JP3435986B2 - Manufacturing method of high workability plated steel sheet - Google Patents

Manufacturing method of high workability plated steel sheet

Info

Publication number
JP3435986B2
JP3435986B2 JP13787696A JP13787696A JP3435986B2 JP 3435986 B2 JP3435986 B2 JP 3435986B2 JP 13787696 A JP13787696 A JP 13787696A JP 13787696 A JP13787696 A JP 13787696A JP 3435986 B2 JP3435986 B2 JP 3435986B2
Authority
JP
Japan
Prior art keywords
steel sheet
less
plating
hot
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13787696A
Other languages
Japanese (ja)
Other versions
JPH09316617A (en
Inventor
誠 磯部
千昭 加藤
一洋 瀬戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP13787696A priority Critical patent/JP3435986B2/en
Priority to TW86117851A priority patent/TW454039B/en
Publication of JPH09316617A publication Critical patent/JPH09316617A/en
Application granted granted Critical
Publication of JP3435986B2 publication Critical patent/JP3435986B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】この発明は、高い耐食性およ
び絞り加工性が要求される、建築資材、冷暖房・給湯機
器用鋼板および自動車用鋼板等に供するめっき鋼板の製
造方法に関する。 【0002】 【従来の技術】めっき鋼板の製造は、めっき鋼板用の素
材を熱間圧延後に、鋼板表面を覆う酸化鉄層を酸洗設備
で除去し、冷間圧延を行った後に連続式溶融めっき装置
や電気めっき装置等にてめっきを行うのが、一般的であ
る。ここで、熱延材のままでは、加工歪みを蓄積して再
結晶することができずに、上記した使途に適合する絞り
加工性が得られないため、冷間圧延にて再結晶を行うこ
とにより、伸びや絞り特性などの加工性に優れためっき
鋼板とする必要がある。また、酸化鉄層の除去を必須と
するのは、酸化鉄層がめっきを阻害し、めっき層の剥離
起点となる結果、めっきの密着性を劣化させるためであ
る。 【0003】上記のめっき鋼板の一般的製造に対して特
開平6−145937号および同6−279967号各公報には、主
にコストの低減を目的として、酸洗工程や冷間圧延工程
を省略する技術が開示されている。すなわち、熱延板表
面の酸化鉄層を除去することなく還元雰囲気ガス中で還
元処理を行った後、溶融亜鉛めっきを行うことが提案さ
れている。 【0004】しかしながら、上記の公報には、冷間圧延
の省略によって懸念される加工性の劣化について触れる
ところはなく、また、例えば曲げ加工のような変形によ
って被るめっきの損傷(剥離)については、解決されて
いない。なお、特開平6−145937号公報では、め
っきの密着性には触れられていない。一方、特開平6−
279967号公報では、1.1 〜4.6 μm の比較的薄い
酸化鉄層の付いた熱延鋼板を用いてめっき密着性の改善
を行っているが、その薄い酸化鉄層を得るための手段に
ついては何ら触れられていない。さらに、鋼板の高強度
化のために鋼中にSiやMn等の易酸化性成分が存在する鋼
種を用いる場合は、これら成分がめっき前の焼鈍中に酸
化されて鋼板表面に濃化し、めっき処理において鋼板と
溶融金属との反応を阻害して、結局は不めっき欠陥を招
くと言う問題もあった。 【0005】 【発明が解決しようとする課題】そこで、この発明で
は、冷間圧延および酸洗を省略しても、加工性およびめ
っき密着性に優れるめっき鋼板を、低コストで製造し得
る方法について提案することを目的とする。 【0006】 【課題を解決するための手段】発明者らは、熱間圧延の
温度と加工条件、粗圧延後のデスケーリング条件と熱延
鋼板の酸化鉄層厚および焼鈍後の鋼板材質を鋭意検討
し、さらに、酸化鉄層が生成した鋼板を種々の条件で還
元した後にめっきを行って、そのめっき特性を調査し
た。その結果、熱延板に加工歪みを内蔵させることによ
って、冷間圧延を省略しても加工性の劣化が防止できる
こと、また酸化鉄層の厚みが十分に薄い熱延鋼板を得る
ことによって、酸化鉄層を除去することなくめっきの密
着性を確保できること、が判明した。 【0007】すなわち、この発明は、C:0.02wt%以
下、Si:2wt%以下、Mn:3wt%以下、Ti:0.01〜0.2
wt%、Nb:0.001 〜0.2 wt%、B:0.0001〜0.003 wt
%、N:0.01wt%以下、P:0.2 wt%以下およびS:0.
05wt%以下を含み、かつC、Ti、NbおよびNの各含有量
[C]、[Ti]、[Nb]および[N]が下記式(1) を満
足する成分組成の鋼スラブを、Ac3 変態点以上の温度域
に加熱し熱間粗圧延を施し、次いで吐出圧が300 kg/cm
2 以上の高圧水によるデスケーリング処理を行った後、
500 ℃以上Ar3 変態点以下の温度域での圧下率が60%以
上かつ終了温度が800 ℃以下の熱間仕上げ圧延を潤滑下
に行い、巻き取り後、連続式めっき設備の焼鈍炉にて鋼
板温度750 ℃以上Acs 変態点以下で鋼板表面の酸化鉄層
の50%以上を還元したのち、めっきを施すことを特徴と
する高加工性めっき鋼板の製造方法である。 記 [C]/12+[N]/14≦[Ti]/48+[Nb]/93 ----(1) である。ここで、Acs 変態点は、昇温によりα相からγ
相への変態の開始する温度とする。 【0008】 【発明の実施の形態】次に、この発明の手順を具体的に
説明する。まず、めっき鋼板用の素材としては、C:0.
02wt%以下、Si:2wt%以下、Mn:3wt%以下、Ti:0.
01〜0.2 wt%、Nb:0.001 〜0.2 wt%、B:0.0001〜0.
003 wt%、N:0.01wt%以下、P:0.2 wt%以下および
S:0.05wt%以下を含み、かつC、Ti、NbおよびNの各
含有量[C]、[Ti]、[Nb]および[N]が上記式
(1) を満足する成分組成の鋼スラブを用いる。 【0009】すなわち、CおよびNは、侵入型の固溶元
素であって、鋼板の高強度化に有効であるが、一方で伸
びやr値に代表される加工性を低下させるため、この発
明では、CおよびN以外の成分によって強度化をはかる
ことによって、CおよびNは製鋼段階で各々0.02wt%以
下および0.01wt%以下に抑制する。 【0010】さらに、残るCおよびNが加工性に与える
悪影響を無害化するために、TiおよびNbを添加してCお
よびNを反応析出させ、優れた加工性を確保する。具体
的には、Ti:0.01〜0.2 wt%およびNb:0.001 〜0.2 wt
%を、CおよびNの含有量に対して、上記(1) 式の下に
添加することが肝要である。 【0011】なぜなら、Tiは特にNbに比して反応性が高
くN、C析出に選択的に消費されるため、また、鋼中酸
素にも容易に酸化されて消費されるため、0.01wt%未満
では、添加の効果が現れない。一方0.2 wt%をこえて添
加しても効果が飽和する上、コスト増をまねく。 【0012】そして、Nbは、Tiに比してC以外の元素と
の反応性が低いため少量の添加から効果を現すが、0.00
1 wt%未満では、C、N量に比し原子数としての存在数
が少なすぎて効果が現れない。一方、0.2 wt%をこえて
添加しても効果が飽和する上、コスト増をまねく。さら
に、TiおよびNbは、CおよびN量に応じて、上記(1) 式
を満足する範囲で添加することによって、CおよびNを
析出させるのに十分な量を確保できる。 【0013】また、SiおよびMnは、加工性を阻害するこ
となしに、鋼板の高強度化を可能にする成分であり、そ
れぞれ2wt%および3wt%を上限に添加することができ
る。なお、上限をこえると、熱間加工時に鋼板エッヂ部
に割れが入りやすくなり、またスケールが異状に発生し
て、綺麗な鋼板表面が得られない。なお、SiおよびMnの
下限は、特に限定されない。必要とする強度に対して調
整される。但し鋼コストの上昇を避けるために、それぞ
れ0.001 %および0.01wt%とすることが好ましい。 【0014】Bは、0.0001wt%未満では、鋼の粒界強化
による脆性改善が期待できない。一方、0.003 wt%をこ
えると、脆性改善効果が飽和するとともに鋼の加工性が
急激に劣化する。 【0015】Pは、比較的安価でかつ高加工性を維持し
て強度を高めることができるが、CおよびNが低減され
た鋼中では粒界に析出して脆化をまねくため、0.2 wt%
を上限とする。なお、下限は、特に限定されないが製鋼
コストの上昇を招かない観点から0.001 wt%以上とする
ことが好ましい。また、Pは、Bと共存させることによ
って、比較的添加の量が少なくかつ低コストにて、鋼板
を脆化させることなく、高加工性を維持しつつ高強度を
計ることが可能になる。 【0016】次に、熱間圧延工程では、粗圧延に先立
ち、上記の成分に調整した鋼スラブを、Ac3 変態点以
上に加熱する。具体的には、スラブを1200℃前後に加熱
して、続く粗圧延での鋼板の変形抵抗を小さくする。な
お、スラブを再度加熱することなく、連続鋳造等で鋳込
んだスラブをそのまま冷却前に粗圧延工程に供しても良
い。その後、粗圧延を行ってから、仕上げ圧延に先立
ち、高圧水によるデスケーリングを行う。これによっ
て、粗圧延までに生成したスケールを除去する。 【0017】ここで、高圧水によるデスケーリングを用
いるのは、粗圧延までに生成成長した酸化スケールをほ
ぼ完全に取り除くためである。高圧水を用いるのは、鋼
板面に疵を入れずに効率よくスケールが除去できるから
である。そして、高圧水の吐出圧は300 kgf /cm2 以上
にする必要がある。なぜなら、300kgf/cm2 未満では、
スケールの除去が完全ではなく、その結果仕上げ圧延、
巻き取り後の熱延鋼板上のスケールが厚くなってしま
い、また不均一となってしまうためである。 【0018】従って、高圧水によるデスケーリングを行
