to solve the above-mentioned problems, measures have been taken up to now to improve the characteristics of stainless steel itself, such as d) adding alloying elements such as Cr and Mo, which have a large effect of improving corrosion resistance, as components of steel.

b)光輝焼鈍処理仕様材においては、光輝焼鈍時の露点
管理を適正化して最表面に形成される酸化皮膜の耐食性
向上を図る方法。
b) For bright annealing specification materials, a method of improving the corrosion resistance of the oxide film formed on the outermost surface by optimizing dew point control during bright annealing.

C)同じく光輝焼鈍処理仕様材において、光輝焼鈍後に
酸化性酸溶液中で不働態強化処理を施す方法。
C) A method in which a material with bright annealing specifications is subjected to passivation strengthening treatment in an oxidizing acid solution after bright annealing.

等が促案され実用化もなされてきたが、それでも十分に
満足できる成果が得られているとは言えなかった。
Although such methods have been proposed and put into practical use, it cannot be said that they have produced sufficiently satisfactory results.

そこで、このような実情を踏まえての検討に基づき、[
これまでの対策が“しみ”等の防止に不十分であったの
は、“しみ“発生時の環境が、“しみ”形成部と言う極
く狭い局所的部位に限られはするものの腐食環境が予想
外の掻めて厳しいものとなるためであり、“しみ”等の
発生を十分に抑制・防止するためにはステンレス鋼材最
表面に従来の酸化物皮膜以上に強固な耐食性層を設ける
必要がある」との結論を導き出して、 八)ステンレス鋼表面にCr等の高耐食性金属をメッキ
する方法。
Therefore, based on consideration of the actual situation, [
The reason why conventional measures have not been sufficient to prevent stains is that the environment in which stains occur is a corrosive environment, although it is limited to a very small localized area called the stain formation area. This is because the scratches become unexpectedly harsh and severe, and in order to sufficiently suppress and prevent the occurrence of "stains" etc., it is necessary to provide a corrosion-resistant layer stronger than the conventional oxide film on the outermost surface of the stainless steel material. 8) A method of plating a highly corrosion-resistant metal such as Cr on the surface of stainless steel.

B)ステンレス鋼表面を有機樹脂皮膜により被覆する方
法(塗装法)。
B) A method of coating the stainless steel surface with an organic resin film (painting method).

等の“しみ・赤錆防止対策”を実施しようとの動きも見
られた。
There was also a movement to implement measures to prevent stains and red rust.

しかしながら、これらの対策のうち[メッキ被覆を設け
る方法」は、今後更に厳しくなるであろうと予想される
メブキ廃液処理規制の点を考慮すれば工業的手法として
好ましいものとは言えず、一方、「有機樹脂を塗装する
方法」ではステンレス鋼の特徴である金属光沢、質感が
消失してしまうので用途によっては適用できないとの問
題が残るものであった。
However, among these measures, the method of providing a plating coating cannot be said to be a desirable industrial method, considering the regulations on the treatment of mebuki waste liquid, which are expected to become even more stringent in the future. The problem remains that the method of painting with organic resin loses the metallic luster and texture that characterize stainless steel, making it unsuitable for some applications.

〈課題を解決するための手段〉 本発明者は、上述のような観点から、特有の重厚な金属
光沢を失うことな(“しみ”や“赤錆“の問題が解決さ
れ、かつ工業生産規模での安定製造が可能な高耐銹性ス
テンレス鋼材を提供すべく、長年の経験の上に立って展
開してきた耐食性皮膜に関する独自の知見等を加味しな
がら鋭意研究を重ねた結果、次に示すような新たな知見
を得るに至った。即ち、 (a)  近年になって著しい進歩を遂げてきたCVD
(化学蒸若法)、イオンブレーティング法、スパッタリ
ング法等の気相メッキ法によれば、通常のメッキ法とは
異なり、ステンレス鋼表面等へも容易に各種の金属、窒
化物、酸化物等の薄膜を被覆することが可能となったが
、この気相メッキを適用してステンレス鋼表面に特定厚
さの特定物質被膜を設けると、ステンレス鋼特有の光沢
が失われることな(その耐銹性が格段に改善され、“し
み”や“赤錆”の防止に著効がもたらされること。
<Means for Solving the Problems> From the above-mentioned viewpoints, the present inventors have devised a method that solves the problems of "stains" and "red rust" without losing the unique deep metallic luster, and that can be produced on an industrial scale. In order to provide a highly rust-resistant stainless steel material that can be stably manufactured, we have conducted intensive research while taking into account our own knowledge of corrosion-resistant coatings developed based on many years of experience.As a result, we have developed the following. We have obtained new knowledge, namely: (a) CVD, which has made remarkable progress in recent years;
Unlike ordinary plating methods, vapor phase plating methods such as (chemical vaporization method), ion blating method, and sputtering method can easily coat various metals, nitrides, oxides, etc. on stainless steel surfaces. However, by applying this vapor phase plating to provide a coating of a specific material with a specific thickness on the surface of stainless steel, the luster characteristic of stainless steel will not be lost (its rust resistance). The properties of the product are significantly improved, and the prevention of "stains" and "red rust" is achieved.

(bl  ただ、この場合、従来市販のステンレス鋼材
をそのまま基材としたのでは、鋼板表面に露出している
非金属介在物によってメッキ物質の種類や気相メッキ方
法の種別によらず皮膜欠陥が形成され、安定した耐銹性
の改善が得られないこと5(C1更に、上記非金属介在
物の中でも、極く普通に見られる酸化物系非金属介在物
、特にアルミナ系非金属介在物が気相メッキ皮膜の欠陥
形成に最も大きな影舌を及ぼしていること。
(bl) However, in this case, if conventional commercially available stainless steel materials were used as base materials, film defects would occur due to non-metallic inclusions exposed on the surface of the steel sheet, regardless of the type of plating substance or vapor phase plating method. 5 (C1) Furthermore, among the nonmetallic inclusions mentioned above, oxide-based nonmetallic inclusions, especially alumina-based nonmetallic inclusions, which are very commonly found, It has the greatest influence on the formation of defects in vapor phase plating films.

(dl  ところが、鋼中のアルミナ系非金属介在物を
低減するのに適正な成分を有するフェライト系ステンレ
ス鋼材を基材とし、必要に応じてこれに“′酸化性酸又
は過酸化性酸溶液中への浸漬処理”或いは“酸溶液中で
の電解処理”を施してから前記気相メソ−1−を施すと
、優れた耐銹性を示すステンレス鋼材が極めて安定に得
られること。
(dl) However, if a ferritic stainless steel material with appropriate components is used as a base material to reduce alumina-based nonmetallic inclusions in the steel, if necessary, it may be added to an oxidizing acid or peroxidizing acid solution. When the gas-phase meso-1- is applied after performing ``immersion treatment'' or ``electrolysis treatment in an acid solution'', a stainless steel material exhibiting excellent rust resistance can be obtained in an extremely stable manner.