うことによって、酸化スケール厚を小さくすると、熱延
鋼板板面を美麗にすることが可能になるため、酸洗によ
る脱スケールを改めて行わずに、連続式溶融めっき装置
の加熱炉にて還元することで、めっき密着性の良い美麗
なめっき鋼板を製造することが可能になる。一方、高圧
水によるデスケーリングを用いずに製造した酸化スケー
ルの厚いかつ板面性状も劣った熱延鋼板からは、酸洗に
よるデスケーリングなしに、めっき密着性の良い美麗な
めっき鋼板を製造することは困難である。 【0019】次の仕上げ圧延工程では、Ar3 変態点以下
での圧下率が60%以上である圧延を潤滑下で施し、かつ
最終仕上げ圧延温度を800 ℃以下にする。すなわち、潤
滑下にAr3 変態点以下での圧下率を60%以上とすること
により、冷却後の熱延鋼板に剪断応力の少ない加工歪み
を内蔵させることができ、その後の還元炉での還元時の
再結晶において、高加工性の付与に有利な組織が出現す
る。従って、冷間圧延を行うことなく、加工性を確保で
きるのである。 【0020】また、最終仕上げ温度を800 ℃以下にする
のは、酸化鉄層が熱間圧延直後に成長するのを抑制する
ためであり、具体的には熱延板における酸化鉄層厚を4
μm以下程度に抑制できる。 【0021】熱間圧延された鋼板は、巻き取り後、連続
溶融めっき装置の焼鈍炉において再結晶焼鈍と同時に還
元され、次いでめっきが施される。すなわち、連続溶融
めっき装置では、焼鈍炉にて、酸化鉄層を還元するとと
もに、鋼板内で再結晶を発生させる。 【0022】ここで、両反応を迅速に行うために、鋼板
温度を750 ℃以上に調整することが肝要であり、一方Ac
s 変態点をこえると、組織がランダム化して加工性に有
利な組織が得られない。 【0023】また、酸化鉄層の還元は50%以上は行う必
要があり、100 %未満にすることが好ましい。なぜな
ら、還元率が50%未満では、酸化鉄層の残存が多く、衝
撃や加工を受けた場合に剥離を起こしてしまい実用に耐
えられない。一方100 %になると、水素原子の吸蔵が開
始され、これが高じるとめっき後に水素が鋼中から排出
され行き場を失って、めっき界面で気化し局所的なめっ
き剥離へと進展する。また、特に、SiやMnを高濃度で含
有する場合は、100 %還元すると、SiやMnの酸化による
表面濃化が起こるため、引き続くめっき工程での濡れ性
が阻害されて不めっき欠陥を誘発することになる。 【0024】なお、雰囲気には一般的還元ガスである3
%以上のH2を含有するN2を使用できるが、効率的に還元
を行うにはH2濃度を7%以上とすることが好ましい。 【0025】所定の還元および再結晶焼鈍が完了した鋼
板は、めっき浴温程度に冷却し、その後めっき浴に導入
してめっきを施す。例えば、亜鉛系のめっき浴として
は、ZnおよびFeの他に、種々の性能向上を目的として、
Al、Mg、Mn、Ni、Co、Cr、Si、Pb、Sb、BiおよびSn等を
単独或いは複合して含有することが可能である。 【0026】最後に、浸漬によりめっきされた鋼板は、
ガスワイピング等により20〜250 g/m2の間の必要目付
量に調整した後、放冷、空冷または水冷などの冷却を行
ってから、必要によりレベラーや調質圧延を施して、製
品となる。また、耐食性等の向上のために、冷却後或い
は調質圧延後に、クロメート処理やりん酸塩処理等を行
うことも可能であり、さらに塗装を行うことも有効であ
る。同様に、後処理として潤滑処理を行うことも可能で
ある。 【0027】一方、スポット抵抗溶接等により鋼板を組
立てて用いる使途では、Alを0.1 〜0.2 wt%含有した溶
融Zn浴でめっきを行い、目付量調整を行った後、加熱合
金化を行うことが有効である。ここでの目付量は、20g
/m3未満で耐食性が不十分になり、80g/m3をこえると
曲げや絞りの加工時にめっきが剥離しやすくなるため、
20〜80g/m3の範囲とすることが好ましい。同様に、め
っき中のFe含有量は7〜12wt%とする。なぜなら、7wt
%未満ではめっき表面に未合金化の純Zn層が残存してス
ポット抵抗溶接性を阻害し、また塗装後に疵部等からこ
の純Zn層が溶出しやすく、一方12wt%をこえると、めっ
き層が急激に脆化し、加工時にめっきの剥離が著しくな
るためである。 【0028】以上、溶融亜鉛めっき鋼板を主に説明を行
ったが、この発明は、溶融亜鉛めっき鋼板に限らず、他
の溶融めっき鋼板または電気めっき鋼板にも同様に適用
可能である。例えば、55%Al−Znめっき、Alめっき、Pb
めっき、SnめっきまたはZn−Niめっきなどのめっき鋼板
が適合する。いずれにしても、50%以上100 %未満の還
元処理後に、めっきすればよく、めっき形式に捕らわれ
ずに、優れためっき特性の鋼板が得られるのである。溶
融亜鉛めっきラインでは、焼鈍炉に連続してめっき槽を
配されるのが普通であるから、この発明に特に好適であ
る。 【0029】 【実施例】表1に示す鋼組成のスラブを1200℃に加熱
後、表2に従って熱間圧延を行って0.8 mm厚の熱延板と
した。仕上げ圧延においては鉱油による潤滑を施した。
また、比較として、従来法に従って、熱間圧延後に酸
洗、次いで冷間圧延を、表3に示す条件下で行って、冷
延板も作製した。次いで、この熱延板を60×200 mmの試
験片に切断し、アセトンで洗浄後、縦型の溶融金属めっ
きシミュレータで還元処理および再結晶焼鈍を施し、そ
の後亜鉛系めっきを行った。表2に、熱間圧延、焼鈍の
各条件および熱延板の酸化鉄層厚を、また表4にめっき
の条件を、それぞれ示す。かくして得られためっき鋼板
について、酸化鉄層の還元率を測定するとともに、機械
的特性およびめっき密着性を評価した。酸化鉄層の還元
率および機械的特性を表2に、そしてめっき密着性の評
価結果を表4に、それぞれ示す。ここに、酸化鉄層の還
元率は、予め酸洗で溶解除去される酸化鉄量を別途求め
ておき、還元焼鈍により減少した重量から還元酸化鉄量
を算出し、その比として求めた。 【0030】なお、めっき密着性は、ボールインパクト
試験および180 度外曲げ試験により評価した。すなわ
ち、ボールインパクト試験は、1/2インチ直径の半球
状凸面を持つ撃芯を供試面の裏側に当て、供試面側には
半球状凹形の受け皿をあてがって、2kgの重りを70cmの
高さから落下させて撃芯を叩き、突き出された供試面に
セロハン粘着テープを貼り付けてから引き剥がして、め
っき鋼板の表面を観察した。また、180 度外曲げ試験
は、予めビニール粘着テープを供試面に貼り、スペーサ
ーに0.9 mmの鋼板を入れ油圧プレス機で供試面を外側に
して180 度曲げてから、再度平坦な状態に曲げ戻したの
ち、ビニールテープを引き剥がし、めっき鋼板の表面を
観察した。 【0031】 【表1】 【0032】 【表2】【0033】 【表3】 【0034】 【表4】【0035】また、合金化溶融Znめっきについても、同
様に評価した。すなわち、表1に示した鋼組成のスラブ
を用いて、上記と同様の試験片を作製した。ここで、熱
間圧延条件およびめっき前の焼鈍条件は表5に、また従
来法に従う酸洗および冷間圧延条件は表6に、そして合
金化亜鉛めっき条件は表7に、それぞれ示す通りであ
る。かくして得られためっき鋼板について、機械的特性
およびめっき密着性を評価した。各評価結果を表5ない
し7に、それぞれ併記する。 【0036】なお、めっき密着性は、90度内曲げ試験お
よび 180度外曲げ試験にて行った。すなわち、予め供試
面にビニール粘着テープを張り、90度内曲げ試験では、
1mm半径のダイに沿って供試面を内側にして90度曲げて
から、再び平坦な状態に曲げ戻したのち、一方 180度外
曲げ試験では、スペーサーに0.9 mmの鋼板を入れ油圧プ
レス機で供試面を外側にして180 度曲げてから、再度平
坦な状態に曲げ戻したのち、ビニールテープを引き剥が
し、めっき鋼板の表面を観察した。 【0037】 【表5】 【0038】 【表6】 【0039】 【表7】 【0040】 【発明の効果】この発明によれば、酸化鉄層を除去する
ことなくめっきを施して得ためっき鋼板において、優れ
た加工性およびめっき密着性を共に与えることができ、
めっき鋼板を低コストにて提供し得る。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a plated steel sheet for use in building materials, steel sheets for cooling / heating / hot water supply equipment, steel sheets for automobiles, etc., which require high corrosion resistance and drawability. And a method for producing the same. [0002] In the production of coated steel sheets, after hot-rolling a material for coated steel sheets, an iron oxide layer covering the surface of the steel sheets is removed by an pickling facility, cold-rolled, and then continuously melted. Generally, plating is performed by a plating apparatus, an electroplating apparatus, or the like. Here, the hot-rolled material cannot be recrystallized by accumulating working strain, and the drawability suitable for the above-mentioned use cannot be obtained. Therefore, it is necessary to make a plated steel sheet excellent in workability such as elongation and drawing characteristics. Further, the removal of the iron oxide layer is essential because the iron oxide layer inhibits plating and serves as a starting point of peeling of the plating layer, thereby deteriorating the adhesion of the plating. [0003] Japanese Patent Application Laid-Open Nos. 6-145937 and 6-279967 disclose the above-mentioned general production of plated steel sheets, in which the pickling step and the cold rolling step are omitted mainly for the purpose of cost reduction. A technique for performing this is disclosed. That is, it has been proposed to perform a hot dip galvanizing after performing a reduction treatment in a reducing atmosphere gas without removing an iron oxide layer on a hot-rolled sheet surface. [0004] However, the above-mentioned publication does not mention the deterioration of workability which is a concern due to the omission of cold rolling, and the damage (peeling) of plating caused by deformation such as bending is not described. Not resolved. Japanese Patent Application Laid-Open No. 6-145937 does not mention the adhesion of plating. On the other hand,
In Japanese Patent No. 279967, although the plating adhesion is improved by using a hot-rolled steel sheet having a relatively thin iron oxide layer of 1.1 to 4.6 μm, there is no mention of any means for obtaining the thin iron oxide layer. Not been. Furthermore, when using a steel type in which easily oxidizable components such as Si and Mn are present in the steel in order to increase the strength of the steel plate, these components are oxidized during annealing before plating and are concentrated on the steel plate surface, and In the treatment, there is also a problem that the reaction between the steel sheet and the molten metal is hindered, which eventually causes non-plating defects. Accordingly, the present invention relates to a method for producing a plated steel sheet excellent in workability and plating adhesion at a low cost even if cold rolling and pickling are omitted. The purpose is to propose. Means for Solving the Problems The inventors have eagerly studied the temperature and working conditions of hot rolling, the descaling conditions after rough rolling, the thickness of the iron oxide layer of the hot-rolled steel sheet, and the material of the steel sheet after annealing. The steel plate on which the iron oxide layer was formed was reduced under various conditions and then plated, and the plating characteristics were investigated. As a result, by incorporating processing strain into the hot-rolled sheet, it is possible to prevent deterioration in workability even if cold rolling is omitted, and to obtain a hot-rolled steel sheet with a sufficiently thin iron oxide layer. It has been found that the adhesion of the plating can be ensured without removing the iron layer. That is, the present invention relates to the following: C: 0.02 wt% or less, Si: 2 wt% or less, Mn: 3 wt% or less, Ti: 0.01 to 0.2
wt%, Nb: 0.001 to 0.2 wt%, B: 0.0001 to 0.003 wt
%, N: 0.01 wt% or less, P: 0.2 wt% or less, and S: 0.
A steel slab containing not more than 05 wt% and having a composition of each of C, Ti, Nb and N [C], [Ti], [Nb] and [N] that satisfies the following formula (1): Heat to a temperature range of 3 transformation points or higher, perform hot rough rolling, and then discharge pressure is 300 kg / cm
After performing a descaling process with two or more high-pressure waters,
Hot finish rolling with a rolling reduction of 60% or more and a finishing temperature of 800 ° C or less in the temperature range of 500 ° C or more and the Ar 3 transformation point or less is performed under lubrication. After winding, it is heated in an annealing furnace of continuous plating equipment. A method for producing a highly workable plated steel sheet, comprising reducing the iron oxide layer on the steel sheet surface by 50% or more at a steel sheet temperature of 750 ° C or higher and below the Acs transformation point, and then performing plating. Note that [C] / 12 + [N] / 14 ≦ [Ti] / 48 + [Nb] / 93--(1). Here, the Acs transformation point changes from α phase to γ
It is the temperature at which transformation to a phase begins. [0008] Next, the procedure of the present invention will be described specifically. First, C: 0.
02 wt% or less, Si: 2 wt% or less, Mn: 3 wt% or less, Ti: 0.
01-0.2 wt%, Nb: 0.001-0.2 wt%, B: 0.0001-0.
003 wt%, N: 0.01 wt% or less, P: 0.2 wt% or less, S: 0.05 wt% or less, and the contents of C, Ti, Nb and N [C], [Ti], [Nb] And [N] are the above formulas
Use a steel slab with a component composition that satisfies (1). That is, C and N are interstitial solid-solution elements and are effective in increasing the strength of a steel sheet. On the other hand, C and N reduce workability typified by elongation and r value. Then, by strengthening with components other than C and N, C and N are suppressed to 0.02 wt% or less and 0.01 wt% or less, respectively, in the steelmaking stage. Further, in order to render the adverse effects of the remaining C and N on workability harmless, Ti and Nb are added to cause C and N to react and precipitate, thereby ensuring excellent workability. Specifically, Ti: 0.01 to 0.2 wt% and Nb: 0.001 to 0.2 wt%