本発明は、上記知見等に基づいてなされたものであり、 [八!= 成 0.003%以下或いは0.1〜4%(以降、分割台を
表わす%は重量%とする) Si : 0.3〜5%、   Mn : 0.2〜1
%。
The present invention has been made based on the above findings, etc. [8! = 0.003% or less or 0.1 to 4% (hereinafter, % representing the dividing table is weight %) Si: 0.3 to 5%, Mn: 0.2 to 1
%.

Cr:8〜25%以下 を含有し、必要に応して更に Cu : 0.05〜0.8%、   Ni : 0.
05〜0.8%。
Contains Cr: 8 to 25% or less, and further contains Cu: 0.05 to 0.8% and Ni: 0.
05-0.8%.

Nb : 0.05〜2.0%、   Mo : 0.
05〜3.0%のうちの1種以上をも含み、残部が実質
的にFeであるフェライト系ステンレス鋼材表面に、A
i’、′riSi、 Nb、 Cr、 Mo、 Cu、
 Ni及びこれらの窒化物並びに酸化物のうらの1種以
上から成り、かつ厚さ:200〜30000人の単層又
は複層の気相メツ−1−層(CVD、 イオンブレーテ
ィング、スパッタリング等によるメッキ層)を設けてス
テンレス調材を構成することにより、著しく優れた耐銹
性を付与した点」 に特徴を有し、更には、 rAf:0.003%以下或いは0.1〜4%。
Nb: 0.05-2.0%, Mo: 0.
05 to 3.0%, and the remainder is substantially Fe.
i','riSi, Nb, Cr, Mo, Cu,
It consists of Ni and one or more of these nitrides and oxides, and has a thickness of 200 to 30,000 layers. By forming the stainless steel material with a plating layer), it is characterized by extremely excellent rust resistance, and furthermore, rAf: 0.003% or less or 0.1 to 4%.

Si : 0.3〜5%、   Mn : 0.2〜I
%。
Si: 0.3-5%, Mn: 0.2-I
%.

Cr:8〜25%以下 を含有し、必要に応じて更に Cu : 0.05=0.8%、  Ni : 0.0
5〜0.8%Nb : 0.05〜2.0%  Mo 
: 0.05〜3.0%のうちの1種以上をも含み、残
部が実質的にFeであるフェライト系ステンレス鋼材を
、酸化性酸又は過酸化性酸溶液中への浸漬処理、或いは
酸溶液中での電解処理に付した後、気相メッキによって
該鋼材表面に八ft、 Ti、 Si、 Nb、 Cr
、 +to、 Cu、 Ni及びこれらの窒化物や酸化
物のうちの1種以上から成る単層又は複層の被覆層を2
00〜30000人の厚さで形成させることにより、耐
銹性に優れたフェライト系ステンレス鋼材を安定して製
造し得るようにした点」 をも特徴とするものである。
Contains Cr: 8 to 25% or less, and further contains Cu: 0.05=0.8% and Ni: 0.0 as necessary.
5~0.8%Nb: 0.05~2.0%Mo
: A ferritic stainless steel material containing one or more of 0.05 to 3.0%, the remainder being substantially Fe, is immersed in an oxidizing acid or peroxidizing acid solution, or After electrolytic treatment in a solution, the surface of the steel is coated with 8ft of Ti, Si, Nb, Cr by vapor phase plating.
, +to, Cu, Ni, and one or more of these nitrides and oxides.
By forming the steel with a thickness of 0.00 to 30,000, it is possible to stably produce ferritic stainless steel material with excellent rust resistance.

即ち、本発明は通常のメッキ法では付与できなかった高
耐食性皮膜を、気相メッキ法を適用して特定組成のフェ
ライト系ステンレス鋼材表面上に人工的に生成させ、こ
れによって特有の光沢を保有したままで“しみ”等の生
成が極力抑えられたステンレス鋼材を実現しようとする
ものである。
In other words, the present invention applies a vapor phase plating method to artificially generate a highly corrosion-resistant film on the surface of a ferritic stainless steel material with a specific composition, which cannot be applied using normal plating methods, thereby retaining a unique luster. The aim is to create a stainless steel material that minimizes the formation of "stains" and the like even when the steel is in a state of being stained.

以下に、本発明に係るフェライト系ステンレス鋼+A及
びその製造方法を前記の如くに限定した理由と、その事
付けとなった作用を其に説明する。
Below, the reason why the ferritic stainless steel +A and the method for producing the same according to the present invention are limited as described above, and the effect thereof will be explained.

く1乍用〉 八)ステンレス鋼の成分Ml 成 (2])    八、e 本発明においては、鋼母材(鋼基材)中の静合有量を0
.003010以下或いは0.1〜4%の範囲内に調整
することが極めて重要な要件となる。なお、望ましくは
0.002%以下或いは0.1〜4%の量に調整するの
が良い。なぜなら、鋼材中に生じるアルミナ系非金属介
在物が鋼材表面に露出し、気t11メッキの際に部分的
なメッキ被膜欠陥を生じて耐食性改心効果を著しく減す
ることを防止する上で、−1−記A!含有尾羽整を欠く
ことができないからである。
8) Component Ml of stainless steel (2) 8. e In the present invention, the static content in the steel base material is set to 0.
.. It is extremely important to adjust the content to 0.003010 or less or within the range of 0.1 to 4%. Note that the amount is desirably adjusted to 0.002% or less or 0.1 to 4%. The reason is that -1 -Note A! This is because the inclusion of tail feathers is essential.

即ち、鋼母材中のへl含有量を0.003%以下に抑え
るか或いは0.1%以上に調整することによって始めて
アルミナ系非金属介在物の生成を抑制し、アルカリ土類
金属介在物が 鋼材表面へ露出するのを実際上問題を生
じない程度に抑制することができ、鋼材の耐誘性低下を
防ぐことが可能となる。
In other words, the formation of alumina-based nonmetallic inclusions can only be suppressed by suppressing the helium content in the steel base material to 0.003% or less or adjusting it to 0.1% or more, and alkaline earth metal inclusions. can be suppressed from being exposed to the surface of the steel material to an extent that does not cause any practical problems, and it is possible to prevent a decrease in the induction resistance of the steel material.

なお、Aβ含有■を0.1%以上の範囲に調整する場合
には、その上限を4%に抑えることが必要である。これ
は、4%を超えてARを添加しても上記効果がそれ以上
に改善されないばかりか、Aβ多量添加に伴う熱間加工
性低下が顕著となるためである。
Note that when adjusting the Aβ content ■ to a range of 0.1% or more, it is necessary to suppress the upper limit to 4%. This is because even if AR is added in an amount exceeding 4%, not only the above effects are not further improved, but also the hot workability decreases significantly due to the addition of a large amount of Aβ.

ここで、「鋼材中のアルミナ系非金属介在物を低減させ
る上でAi’の多ffi (0,1〜4%)添加が有効
である」との事実は感覚的には違和感を覚えるが、これ
は八lの特殊性に基づくものであり、八!の活量係数の
変化による脱酸力低下に起因した現象によるものと考え
られる。
Here, the fact that ``addition of Ai' at a high rate of ffi (0.1 to 4%) is effective in reducing alumina-based nonmetallic inclusions in steel materials'' feels strange, but This is based on the peculiarity of 8l, and 8! This is thought to be due to a phenomenon caused by a decrease in deoxidizing ability due to a change in the activity coefficient of .