It is important to add% to the content of C and N under the above formula (1). This is because Ti is highly reactive, especially compared to Nb, and is selectively consumed for the precipitation of N and C, and is easily oxidized and consumed also by oxygen in steel. If it is less than 30, the effect of addition does not appear. On the other hand, if it is added in excess of 0.2 wt%, the effect will be saturated and the cost will increase. Nb exhibits an effect from a small amount of addition because it has a lower reactivity with elements other than C as compared with Ti.
If the amount is less than 1 wt%, the number of atoms as the number of atoms is too small as compared with the amounts of C and N, so that no effect is exhibited. On the other hand, if the content exceeds 0.2 wt%, the effect is saturated and the cost increases. Further, by adding Ti and Nb in a range that satisfies the above formula (1) in accordance with the amounts of C and N, it is possible to secure sufficient amounts to precipitate C and N. Further, Si and Mn are components that can increase the strength of a steel sheet without impairing workability, and 2 wt% and 3 wt% can be added to the upper limit, respectively. If the upper limit is exceeded, cracks tend to be formed in the steel sheet edge during hot working, and scales are generated abnormally, so that a clean steel sheet surface cannot be obtained. Note that the lower limits of Si and Mn are not particularly limited. Adjusted for the required strength. However, in order to avoid an increase in steel cost, the content is preferably 0.001% and 0.01% by weight, respectively. If B is less than 0.0001 wt%, improvement in brittleness due to grain boundary strengthening of steel cannot be expected. On the other hand, when the content exceeds 0.003 wt%, the brittleness improving effect is saturated and the workability of the steel is rapidly deteriorated. [0015] P is relatively inexpensive, can maintain high workability, and can increase the strength. However, in steel in which C and N are reduced, P precipitates at grain boundaries and causes embrittlement. %
Is the upper limit. The lower limit is not particularly limited, but is preferably 0.001 wt% or more from the viewpoint of not increasing the steelmaking cost. Further, by coexisting P with B, it becomes possible to measure high strength while maintaining high workability without embrittlement of the steel sheet at a relatively small amount of addition and at low cost. Next, in the hot rolling step, prior to the rough rolling, the steel slab adjusted to the above-mentioned components is heated to the Ac 3 transformation point or higher. Specifically, the slab is heated to about 1200 ° C. to reduce the deformation resistance of the steel sheet in the subsequent rough rolling. The slab cast by continuous casting or the like may be directly subjected to a rough rolling process before cooling without heating the slab again. Thereafter, after rough rolling, descaling with high-pressure water is performed prior to finish rolling. As a result, the scale generated before the rough rolling is removed. Here, the descaling using high-pressure water is used in order to almost completely remove the oxide scale generated and grown up to the rough rolling. The reason why high-pressure water is used is that scale can be efficiently removed without leaving any scratches on the steel sheet surface. The discharge pressure of the high-pressure water needs to be 300 kgf / cm 2 or more. This is because, it is less than 300 kgf / cm 2,
The scale removal is not complete, resulting in finish rolling,
This is because the scale on the hot-rolled steel sheet after winding becomes thick and non-uniform. Therefore, by reducing the thickness of the oxidized scale by performing descaling with high-pressure water, the surface of the hot-rolled steel sheet can be made beautiful. By reducing in a heating furnace of a hot-dip galvanizing apparatus, a beautiful plated steel sheet with good plating adhesion can be manufactured. On the other hand, from hot-rolled steel sheets with a thick oxide scale and poor sheet surface properties manufactured without using high-pressure water descaling, produce beautiful plated steel sheets with good plating adhesion without descaling by pickling. It is difficult. In the next finish rolling step, rolling at a rolling reduction of 60% or more below the Ar 3 transformation point is performed under lubrication, and the final finish rolling temperature is 800 ° C. or less. In other words, by setting the rolling reduction under the Ar 3 transformation point to 60% or more under lubrication, hot-rolled steel sheets after cooling can incorporate processing strain with low shear stress, and then can be reduced in a reduction furnace. At the time of recrystallization, a structure advantageous for imparting high workability appears. Therefore, workability can be ensured without performing cold rolling. The reason why the final finishing temperature is set to 800 ° C. or less is to suppress the growth of the iron oxide layer immediately after hot rolling. Specifically, the thickness of the iron oxide layer in the hot-rolled sheet is set at 4 ° C.
It can be suppressed to about μm or less. After the hot-rolled steel sheet is wound up, it is reduced at the same time as recrystallization annealing in an annealing furnace of a continuous hot-dip coating apparatus, and then plated. That is, in the continuous hot-dip coating apparatus, the iron oxide layer is reduced in the annealing furnace, and recrystallization is generated in the steel sheet. Here, in order to carry out both reactions quickly, it is important to adjust the temperature of the steel sheet to 750 ° C. or higher.
s If the transformation point is exceeded, the structure is randomized and a structure advantageous for workability cannot be obtained. The reduction of the iron oxide layer must be carried out at least 50%, preferably less than 100%. If the reduction ratio is less than 50%, the iron oxide layer remains largely, and peels off when subjected to impact or processing, which is not practical. On the other hand, when the content becomes 100%, the occlusion of hydrogen atoms starts, and if this increases, hydrogen is discharged from the steel after plating and loses its place to go, and vaporizes at the plating interface and progresses to local plating exfoliation. In particular, when Si or Mn is contained at a high concentration, 100% reduction causes surface concentration due to oxidation of Si or Mn, which impairs wettability in the subsequent plating process and induces non-plating defects. Will do. The atmosphere is a general reducing gas of 3
Although N 2 containing at least H 2 % can be used, the H 2 concentration is preferably at least 7% for efficient reduction. The steel sheet which has been subjected to the predetermined reduction and recrystallization annealing is cooled to a plating bath temperature and then introduced into a plating bath for plating. For example, as a zinc-based plating bath, in addition to Zn and Fe, for the purpose of improving various performances,
It is possible to contain Al, Mg, Mn, Ni, Co, Cr, Si, Pb, Sb, Bi, Sn and the like singly or in combination. Finally, the steel plate plated by immersion is
After adjusting to the required basis weight of 20 to 250 g / m 2 by gas wiping or the like, the product is cooled by air cooling, air cooling, or water cooling, and then subjected to leveler or temper rolling as necessary to produce the product. . Further, in order to improve the corrosion resistance and the like, it is possible to perform a chromate treatment, a phosphate treatment or the like after cooling or temper rolling, and it is also effective to further paint. Similarly, a lubrication treatment can be performed as a post-treatment. On the other hand, in a use of assembling a steel plate by spot resistance welding or the like, plating is performed in a molten Zn bath containing 0.1 to 0.2 wt% of Al, and after adjusting the basis weight, heat alloying is performed. It is valid. The basis weight here is 20g
/ M corrosion is insufficient less than 3, since the plating layer is easily peeled off during working of the bending and squeezing more than 80 g / m 3,
It is preferably in the range of 20 to 80 g / m 3 . Similarly, the Fe content in the plating is 7 to 12 wt%. Because 7wt
%, The unalloyed pure Zn layer remains on the plating surface, impairing spot resistance weldability, and the pure Zn layer is easily eluted from flaws after painting. Is rapidly embrittled, and peeling of plating becomes remarkable during processing. Although the description has been given mainly of the hot-dip galvanized steel sheet, the present invention is not limited to the hot-dip galvanized steel sheet, but is similarly applicable to other hot-dip galvanized steel sheets or electroplated steel sheets. For example, 55% Al-Zn plating, Al plating, Pb
Suitable for plated steel plates such as plating, Sn plating or Zn-Ni plating. In any case, it is sufficient to perform plating after a reduction treatment of 50% or more and less than 100%, and a steel sheet having excellent plating characteristics can be obtained without being restricted by a plating type. In a hot-dip galvanizing line, it is usual to arrange a plating tank continuously to an annealing furnace, so that it is particularly suitable for the present invention. EXAMPLE A slab having a steel composition shown in Table 1 was heated to 1200 ° C., and then hot-rolled according to Table 2 to obtain a hot-rolled sheet having a thickness of 0.8 mm. In finish rolling, lubrication with mineral oil was performed.