ところで、鋼中のAl:量を0.003%以下とするた
めには精錬終了後から造塊に至る工程でAIl脱酸或い
は合金元素としてのAア添加を行わないことが実際的で
晟も有効である。特に、Al脱酸を一切行わないことは
この種鋼材の製造においては極めて特徴的であり、かつ
有利な手段である。
By the way, in order to keep the amount of Al in steel to 0.003% or less, it is practical to not deoxidize Al or add A as an alloying element in the process from the end of refining to ingot formation. It is valid. In particular, not performing any Al deoxidation is a very characteristic and advantageous means in the production of this type of steel.

なお、鋼材表面に露出しているアルミナ系非金属介在物
の悪影響軽減には、後述する酸化性酸溶液又は過酸化性
酸溶液への自然浸漬や酸溶液中での電解処理も極めて有
効である。
In addition, natural immersion in an oxidizing acid solution or peroxidizing acid solution or electrolytic treatment in an acid solution, which will be described later, are also extremely effective in reducing the negative effects of alumina-based nonmetallic inclusions exposed on the steel surface. .

(b)   Si 本発明ではSiは非常に重要な脱酸元素としての泣面を
占める。即ち、本発明に係る鋼材の溶製時には”通常の
鋼材の場合に脱酸剤として多用される八β”を有効に作
用させることができないので、該)電解・精錬時の脱酸
は、ARに比べて幾分作用が弱いながらもSiに依存し
なければならないからである。
(b) Si In the present invention, Si plays an important role as a very important deoxidizing element. In other words, when the steel material according to the present invention is melted, "8β", which is often used as a deoxidizing agent in the case of ordinary steel materials, cannot be effectively used. This is because it must depend on Si, although its effect is somewhat weaker than that of Si.

但し、Si含有量が5%を超えて添加されても脱酸剤と
しての効果がより以上に改善されないばかりか、鋼材の
熱間での加工性を著しく減するようになる。一方、Si
含有量が0.3%以下では鋼の脱酸が十分に行われない
。従って、Si含有量は0.3〜5%と定めた。
However, even if the Si content is added in excess of 5%, not only the effect as a deoxidizing agent is not further improved, but also the hot workability of the steel material is significantly reduced. On the other hand, Si
If the content is less than 0.3%, the steel will not be sufficiently deoxidized. Therefore, the Si content was determined to be 0.3 to 5%.

(cl  Mn Mn成分には鋼中のSを固定して熱闘での加工性を確保
する作用があるが、その含有量が0.2%未満では前記
作用による所望の効果が得られず、方、1%を超えて含
有させることは冷間加工性や成形性の悪化につながるた
め、Mn含有量は0.2〜1%と定めた。
(Cl Mn The Mn component has the effect of fixing S in the steel and ensuring workability in hot fighting, but if its content is less than 0.2%, the desired effect due to the above effect cannot be obtained, and the Since Mn content exceeding 1% leads to deterioration of cold workability and formability, the Mn content is set at 0.2 to 1%.

(d)  Cr Crは、本発明に係る鋼母材(鋼基材)の耐食性を決定
する最も重要な添加元素である。本発明鋼材の優れた耐
銹性は表面に設けられた気相メソート層が大きく影響し
て確保されるものであるが、如何せん該メッキ層は非常
に薄く、キズ付等により母材部の露出を招くことが多い
。従って、このような事態に備えるためにも鋼母材にお
いても十分な耐食性を確保しておく必要があり、この観
点からCrは重要な役割を果たすものである。
(d) Cr Cr is the most important additive element that determines the corrosion resistance of the steel base material (steel base material) according to the present invention. The excellent rust resistance of the steel of the present invention is ensured by the large influence of the gas phase mesort layer provided on the surface, but the plating layer is very thin and the base metal may be exposed due to scratches etc. is often invited. Therefore, in order to prepare for such a situation, it is necessary to ensure sufficient corrosion resistance in the steel base material, and from this point of view, Cr plays an important role.

しかし、Cr含有量が8%未満では鋼材キズ付部並びに
鋼材端面の耐食性を十分にも′α保することができず、
一方、大気暴露下での耐銹性を問題とする本発明鋼材に
おいては、25%を超えてCrを添加しても更なる効果
の改善が明瞭でないことから、Cr含有量は8〜25%
と定めた。
However, if the Cr content is less than 8%, the corrosion resistance of the scratched parts of the steel material and the end faces of the steel material cannot be sufficiently maintained.
On the other hand, in the steel materials of the present invention where rust resistance under atmospheric exposure is a problem, even if Cr is added in an amount exceeding 25%, further improvement of the effect is not clear, so the Cr content is 8 to 25%.
It was determined that

(”l  Cu+ Ni、 Nb及びMOCu+旧、 
Nb及びMoは何れも鋼基材(鋼母材)の耐食性改善効
果を有しているので、メッキ被膜キズ付部等での耐誘性
低下を防止する等の観点から必要に応じて1種又は2種
以上添加される成分であるが、以下、それぞれの含有量
限定理由を個別に詳述する。
(“l Cu+Ni, Nb and MOCu+old,
Both Nb and Mo have the effect of improving the corrosion resistance of the steel base material (steel base material), so one type of Nb and Mo can be used as necessary from the viewpoint of preventing a decrease in corrosion resistance at scratched parts of the plating film, etc. Alternatively, two or more kinds of components are added, but the reason for limiting the content of each component will be explained in detail below.

Cu Cuはm基材の耐食性改善に有効な成分であるが、その
効果を明瞭とするためには0.05%以上の添加が必要
であり、一方、0.8%を超えて含有させると逆に金属
間化合物生成に伴う耐食性の劣化が顕在化するため、C
uを添加する場合の含有量は0.05〜0.8%と定め
た。
Cu Cu is an effective component for improving the corrosion resistance of m-base materials, but in order to make its effect clear, it is necessary to add 0.05% or more, whereas if it is added in excess of 0.8%, Conversely, deterioration of corrosion resistance due to the formation of intermetallic compounds becomes apparent, so C
When u is added, the content is set at 0.05 to 0.8%.

Ni Niも、Cuと同様、耐食性改善に有効な成分であるが
、その効果を明瞭とするためには0.05%以上の添加
が必要であり、一方、0.8%を超えて含有させてもそ
れに見合うだけの耐食性向上効果が17られないことか
ら、Niを添加する場合の含有量は0.05〜0.8%
と定めた。
Ni Like Cu, Ni is also an effective component for improving corrosion resistance, but in order to make its effect clear, it is necessary to add 0.05% or more; However, since the corrosion resistance improvement effect is not commensurate with that, the content when adding Ni is 0.05 to 0.8%.
It was determined that

Nb Nbには鋼中のCを安定化する作用があり、更にgH材
の耐食性を改善する効果を発揮するものである。特に、
Cu或いはNiと共存させた場合には、それらの相乗効
果によって鋼基材の耐食性改善効果は一段と顕著になる
Nb Nb has the effect of stabilizing C in the steel, and also has the effect of improving the corrosion resistance of the gH material. especially,
When it coexists with Cu or Ni, the effect of improving the corrosion resistance of the steel base material becomes even more remarkable due to their synergistic effect.