For comparison, according to the conventional method, pickling was performed after hot rolling and then cold rolling was performed under the conditions shown in Table 3 to produce a cold rolled sheet. Next, the hot-rolled sheet was cut into a test piece of 60 × 200 mm, washed with acetone, subjected to reduction treatment and recrystallization annealing with a vertical molten metal plating simulator, and then zinc-based plating was performed. Table 2 shows the hot rolling and annealing conditions and the iron oxide layer thickness of the hot-rolled sheet, and Table 4 shows the plating conditions. With respect to the plated steel sheet thus obtained, the reduction ratio of the iron oxide layer was measured, and the mechanical properties and plating adhesion were evaluated. Table 2 shows the reduction ratio and mechanical properties of the iron oxide layer, and Table 4 shows the evaluation results of the plating adhesion. Here, the reduction rate of the iron oxide layer was determined in advance by separately calculating the amount of iron oxide dissolved and removed by pickling, calculating the amount of reduced iron oxide from the weight reduced by reduction annealing, and determining the ratio thereof. The plating adhesion was evaluated by a ball impact test and a 180 ° outer bending test. That is, in the ball impact test, a hammer having a hemispherical convex surface having a diameter of 1/2 inch was applied to the back side of the test surface, and a hemispherical concave saucer was placed on the test surface side, and a 2 kg weight was applied to a 70 cm. The cell was dropped from the height of the test piece, the hitting core was hit, the cellophane adhesive tape was attached to the protruding test surface, and then peeled off, and the surface of the plated steel sheet was observed. In the 180-degree outer bending test, a vinyl adhesive tape was applied to the test surface in advance, a 0.9 mm steel plate was put in the spacer, and the test surface was bent 180 degrees with the hydraulic press to the outside, and then flattened again. After bending back, the vinyl tape was peeled off, and the surface of the plated steel sheet was observed. [Table 1] [Table 2] [Table 3] [Table 4] The alloyed hot-dip Zn plating was evaluated in the same manner. That is, a test piece similar to the above was prepared using a slab having the steel composition shown in Table 1. Here, the hot rolling conditions and the annealing conditions before plating are as shown in Table 5, the pickling and cold rolling conditions according to the conventional method are as shown in Table 6, and the alloyed zinc plating conditions are as shown in Table 7. . The mechanical properties and plating adhesion of the plated steel sheet thus obtained were evaluated. The results of each evaluation are also shown in Tables 5 to 7, respectively. The plating adhesion was measured by a 90-degree inner bending test and a 180-degree outer bending test. That is, a vinyl adhesive tape is applied to the test surface in advance, and in the 90-degree internal bending test,
After bending at 90 degrees with the test surface inside along a 1 mm radius die, and then bending it back to a flat state again, in the 180 degree outer bending test, put a 0.9 mm steel plate in the spacer and use a hydraulic press. After bending by 180 degrees with the test surface outside, the plate was bent back to a flat state again, the vinyl tape was peeled off, and the surface of the plated steel sheet was observed. [Table 5] [Table 6] [Table 7] According to the present invention, a plated steel sheet obtained by plating without removing the iron oxide layer can provide both excellent workability and plating adhesion.
A plated steel sheet can be provided at low cost.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI C22C 38/00 301 C22C 38/00 301T 38/14 38/14 C23C 2/40 C23C 2/40 (56)参考文献 特開 平6−212385(JP,A) 特開 平5−98354(JP,A) 特開 平4−127912(JP,A) (58)調査した分野(Int.Cl.7,DB名) C23C 2/02 - 2/40 B21B 3/00 C21D 1/76 C21D 8/02 C21D 9/46 C22C 38/00 301 C22C 38/14 ──────────────────────────────────────────────────続 き Continuation of front page (51) Int.Cl. 7 Identification code FI C22C 38/00 301 C22C 38/00 301T 38/14 38/14 C23C 2/40 C23C 2/40 (56) References 6-212385 (JP, A) JP-A-5-98354 (JP, A) JP-A-4-127912 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C23C 2/02 -2/40 B21B 3/00 C21D 1/76 C21D 8/02 C21D 9/46 C22C 38/00 301 C22C 38/14

Claims (1)

(57)【特許請求の範囲】 【請求項1】 C:0.02wt%以下、Si:2wt%以下、M
n:3wt%以下、Ti:0.01〜0.2 wt%、Nb:0.001 〜0.2
wt%、B:0.0001〜0.003 wt%、N:0.01wt%以下、
P:0.2 wt%以下およびS:0.05wt%以下を含み、かつ
C、Ti、NbおよびNの各含有量[C]、[Ti]、[Nb]
および[N]が下記式を満足する成分組成の鋼スラブ
を、Ac3 変態点以上の温度域に加熱し熱間粗圧延を施
し、次いで吐出圧が300 kg/cm2 以上の高圧水によるデ
スケーリング処理を行った後、500 ℃以上Ar3 変態点以
下の温度域での圧下率が60%以上かつ終了温度が800 ℃
以下の熱間仕上げ圧延を潤滑下に行い、巻き取り後、連
続式めっき設備の焼鈍炉にて750 ℃以上Acs 変態点以下
の鋼板温度で鋼板表面の酸化鉄層の50%以上を還元した
のち、めっきを施すことを特徴とする高加工性めっき鋼
板の製造方法。 記 [C]/12+[N]/14≦[Ti]/48+[Nb]/93
(57) [Claims] [Claim 1] C: 0.02% by weight or less, Si: 2% by weight or less, M
n: 3 wt% or less, Ti: 0.01 to 0.2 wt%, Nb: 0.001 to 0.2
wt%, B: 0.0001 to 0.003 wt%, N: 0.01 wt% or less,
P: 0.2 wt% or less and S: 0.05 wt% or less, and the respective contents of C, Ti, Nb and N [C], [Ti], [Nb]
And a steel slab having a component composition in which [N] satisfies the following formula is subjected to hot rough rolling by heating to a temperature range not lower than the Ac 3 transformation point, and then depressurized by high-pressure water having a discharge pressure of 300 kg / cm 2 or more. After performing the scaling process, the rolling reduction in the temperature range between 500 ° C and the Ar 3 transformation point is 60% or more and the end temperature is 800 ° C.
The following hot finish rolling is performed under lubrication, and after winding, after reducing 50% or more of the iron oxide layer on the steel sheet surface at a steel sheet temperature of 750 ° C or higher and the Acs transformation point or lower in an annealing furnace of a continuous plating facility. A method for producing a highly workable plated steel sheet, characterized by applying plating. [C] / 12 + [N] / 14 ≦ [Ti] / 48 + [Nb] / 93
JP13787696A 1996-05-31 1996-05-31 Manufacturing method of high workability plated steel sheet Expired - Fee Related JP3435986B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP13787696A JP3435986B2 (en) 1996-05-31 1996-05-31 Manufacturing method of high workability plated steel sheet
TW86117851A TW454039B (en) 1996-05-31 1997-11-27 Manufacturing method of plated steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13787696A JP3435986B2 (en) 1996-05-31 1996-05-31 Manufacturing method of high workability plated steel sheet