そして、Nb添加によって所望の鋼中C安定化効果を確
保するためには0.05%以上を含有させることが必要
であるが、2.0%を超えて含有させてもC安定化効果
及び耐食性改善効果が共にそれ以上に顕在化しないばか
りか、逆にLaves相生成による耐食性劣化を来たす
ことから、Nbを添加する場合の含有量は0.05〜2
.0%と定めた。
In order to ensure the desired C stabilizing effect in steel by Nb addition, it is necessary to include 0.05% or more, but even if it is added in excess of 2.0%, the C stabilizing effect and Not only does the effect of improving corrosion resistance not become more obvious, but conversely the corrosion resistance deteriorates due to the formation of Laves phase, so when adding Nb, the content should be 0.05 to 2.
.. It was set as 0%.

O MoはCrと並んで耐食性改善効果の大きな添加元素で
あるが、その含有量が0.05%未満では耐食性改善効
果が明瞭に認められず、一方、3.0%を超えて含有さ
せても本発明鋼材が主目的とする耐候性の向上に更なる
効果か認められないことから、Moを添加する場合の含
有量は0.05〜3.0と定めた。
O Mo is an additive element that has a large effect on improving corrosion resistance along with Cr, but when its content is less than 0.05%, the effect on improving corrosion resistance is not clearly recognized. Since no further effect was observed in improving the weather resistance, which is the main objective of the steel material of the present invention, the content when adding Mo was determined to be 0.05 to 3.0.

(f)  その他 不純物元素として鋼材中に混入してくるSは、鋼中でM
n系硫化物を生成して気相メッキ時に被膜欠陥が生じる
のを促すばかりでなく、母材の耐食性そのものの劣化を
招く。従って、鋼材中のSjlは低い方が良い。なお、
気相メッキ被膜に欠陥を生成しにくくなるし・\ルは0
 、005%以下程度であることから、鋼材中のS含有
量は0.005%以下に抑えることが望ましい。
(f) S mixed into steel materials as other impurity elements is
Not only does this generate n-based sulfides and promote coating defects during vapor phase plating, but it also causes deterioration of the corrosion resistance of the base material itself. Therefore, the lower the Sjl in the steel material, the better. In addition,
It becomes difficult to generate defects in the vapor phase plating film, and the value is 0.
, 0.005% or less, it is desirable to suppress the S content in the steel material to 0.005% or less.

B)気相メ・7キ層の厚み 気相メッキ物質としてはAl、 Ti、 Si、 Nh
、 Cr。
B) Thickness of 7 layers of vapor phase plating Materials for vapor phase plating include Al, Ti, Si, and Nh.
, Cr.

Mo、 Cu及びNiの各金属、並びにこれらの窒化物
や酸化物のうちの1種以上が採用でき、これらは1層だ
けの単層被覆として付与しても良いし、2層以上の複層
として付与しても良い。
One or more of the metals Mo, Cu, and Ni, as well as their nitrides and oxides, can be used, and these may be applied as a single layer coating or as a multilayer coating of two or more layers. It may be given as

この場合、気相メッキ層の厚みが200八未j、2Bで
あると均一なメッキ面(蒸着面)が得られず、メッキ層
欠陥部からの耐食性劣化が顕著となる。
In this case, if the thickness of the vapor phase plating layer is 200 mm or 2 B, a uniform plating surface (vapor deposition surface) cannot be obtained, and corrosion resistance from defective portions of the plating layer will deteriorate significantly.

方、気相メッキ層の厚みが30000人を超えた場合に
は距1材曲げ部でのメッキ被膜割れやメンキ被膜剥離と
言った問題が起きやすくなる。従って、気相メッキ層の
厚みは200〜30000八と定めた。
On the other hand, if the thickness of the vapor phase plating layer exceeds 30,000 layers, problems such as cracking of the plating film and peeling of the coating film at the bending portion of the metal plate tend to occur. Therefore, the thickness of the vapor phase plating layer was determined to be 200 to 30,000 mm.

なお、フェライト系ステンレス鋼材表面に欠陥の殆んど
ない気相メツニド層を安定して設けるためには、前処理
として酸化性酸溶液又は過酸化性酸ン電液に自然浸漬し
たり酸溶液中で電解処理する工程を取り入れるのが良い
。この前処理によって鋼材表面に露出しているアルミナ
系非金属介在物が溶出してその悪影響が除かれるばかり
でなく、非金属介在物の周囲が強固に不働態化されるの
で、該非金属介在物の存在による気相メッキ被覆鋼材の
酬食性劣化が軽減される。
In order to stably form a vapor-phase metnide layer with almost no defects on the surface of ferritic stainless steel, it is necessary to naturally immerse it in an oxidizing acid solution or a peroxidizing acid electrolyte as a pretreatment, or to immerse it in an acid solution. It is better to incorporate an electrolytic treatment process. This pretreatment not only dissolves alumina-based nonmetallic inclusions exposed on the surface of the steel material and removes their negative effects, but also strongly passivates the area around the nonmetallic inclusions. The deterioration of gas-phase plated coated steel materials due to the presence of is reduced.

そして、上述のように鋼材表面へ露出したアルミナ系非
金属介在物を低減・無害化するための酸化性酸溶液とし
ては例えば“30%硝酸水溶)佼”等を、そして過酸化
性酸)電液としては“過酸化水素水を添加した硝酸水溶
液”等を推奨でき、電解処理を実施するための酸溶液も
通常の電解酸洗等に適用されるものなど何れを採用して
も良い。
As mentioned above, as an oxidizing acid solution to reduce and render harmless alumina-based nonmetallic inclusions exposed on the surface of steel materials, for example, "30% nitric acid soluble in water" and a peroxidizing acid solution are used. As the solution, it is recommended to use a nitric acid aqueous solution to which hydrogen peroxide has been added, and as the acid solution for carrying out the electrolytic treatment, any acid solution that is applied to ordinary electrolytic pickling etc. may be adopted.

次いで、本発明を実施例により更に具体的に説明する。Next, the present invention will be explained in more detail with reference to Examples.

〈実施例〉 実施例 l まず、第1表に示す如き、精錬過程においてAl脱酸処
理を行わなかった鋼A−B及びH〜に、  R■1炉に
て非金属介在物浮上処理と真空脱酸処理を施したところ
の多量のAIを含有するME−G、及びAl脱酸処理を
行った鋼C〜Dより成る各フェライト系ステンレス鋼板
を準備した。
<Example> Example 1 First, as shown in Table 1, steels A-B and H~, which were not subjected to Al deoxidation treatment during the refining process, were subjected to nonmetallic inclusion flotation treatment and vacuum treatment in an R■1 furnace. Each of ferritic stainless steel plates consisting of ME-G containing a large amount of AI which had been subjected to deoxidation treatment and steels C to D which had been subjected to Al deoxidation treatment were prepared.

そして、これらの鋼板を60℃の30%硝酸水溶液中で
電解処理して表面性状の1!整(気相メッキ前処理)を
行った後、スパックリングにより該表面に5iNx(x
#1.35)を600人の17みでメ・7キした。なお
、スパッタリング処理に際しては鋼板基板を300℃に
加熱保持した。
Then, these steel plates were electrolytically treated in a 30% nitric acid aqueous solution at 60°C to improve the surface quality. After conditioning (vapor phase plating pretreatment), 5iNx (x
#1.35) was played by 600 people with only 17 hits. Note that during the sputtering treatment, the steel plate substrate was heated and maintained at 300°C.

続いて、このようにして製造された各フェライト系ステ
ンレス鋼板から試験片を2個ずつ採取して孔食電位を測
定すると共に、その耐誘性評価を行い、これらの結果を
まとめて第2表に示した。
Subsequently, two test pieces were taken from each ferritic stainless steel sheet manufactured in this way, and the pitting corrosion potential was measured, and the induction resistance was evaluated. These results are summarized in Table 2. It was shown to.

なお、耐誘性の評価は第3表に示す基準に従って行い、
第2表には相当する評点を記入した。
The induction resistance was evaluated according to the standards shown in Table 3.
The corresponding scores are entered in Table 2.

第2表に示される結果からも明らかなように、本発明に
係るフェライト系ステンレス鋼板は何れも優れた耐銹性
を示すのに対して、基材鋼板の成分組成が本発明で規定
する条件から外れている比較例3及び4によるものでは
耐銹性が著しく劣ることが分かる。
As is clear from the results shown in Table 2, all of the ferritic stainless steel sheets according to the present invention exhibit excellent rust resistance, whereas the composition of the base steel sheet is under the conditions specified by the present invention. It can be seen that the rust resistance of Comparative Examples 3 and 4, which deviated from the above, was significantly inferior.

なお、へ!脱酸した鋼を適用した比較例3及び4による
ものでは、基材鋼板に圧延方向へ長く連なったアルミナ
系非金属介在物が“線状非金属介在物群”として多数認
められ、スパッタリング後の表面観察においてもアルミ
ナ系非金属介在物に起因した複数の皮膜欠陥が観察され
た。
In addition, to! In Comparative Examples 3 and 4, in which deoxidized steel was applied, many alumina-based nonmetallic inclusions that were long in the rolling direction were observed in the base steel plate as "linear nonmetallic inclusion groups", and after sputtering, Multiple film defects caused by alumina-based nonmetallic inclusions were also observed in surface observation.

しかるに、本発明例5〜7によるものは、基材銅板が0
.121〜2.49%と多量のAfを含有しているにも
係わらず良好な結果が得られているが、これはAfの多
量添加に伴う“八!の脱酸力低下現象”によってアルミ
ナ系非金属介在物の生成が減少するためと推察される。
However, in Examples 5 to 7 of the present invention, the base copper plate was 0.
.. Although good results were obtained despite containing a large amount of Af (121 to 2.49%), this is due to the "8! deoxidizing power reduction phenomenon" that accompanies the addition of a large amount of Af. This is presumed to be due to a decrease in the formation of nonmetallic inclusions.

実際、基材鋼板中のアルミナ系非金属介在物は、積極的
なAl:脱酸を行わなかった鋼の適用になる本発明例1
〜2及び8〜11のそれと同等レベルであった。
In fact, the alumina-based nonmetallic inclusions in the base steel sheet were removed by Al: Example 1 of the present invention, which was applied to steel that was not actively deoxidized.
-2 and 8-11 were at the same level.

また、これらの試験結果からは、「基材鋼板中のへ!量
を特定範囲に調整すると言う工業的に可能な手段により
、気相メッキ鋼板の耐銹性に影古を及ぼさないレベルで
畑中のアルミナ系非金属介在物を必要かつ十分にコント
ロールすることができる」点もが確認される。
In addition, these test results show that ``By adjusting the amount of Fe in the base steel sheet within a specific range, which is an industrially possible means, the rust resistance of the vapor-phase plated steel sheet can be maintained at a level that does not affect the rust resistance of the steel sheet. It is also confirmed that alumina-based nonmetallic inclusions can be controlled sufficiently.

実施例 2 へβ脱酸を行わず、RH炉を用いて非金属介在物の浮上
促進と真空脱酸処理を行った第4表に示ず鋼りより成る
フェライト系ステンレス鋼板を準備した。
Example 2 A ferritic stainless steel plate made of a steel not shown in Table 4 was prepared without β-deoxidation, but instead was subjected to levitation of nonmetallic inclusions using an RH furnace and vacuum deoxidation treatment.

次に、該鋼板から複数の試験片を切り出し、第5表に示
す如く一部を除いて脱脂処理した後、スパッタリングに
より該表面にSi OX(X #2 )を種々の厚みで
メッキした。なお、スパッタリング処理に際して鋼板基
板は300 ’Cに加熱保持された。
Next, a plurality of test pieces were cut out from the steel plate, and after degreasing some of them as shown in Table 5, the surfaces were plated with Si OX (X #2) at various thicknesses by sputtering. Note that during the sputtering treatment, the steel plate substrate was heated and maintained at 300'C.

このようにして製造された気相メッキフェライト系ステ
ンレス鋼板ついて、実施例1と同様に孔食電位の測定と
耐銹性評価を行うと共に、101曲げ時における気相メ
ッキ被膜の割れ状況を調査したが、その結果を第5表に
併せて示した。
Regarding the vapor-phase plated ferritic stainless steel sheet manufactured in this manner, the pitting potential was measured and the rust resistance evaluated in the same manner as in Example 1, and the cracking of the vapor-phase plated film during 101 bending was investigated. However, the results are also shown in Table 5.

第5表に示される結果からも、本発明に係るフェライト
系ステンレス鋼板は何れも優れた耐銹性を示すのに対し
て、気相メッキ被膜の厚さが本発明での規定値から外れ
ている比較例12〜13及び23によるものでは耐銹性
が著しく劣るか、或いは成形加工時に被膜割れを生じや
すいことが明らかである。
The results shown in Table 5 also show that all the ferritic stainless steel sheets according to the present invention exhibit excellent rust resistance, but the thickness of the vapor phase plating film deviates from the specified value in the present invention. It is clear that the products according to Comparative Examples 12 to 13 and 23 have significantly poor rust resistance, or are prone to film cracking during molding.

なお、スパッタリングによると基材鋼板上への5i()
xの蒸着は島状に開始して均一には進行せず、島状状態
から次第に全面へと進行して行く過程をたどるものと見
られるが、本実施例においてもその傾向が認められ、蒸
着j膜厚(メッキ膜jゾ)が薄い場合には“蒸着膜の欠
陥に起因すると推察される耐誘性改善レベルの低下傾向
”が見られた。そして、この傾向は蒸着基板(基材鋼板
)の温度を高めることにより成る程度は改善されるもの
と期待されたが、実際にはそれほど大きな改善はなく、
およそ200人の膜厚を境にようやく耐銹性が安定して
良好となった。このごとは、他の気相メッキ物質(蒸着
物質)を使用した場合にも大差なかった。
In addition, according to sputtering, 5i () on the base steel plate
The vapor deposition of When the plating film thickness (plated film j) was thin, there was a tendency for the level of improvement in induction resistance to decrease, which is presumed to be caused by defects in the deposited film. It was expected that this tendency would be improved to a certain degree by increasing the temperature of the deposition substrate (substrate steel plate), but in reality there was no significant improvement.
The rust resistance finally became stable and good when the film thickness reached approximately 200 people. This was not much different when other vapor phase plating substances (vapor deposition substances) were used.

また、蒸着膜厚(メッキ膜1γ)が厚くなるに従って蒸
着時と放冷後の温度差並びに気相メッキ物質(蒸着物質
)の内部応力によると思われる気相メッキ被■りの割れ
が生しやすくなり、特に30000人を超えた膜厚では
この傾向が顕著となって実用には耐えないレベルとなる
ことも確認された。
Additionally, as the thickness of the deposited film (plated film 1γ) increases, cracks occur in the vapor-phase plating, which is thought to be due to the temperature difference between the time of vapor deposition and after cooling, as well as the internal stress of the vapor-phase plating material (deposited material). It was also confirmed that this tendency becomes remarkable especially when the film thickness exceeds 30,000 layers, and reaches a level that cannot be used in practical use.

なお、気相メッキ被膜の密着性にはスパッタリング前の
脱脂処理の影響も太き(、脱脂を十分に行う必要のある
ことが分かった。
It should be noted that the adhesion of the vapor phase plating film is greatly influenced by the degreasing treatment before sputtering (it was found that sufficient degreasing is necessary).

実施例 3 第6表に示す如き、精錬過程においてAf脱酸処理を行
った鋼M、並びにAf脱酸処理を行わなかった鋼N−P
より成る各フェライト系ステンレス網板を準備した。
Example 3 As shown in Table 6, steel M was subjected to Af deoxidation treatment during the refining process, and steel N-P was not subjected to Af deoxidation treatment.
Each ferritic stainless steel net plate was prepared.

次に、これらの鋼板を60℃の30%硝酸水溶液中に浸
ン貞処理して表面性状の調整(気相メッキ前処理)を行
った後、スパッタリングによって該表面に第7表で示す
如き各種メッキを施した。なお、スパッタリング処理に
際してはこれまでの例と同じく鋼板基板を300℃に加
熱保持した。
Next, these steel plates were immersed in a 30% nitric acid aqueous solution at 60°C to adjust the surface properties (vapor phase plating pretreatment), and then various coatings as shown in Table 7 were applied to the surface by sputtering. Plated. Note that during the sputtering treatment, the steel plate substrate was heated and maintained at 300° C. as in the previous examples.

続いて、このようにして製造された各フェライト系ステ
ンレス鋼板につき、実施例1と同様に孔食電位測定と耐
誘性評価を行い、これらの結果をまとめて第7表に示し
た。
Subsequently, each of the ferritic stainless steel sheets produced in this manner was subjected to pitting potential measurement and dielectric resistance evaluation in the same manner as in Example 1, and the results are summarized in Table 7.

第7表に示される結果からも明らかなように、本発明に
係るフェライト系ステンレス鋼板は何れも優れた耐銹性
を示すのに対して、基材鋼板の成分組成やメッキ被膜の
厚さが本発明で規定する条件から外れている比較例24
〜29によるものでは耐銹性が著しく劣ることが分かる
As is clear from the results shown in Table 7, all of the ferritic stainless steel sheets according to the present invention exhibit excellent rust resistance, but the composition of the base steel sheet and the thickness of the plating film are Comparative example 24 that deviates from the conditions specified in the present invention
It can be seen that the rust resistance of those with grades 1 to 29 is significantly inferior.

なお、メッキ層(蒸着物質)の複層化は、気相メンキフ
ェライト系ステンレス鋼板の耐食性改善に対して相乗効
果を奏するばかりではなく、蒸着物質の密着性改善に対
しても効果を存することが確認され、特にNi又はCu
の下層を設けるのが有効であることも分かった。
It should be noted that the multilayer plating layer (vapor deposited material) not only has a synergistic effect on improving the corrosion resistance of the vapor-phase Menkhi ferrite stainless steel sheet, but also has an effect on improving the adhesion of the vapor deposited material. was confirmed, especially Ni or Cu
It was also found that it is effective to provide a lower layer of .

更に、上記各実施例においては気相メッキ手段としてス
パッタリングを適用したもののみを示したが、他の蒸着
手段としてCVDやイオンブレーティングを適用した場
合にも同様に良好な結果が得られることをも確認した。
Furthermore, in each of the above examples, only sputtering was applied as the vapor phase plating method, but it is understood that similarly good results can be obtained when other vapor deposition methods such as CVD or ion blating are applied. Also confirmed.

く効果の総括〉 以上に説明した如く、この発明によれば、従来材に比べ
て格段に優れた耐銹性を有し、自動車用モール材、外装
用建材、内装用建材等の幅広い分野に適用してそれらの
価値や機能の著しい改善が期待される高耐銹性フェライ
ト系ステンレス鋼材を安定して提供することが可能とな
るなど、産業上極めて有用な効果がもたらされる。
Summary of Effects> As explained above, this invention has significantly superior rust resistance compared to conventional materials, and can be used in a wide range of fields such as automotive molding materials, exterior building materials, and interior building materials. Industrially, extremely useful effects are brought about, such as making it possible to stably provide highly rust-resistant ferritic stainless steel materials whose values and functions are expected to be significantly improved by application.

Claims (6)

【特許請求の範囲】[Claims] (1)重量割合にて Al:0.003%以下、Si:0.3〜5%。 Mn:0.2〜1%、Cr:8〜25%以下を含有し、
残部が実質的にFeであるフェライト系ステンレス鋼基
材表面に、Al、Ti、Si、Nb、Cr、Mo、Cu
、Ni及びこれらの窒化物並びに酸化物のうちの1種以
上で構成され、かつ厚さ:200〜30000Åの単層
又は複層の気相メッキ層を有して成ることを特徴とする
、耐銹性に優れたフェライト系ステンレス鋼材。
(1) Al: 0.003% or less, Si: 0.3 to 5% by weight. Contains Mn: 0.2 to 1%, Cr: 8 to 25% or less,
Al, Ti, Si, Nb, Cr, Mo, Cu
, Ni, and one or more of these nitrides and oxides, and has a single layer or multiple vapor phase plating layer with a thickness of 200 to 30,000 Å. Ferritic stainless steel material with excellent rust resistance.
(2)重量割合にて Al:0.003%以下、Si:0.3〜5%、Mn:
0.2〜1%、Cr:8〜25%以下を含有すると共に
、更に Cu:0.05〜0.8%、Ni:0.05〜0.8%
。 Nb:0.05〜2.0%、Mo:0.05〜3.0%
のうちの1種以上をも含み、残部が実質的にFeである
フェライト系ステンレス鋼基材表面に、^、、Ti、S
i、Nb、Cr、Mo、Cu、Ni及びこれらの窒化物
並びに酸化物のうちの1種以上で構成され、かつ厚さ:
200〜30000Åの単層又は複層の気相メッキ層を
有して成ることを特徴とする、耐銹性に優れたフェライ
ト系ステンレス鋼材。
(2) Weight percentage: Al: 0.003% or less, Si: 0.3-5%, Mn:
0.2 to 1%, Cr: 8 to 25% or less, and further Cu: 0.05 to 0.8%, Ni: 0.05 to 0.8%
. Nb: 0.05-2.0%, Mo: 0.05-3.0%
The surface of the ferritic stainless steel base material containing one or more of the following, the remainder being substantially Fe,
i, Nb, Cr, Mo, Cu, Ni, and one or more of their nitrides and oxides, and has a thickness:
A ferritic stainless steel material with excellent rust resistance, characterized by having a single layer or multiple vapor phase plating layers of 200 to 30,000 Å.
(3)重量割合にて Al:0.1〜4%、Si:0.3〜5%、Mn:0.
2〜1%、Cr:8〜25%以下を含有し、残部が実質
的にFeであるフェライト系ステンレス鋼基材表面に、
Al、Ti、Si、Nb、Cr、Mo、Cu、Ni及び
これらの窒化物並びに酸化物のうちの1種以上で構成さ
れ、かつ厚さ:200〜30000Åの単層又は複層の
気相メッキ層を有して成ることを特徴とする、耐銹性に
優れたフェライト系ステンレス鋼材。
(3) Al: 0.1-4%, Si: 0.3-5%, Mn: 0.
2 to 1%, Cr: 8 to 25% or less, and the remainder is substantially Fe on the surface of the ferritic stainless steel base material,
Single-layer or multi-layer vapor phase plating consisting of one or more of Al, Ti, Si, Nb, Cr, Mo, Cu, Ni, and their nitrides and oxides, and having a thickness of 200 to 30,000 Å A ferritic stainless steel material with excellent rust resistance, characterized by having layers.
(4)重量割合にて Al:0.1〜4%、Si:0.3〜5%、Mn:0.
2〜1%、Cr:8〜25%以下を含有すると共に、更
に Cu:0.05〜0.8%、Ni:0.05〜0.8%
、Nb:0.05〜2.0%、Mo:0.05〜3.0
%のうちの1種以上をも含み、残部が実質的にFeであ
るフェライト系ステンレス鋼基材表面に、Al、Ti、
Si、Nb、Cr、Mo、Cu、Ni及びこれらの窒化
物並びに酸化物のうちの1種以上で構成され、かつ厚さ
:200〜30000Åの単層又は複層の気相メッキ層
を有して成ることを特徴とする、耐銹性に優れたフェラ
イト系ステンレス鋼材。
(4) Weight percentage: Al: 0.1-4%, Si: 0.3-5%, Mn: 0.
2 to 1%, Cr: 8 to 25% or less, and further Cu: 0.05 to 0.8%, Ni: 0.05 to 0.8%
, Nb: 0.05-2.0%, Mo: 0.05-3.0
%, and the remainder is substantially Fe.
It is composed of one or more of Si, Nb, Cr, Mo, Cu, Ni, and their nitrides and oxides, and has a single or multiple vapor phase plating layer with a thickness of 200 to 30,000 Å. A ferritic stainless steel material with excellent rust resistance.
(5)重量割合にて Al:0.003%以下、Si:0.3〜5%、Mn:
0.2〜1%、Cr:8〜25%以下を含有するか、或
いは更に Cu:0.05〜0.8%、Ni:0.05〜0.8%
、Nb:0.05〜2.0%、Mo:0.05〜3.0
%のうちの1種以上をも含み、残部が実質的にFeであ
るフェライト系ステンレス鋼材に、酸化性酸又は過酸化
性酸溶液中浸漬及び酸溶液中電解の何れかの処理を施し
た後、気相メッキによって該鋼材表面にAl、Ti、S
i、Nb、Cr、Mo、Cu、Ni及びこれらの窒化物
並びに酸化物のうちの1種以上から成る単層又は複層の
被覆層を200〜30000Åの厚さで形成させること
を特徴とする、耐銹性に優れたフェライト系ステンレス
鋼材の製造方法。
(5) Weight percentage: Al: 0.003% or less, Si: 0.3-5%, Mn:
0.2-1%, Cr: 8-25% or less, or further Cu: 0.05-0.8%, Ni: 0.05-0.8%
, Nb: 0.05-2.0%, Mo: 0.05-3.0
%, and the remainder is substantially Fe, after being subjected to either immersion in an oxidizing acid or peroxidizing acid solution or electrolysis in an acid solution. , Al, Ti, S on the surface of the steel material by vapor phase plating.
It is characterized by forming a single or multilayer coating layer with a thickness of 200 to 30,000 Å consisting of one or more of i, Nb, Cr, Mo, Cu, Ni, and their nitrides and oxides. , a method for manufacturing ferritic stainless steel material with excellent rust resistance.
(6)重量割合にて Al:0.1〜4%、Si:0.3〜5%、Mn:0.
2〜1%、Cr:8〜25%以下を含有するか、或いは
更に Cu:0.05〜0.8%、Ni:0.05〜0.8%
、Nb:0.05〜2.0%、Mo:0.05〜3.0
%のうちの1種以上をも含み、残部が実質的にFeであ
るフェライト系ステンレス鋼材に、酸化性酸又は過酸化
性酸溶液中浸漬及び酸溶液中電解の何れかの処理を施し
た後、気相メッキによって該鋼材表面にAl、Ti、S
i、Nb、Cr、Mo、Cu、Ni及びこれらの窒化物
並びに酸化物のうちの1種以上から成る単層又は複層の
被覆層を200〜30000Åの厚さで形成させること
を特徴とする、耐銹性に優れたフェライト系ステンレス
鋼材の製造方法。
(6) Weight percentage: Al: 0.1-4%, Si: 0.3-5%, Mn: 0.
2 to 1%, Cr: 8 to 25% or less, or further Cu: 0.05 to 0.8%, Ni: 0.05 to 0.8%
, Nb: 0.05-2.0%, Mo: 0.05-3.0
%, and the remainder is substantially Fe, after being subjected to either immersion in an oxidizing acid or peroxidizing acid solution or electrolysis in an acid solution. , Al, Ti, S on the surface of the steel material by vapor phase plating.
It is characterized by forming a single or multilayer coating layer with a thickness of 200 to 30,000 Å consisting of one or more of i, Nb, Cr, Mo, Cu, Ni, and their nitrides and oxides. , a method for manufacturing ferritic stainless steel material with excellent rust resistance.
JP27247088A 1988-10-28 1988-10-28 Stainless steel stock excellent in rust resistance and its production Pending JPH02122064A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27247088A JPH02122064A (en) 1988-10-28 1988-10-28 Stainless steel stock excellent in rust resistance and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27247088A JPH02122064A (en) 1988-10-28 1988-10-28 Stainless steel stock excellent in rust resistance and its production

Publications (1)

Publication Number Publication Date
JPH02122064A true JPH02122064A (en) 1990-05-09

Family

ID=17514369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27247088A Pending JPH02122064A (en) 1988-10-28 1988-10-28 Stainless steel stock excellent in rust resistance and its production

Country Status (1)

Country Link
JP (1) JPH02122064A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11350083A (en) * 1998-06-11 1999-12-21 Nippon Steel Corp Corrosion resistant steel
JPH11350085A (en) * 1998-06-11 1999-12-21 Nippon Steel Corp Corrosion resistant steel
JPH11350084A (en) * 1998-06-11 1999-12-21 Nippon Steel Corp Corrosion resistant steel
WO2005024093A1 (en) * 2003-09-05 2005-03-17 Sandvik Intellectual Property Ab A stainless steel strip coated with aluminium
WO2005042797A1 (en) * 2003-11-04 2005-05-12 Sandvik Intellectual Property Ab A stainless steel strip coated with a metallic layer
WO2005061755A1 (en) * 2003-12-23 2005-07-07 Sandvik Intellectual Property Ab A stainless steel strip coated with a decorative layer
US7641169B2 (en) 2003-05-29 2010-01-05 Sumitomo Metal Industries, Ltd. Substrate for a stamper
US20130029097A1 (en) * 2011-07-29 2013-01-31 Hon Hai Precision Industry Co., Ltd. Coated article and method for making same
US20130029096A1 (en) * 2011-07-29 2013-01-31 Hon Hai Precision Industry Co., Ltd. Coated article and method for making same
US20130029094A1 (en) * 2011-07-29 2013-01-31 Hon Hai Precision Industry Co., Ltd. Coated article and method for making same
US20130029095A1 (en) * 2011-07-29 2013-01-31 Hon Hai Precision Industry Co., Ltd. Coated article and method for making same

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11350085A (en) * 1998-06-11 1999-12-21 Nippon Steel Corp Corrosion resistant steel
JPH11350084A (en) * 1998-06-11 1999-12-21 Nippon Steel Corp Corrosion resistant steel
JPH11350083A (en) * 1998-06-11 1999-12-21 Nippon Steel Corp Corrosion resistant steel
US7641169B2 (en) 2003-05-29 2010-01-05 Sumitomo Metal Industries, Ltd. Substrate for a stamper
WO2005024093A1 (en) * 2003-09-05 2005-03-17 Sandvik Intellectual Property Ab A stainless steel strip coated with aluminium
WO2005042797A1 (en) * 2003-11-04 2005-05-12 Sandvik Intellectual Property Ab A stainless steel strip coated with a metallic layer
WO2005061755A1 (en) * 2003-12-23 2005-07-07 Sandvik Intellectual Property Ab A stainless steel strip coated with a decorative layer
US20130029097A1 (en) * 2011-07-29 2013-01-31 Hon Hai Precision Industry Co., Ltd. Coated article and method for making same
US20130029096A1 (en) * 2011-07-29 2013-01-31 Hon Hai Precision Industry Co., Ltd. Coated article and method for making same
US20130029094A1 (en) * 2011-07-29 2013-01-31 Hon Hai Precision Industry Co., Ltd. Coated article and method for making same
US20130029095A1 (en) * 2011-07-29 2013-01-31 Hon Hai Precision Industry Co., Ltd. Coated article and method for making same
US8802227B2 (en) * 2011-07-29 2014-08-12 Hong Fu Jin Precision Industry (Shenzhen) Co., Ltd. Coated article and method for making same
US8808853B2 (en) * 2011-07-29 2014-08-19 Hong Fu Jin Precision Industry (Shenzhen) Co., Ltd. Coated article and method for making same
US8815379B2 (en) * 2011-07-29 2014-08-26 Hong Fu Jin Precision Industry (Shenzhen) Co., Ltd. Coated article and method for making same
US8822019B2 (en) * 2011-07-29 2014-09-02 Hong Fu Jin Precision Industry (Shenzhen) Co., Ltd. Coated article and method for making same

Similar Documents

Publication Publication Date Title
TWI465585B (en) With high resistance to rust and anti-glare of high purity fat iron-based stainless steel plate
JP5499664B2 (en) High-strength cold-rolled steel sheet having a tensile maximum strength of 900 MPa or more excellent in fatigue durability, and its manufacturing method, and high-strength galvanized steel sheet and its manufacturing method
EP2749667B1 (en) High-manganese steel with superior coating adhesion and method for manufacturing hot-dipped galvanized steel sheet from same
KR20190078509A (en) Zinc alloy coated steel having excellent corrosion resistance and surface smoothness, and method for manufacturing the same
US4056366A (en) Zinc-aluminum alloy coating and method of hot-dip coating
JPH02122064A (en) Stainless steel stock excellent in rust resistance and its production
JP2022509863A (en) Ferritic stainless steel with improved corrosion resistance and its manufacturing method
JP6547011B1 (en) Austenitic stainless steel and method of manufacturing the same
JP3631710B2 (en) Si-containing high-strength hot-dip galvanized steel sheet with excellent corrosion resistance and ductility and method for producing the same
US5208079A (en) Process for improving the resistance to corrosion of stainless steel
JP3898924B2 (en) High-strength hot-dip galvanized steel sheet excellent in appearance and workability and its manufacturing method
JP3442524B2 (en) Stainless steel sheet for Zn plating and manufacturing method
KR101778440B1 (en) Zn ALLOY PLATED STEEL SHEET HAVING EXCELLENT SCRATCH RESISTANCE AND BENDABILITY AND METHOD FOR MANUFACTURING SAME
JP7247946B2 (en) Hot-dip galvanized steel sheet and its manufacturing method
JPH0472091A (en) Surface-treated steel sheet for two-piece can and production thereof
JP3435986B2 (en) Manufacturing method of high workability plated steel sheet
JP3078456B2 (en) Manufacturing method of high-strength hot-dip galvanized steel sheet
JP3898925B2 (en) High strength and high ductility hot dip galvanized steel sheet excellent in corrosion resistance and method for producing the same
US3704181A (en) Cold rolled steel sheet having stabilized thin oxide film and having excellent resistance against corrosion particularly initial rust formation as well as against corrosion after lacquering
JPH1150202A (en) Ferritic stainless steel bright annealed material excellent in rust resistance and its production
JPH0711409A (en) Production of galvanized steel sheet
JPH08269733A (en) Rust preventive steel sheet for fuel tank
JP2013170305A (en) Method for determining chemical conversion treatability of steel, and method for producing steel excellent in chemical conversion treatability
JPH0215152A (en) Hot dip galvanized steel sheet and its production
JP3298258B2 (en) High corrosion resistant steel