Publications (2)

Publication Number Publication Date
JPH09316617A JPH09316617A (en) 1997-12-09
JP3435986B2 true JP3435986B2 (en) 2003-08-11

Family

ID=15208768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13787696A Expired - Fee Related JP3435986B2 (en) 1996-05-31 1996-05-31 Manufacturing method of high workability plated steel sheet

Country Status (1)

Country Link
JP (1) JP3435986B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6699338B2 (en) 1999-04-08 2004-03-02 Jfe Steel Corporation Method of manufacturing corrosion resistant steel materials
EP1094126A4 (en) * 1999-04-08 2003-03-05 Kawasaki Steel Co Atmospheric corrosion resistant steel product
JP5495921B2 (en) * 2010-04-23 2014-05-21 日新製鋼株式会社 Manufacturing method of hot dip galvanized high strength steel sheet
JP6266435B2 (en) 2014-05-20 2018-01-24 株式会社日立製作所 Rotating electric machine
WO2016170794A1 (en) * 2015-04-21 2016-10-27 Jfeスチール株式会社 Alloyed hot-dip galvanized sheet, production method therefor and alloyed hot-dip galvanized steel sheet

Also Published As

Publication number Publication date
JPH09316617A (en) 1997-12-09

Similar Documents

Publication Publication Date Title
JP3527092B2 (en) High-strength galvannealed steel sheet with good workability and method for producing the same
KR20010023573A (en) High strength thin steel sheet, high strength galvannealed steel sheet and manufacturing method thereof
JP3598087B2 (en) High-strength galvannealed steel sheet with excellent workability and method for producing the same
JP2576894B2 (en) Hot-dip galvanized high-tensile cold-rolled steel sheet excellent in press formability and method for producing the same
US6068887A (en) Process for producing plated steel sheet
JPH06256903A (en) Galvannealed steel sheet excellent in press workability and plating peeling resistance
JP4344074B2 (en) Anti-rust steel sheet for fuel tank with excellent secondary workability and press workability, and its manufacturing method
JP3435986B2 (en) Manufacturing method of high workability plated steel sheet
JP3023875B2 (en) Method for producing hot-dip galvanized steel sheet with excellent surface properties
JP3185530B2 (en) Surface-treated steel sheet for deep drawing excellent in corrosion resistance and method for producing the same
JP3347152B2 (en) Method for producing cold-rolled high-strength hot-dip galvanized steel sheet with excellent resistance to pitting corrosion
JPH07286240A (en) High corrosion resistant surface treated steel sheet excellent in workability and its production
JP2565054B2 (en) Method for producing galvannealed steel sheet with excellent deep drawability and plating adhesion
JP2956361B2 (en) Manufacturing method of alloyed hot-dip galvanized steel sheet for strong working with excellent plating adhesion
JP3598086B2 (en) Method for producing high-strength galvannealed steel sheet with excellent workability
JP3475560B2 (en) High tensile alloyed hot-dip galvanized steel sheet excellent in plating characteristics and secondary work brittleness resistance and method for producing the same
JP3497201B2 (en) Manufacturing method of high strength hot-dip galvanized steel sheet for deep drawing with excellent surface properties
JP3399748B2 (en) Cold rolled steel sheet with excellent press formability and chemical conversion treatment and alloyed hot-dip galvanized steel sheet with excellent press workability and powdering resistance
JP3016333B2 (en) Cold drawn steel sheet for deep drawing excellent in corrosion resistance and method for producing the same
JP3716439B2 (en) Manufacturing method of high-tensile alloyed hot-dip galvanized steel sheet with excellent plating characteristics
JP2003105492A (en) High strength and high ductility galvanized steel sheet having excellent corrosion resistance, and production method therefor
JP2812769B2 (en) Manufacturing method of alloyed hot-dip galvanized cold rolled steel sheet for ultra deep drawing with excellent powdering resistance
JP3146839B2 (en) High corrosion resistant cold rolled steel sheet excellent in workability and method for producing the same
JP3279063B2 (en) Surface-treated steel sheet which is thin and excellent in corrosion resistance and method for producing the same
JPH06240367A (en) Production of hot dip galvanized steel sheet for deep drawing excellent in coating/baking hardenability and corrosion resistance

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080606

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090606

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100606

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120606

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120606

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130606

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees