JP3497201B2 - Manufacturing method of high strength hot-dip galvanized steel sheet for deep drawing with excellent surface properties - Google Patents

Manufacturing method of high strength hot-dip galvanized steel sheet for deep drawing with excellent surface properties

Info

Publication number
JP3497201B2
JP3497201B2 JP11464493A JP11464493A JP3497201B2 JP 3497201 B2 JP3497201 B2 JP 3497201B2 JP 11464493 A JP11464493 A JP 11464493A JP 11464493 A JP11464493 A JP 11464493A JP 3497201 B2 JP3497201 B2 JP 3497201B2
Authority
JP
Japan
Prior art keywords
weight
hot
steel sheet
temperature
dip galvanized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11464493A
Other languages
Japanese (ja)
Other versions
JPH06330181A (en
Inventor
孝 松元
卓巳 松本
征一 浜中
照夫 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP11464493A priority Critical patent/JP3497201B2/en
Publication of JPH06330181A publication Critical patent/JPH06330181A/en
Application granted granted Critical
Publication of JP3497201B2 publication Critical patent/JP3497201B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、自動車内板等に使用さ
れ、表面性状及び深絞り性に優れた高強度溶融亜鉛めっ
き鋼板を製造する方法に関する。 【0002】 【従来の技術】自動車用鋼板として、安全性の向上,車
体重量の軽減,素材使用量の節減等から高強度鋼板が広
く使用されるようになってきている。自動車用高強度鋼
板のなかでも、たとえば寒冷期に道路の融雪剤に含まれ
る塩類による腐食を防止するため、耐食性を一層向上さ
せることが要求される。鋼板の耐食性は、Cu,Cr等
の合金元素を鋼中に添加する方法,鋼板表面に金属めっ
きを施す方法等で向上する。しかし、合金元素を添加す
る方法では、塩害等の過酷な腐食雰囲気に曝される使用
環境では所与の効果を期待できない。したがって、この
ような過酷な腐食環境に耐える耐食性を付与するため、
金属めっき、特に厚目付けが容易に且つ安価に行われる
溶融亜鉛めっきが通常採用されている。 【0003】 【発明が解決しようとする課題】塗膜密着性及び溶接性
が要求される用途では、溶融亜鉛めっき後に合金化処理
を施すことが一般的に採用されている。しかし、合金化
溶融亜鉛めっき鋼板は、プレス加工性、特に深絞り加工
性が劣っており、高度の成形加工を施すことができな
い。この点、耐食性に加えて加工性も優れためっき鋼板
を大量生産できる方法の確立が望まれている。また、高
強度合金化溶融亜鉛めっき鋼板は、軟質鋼板に比較して
高強度を確保するため、Si,Mn,P等の強化元素を
多量に含有している。強化元素の増量は、強度の向上に
有効であるが、溶融亜鉛めっき性に悪影響を与える。特
に、Si,Mn等の固溶強化元素を含有している鋼板で
は、ピンホール,不めっき等のめっき欠陥やスケール模
様の表面肌荒れ等の欠陥が製品表面に発生し、表面品質
を劣化させ易い。その結果、外観不良及び耐食性不良を
原因として不合格になる割合が多く、製品の歩留りが高
い水準にあるものとはいえない現状である。 【0004】本発明者等は、高強度合金化溶融亜鉛めっ
き鋼板の各種表面性状を改善するため、合金成分,熱延
条件,めっき条件等を種々調査・研究した。その過程
で、極低炭素Ti,Nb複合添加鋼にMn,P,B等の
固溶強化元素を複合添加し、制御された条件下での熱間
圧延及び焼鈍を施した後、溶融亜鉛めっきし、450〜
600℃の温度域に1秒以上保持するとき、欠陥の少な
い合金化溶融亜鉛めっき層が形成されることを見い出
し、特開平2−163346号公報として紹介した。得
られた高強度合金化溶融亜鉛めっき鋼板は、加工性にも
優れ、プレス加工時に二次加工割れを発生することもな
い。 【0005】更に、特開平4−66653号公報では、
同様な組成をもつ鋼板を高めの仕上げ温度及び低めの巻
取り温度で熱間圧延した後、70%以上の高圧延率で冷
間加工し、次いで溶融めっき槽内で高温還元焼鈍すると
き、更に加工性の向上が図られることを紹介した。本発
明は、このような高強度溶融亜鉛めっき鋼板の加工性及
び耐食性に関する継続した調査・研究の過程で案出され
たものであり、溶融亜鉛めっき設備での温度管理及び雰
囲気制御によって、密着性に優れた溶融亜鉛めっき層を
鋼板表面に形成し、加工性及び耐食性が一層優れた高強
度溶融亜鉛めっき鋼板を得ることを目的とする。 【0006】 【課題を解決するための手段】本発明の製造方法は、そ
の目的を達成するため、C:0.001〜0.010重
量%,Si:2.0重量%以下,Mn:0.5〜3.0
重量%,P:0.03〜0.30重量%,S:0.01
5重量%以下,酸可溶Al:0.005〜0.100重
量%,N:0.007重量%以下,B:0.0002〜
0.0010重量%,Ti:0.10重量%以下及びN
b:0.01〜0.10重量%を含有し、且つTi%/
48≧C%/12+N%/14+S%/32を満足する
Ti−Nb複合含有極低炭素鋼スラブを1150〜12
80℃に加熱した後、Ar3変態点以上1000℃以下
の温度で熱間圧延を終了し、400〜600℃で巻き取
り、冷間圧延後に連続溶融亜鉛めっきラインに通板し、
2濃度40体積%以上の雰囲気において800〜90
0℃の温度範囲で還元加熱し、その後の冷却過程で亜鉛
めっき浴に浸漬する板温を500〜650℃の温度範囲
に制御し、次いで溶融亜鉛めっきすることを特徴とす
る。 【0007】次いで、本発明で規定した各種条件を説明
する。 [素材鋼の成分] C: 本発明で使用される鋼材に含まれているCは、T
iC,NbC等の炭窒化物として固定される。C含有量
が低いほど、深絞り性や延性に有利に働き、固定化元素
として使用するTiやNb等の含有量も下げることがで
きる。この点で、C含有量の上限を0.010重量%に
設定し、C含有量に応じたTi,Nb等の消費量増加を
抑え、鋼材コストの上昇を回避する。しかし、0.00
1重量%未満のC含有量は、製鋼工程において過度の脱
炭精練を必要とし、製造コストを上昇させる原因とな
る。したがって、本発明においては、0.001〜0.
010重量%の範囲にC含有量を定めた。 【0008】Si: 鋼板の強度を向上させる上で有効
な合金元素である。しかし、含有量が2.0重量%を超
えると極端にめっき層の密着性が低下することから、S
i含有量の上限を2.0重量%に規定した。 Mn: Siと同様に鋼板の強度を向上させる有効な合
金元素であり、含有量0.5重量%以上でMnの効果が
顕著になる。しかし、3.0重量%を超える多量のMn
が含まれると、A3 変態点が大きく低下し、焼鈍時に金
属組織のα→γ変態が促進される。その結果、再結晶過
程で形成された{111}方位の集合組織が損なわれ、
ランクフォード値(以下、r値という)を低下させる。
したがって、必要とする加工性を確保するため、Mn含
有量の上限を3.0重量%に規定した。 【0009】P: 鋼板の強度向上に有効に働く合金元
素であり、0.03重量%以上でPの効果が顕著にな
る。しかし、0.30重量%を超える多量のPが含有さ
れると、プレス加工時に二次加工割れが著しく発生する
と共に、連続式溶融亜鉛めっき装置内における合金化も
困難になる。 S: Mnと結合して非金属介在物を形成し、プレス加
工時に加工割れ等の欠陥を発生させる有害元素である。
また、TiSを形成することから、Cの固定に必要なT
iの含有量を増大させ、鋼材コストを上昇させる原因に
もなる。したがって、本発明においては、S含有量の上
限を0.015重量%に規定した。 Al: 脱酸剤として添加される元素であり、0.00
5重量%以上の添加が必要とされる。しかし、0.10
重量%を超える多量のAlを含有させると、Al23
等の介在物が増加し、加工性及び表面品質を劣化させ
る。 【0010】N: 鋼中に不可避的に含まれる不純物元
素であり、TiNとして固定されることによりr値が向
上する。N含有量が0.007重量%を超えるようにな
ると、Nの安定化に必要なTi量が増大し、鋼材コスト
の上昇を招く。したがって、本発明では、N含有量の上
限を0.007重量%に規定した。 B: Pよりも優先的に結晶粒界に偏析し、P起因の粒
界脆化によってプレス成形性が劣化することを防止す
る。Pの粒界偏析を抑制し、良好なプレス成形性を確保
するためには、0.0002重量%以上のBを含むこと
が必要である。しかし、0.0010重量%を超えて多
量のBが含まれると、結晶粒の成長性が阻害され、鋼板
のr値及び延性が低下する。 【0011】Ti: S,N及びCを固定すると共に、
{111}方位の再結晶集合組織を発達させる上で、有
効な合金元素である。この作用を得るために、鋼材に含
まれているS,N及びCの当量、すなわち(48/1
2)×C%+(48/14)×N%+(48/32)×
S%以上の量でTiを含有させることが必要である。し
かし、0.10重量%以上では、Tiの増量に見合った
効果が得られず、却って鋼材コストを上昇させる原因と
なる。 Nb: 安定なTiの炭窒化物を核とし、熱間圧延時に
粗大なTi,Nbの複合炭化物を生成する。複合炭化物
の生成により、{111}方位の再結晶集合組織が一層
発達し易くなり、絞り性やr値の面内異方性が改善され
る。このようなNbの作用は、含有量が0.01重量%
以上で顕著となり、0.10重量%で飽和する。 【0012】[製造条件]転炉,電気炉等において各合
金元素の含有量が調整された鋼材は、スラブに連続鋳造
される。スラブは、そのまま冷却されることなく直送さ
れ、或いは一旦冷却した鋳片を再加熱した後で、熱間圧
延に供される。熱延材は、冷間圧延工程を経て薄鋼板と
なる。 熱延条件:本発明で規定した組成をもつ鋼材は、熱延工
程におけるスラブ加熱条件を制御することによって、非
常に優れた深絞り性を呈する鋼板になる。すなわち、1
280℃未満の温度まで再加熱して熱間圧延するとき、
熱延材中の析出物及びその後の冷延焼鈍時における析出
物が調整され、深絞り性に有利な集合組織の形成が促さ
れる。熱延開始温度は、必要とする熱延仕上げ温度を確
保するために、下限が1150℃に設定される。 【0013】熱間圧延は、{111}方位の再結晶集合
組織を成長させるために、Ar3 変態点以上に熱延仕上
げ温度を設定する。熱延仕上げ温度がAr3 変態点未満
になると、{111}方位の再結晶集合組織に悪影響を
与える熱延集合組織が生成し易くなる。熱延仕上げ温度
の上限は、1000℃に設定される。熱延仕上げ温度が
1000℃を超えると、熱延材の結晶粒径が大きくな
り、{111}方位をもった再結晶集合組織の核発生率
が冷間圧延時に減少する。その結果、焼鈍後のr値が低
下する。熱間圧延された板材は、400〜600℃の温
度範囲で巻き取られる。巻取り温度が600℃よりも高
いと、熱延材の表面に生成したスケールの酸洗性が低下
する。逆に400℃を下回る巻取り温度では、巻き取ら
れた鋼板に形状不良等の欠陥が発生し易くなる。 【0014】溶融亜鉛めっき条件: 熱延材は、通常の酸洗で鋼板表面を清浄にした後、冷間
圧延される。得られた冷延板は、インライン焼鈍型連続
式溶融亜鉛めっき装置に導入される。ライン内の雰囲気
は、H2濃度30体積%以上の還元性雰囲気に維持され
る。この還元性雰囲気のH2濃度30体積%以上は、鋼
板表面に形成される溶融亜鉛めっき層にピンホール,不
めっき等の表面性状欠陥を発生させない上で重要な因子
である。H2濃度が30体積%未満では、図1に示して
いるように還元加熱温度及び亜鉛めっき浴への鋼板浸漬
温度(以下、これをインレット温度という)等の条件を
変化させても、ピンホール,不めっき等の欠陥発生が避
けられない。なお、本出願では、H2濃度40体積%以
上の雰囲気を発明特定要件として請求項に記載する。 【0015】導入された冷延板は、還元性雰囲気中で8
00〜900℃の温度範囲で加熱焼鈍される。還元加熱
温度が800℃を下回ると、冷延板を溶融亜鉛めっき浴
に導入したときに鋼板表面に対する溶融亜鉛の濡れ付着
性が低下し、ピンホール,不めっき等の欠陥が解消され
ない。溶融亜鉛の濡れ付着性低下は、固溶強化元素S
i,Mnの酸化皮膜が鋼板表面に厚く生成し、溶融亜鉛
めっき処理時に厚い酸化皮膜が残存していることに由来
するものと推察される。他方、900℃を超える還元加
熱温度では、{111}方位の再結晶集合組織がα→γ
変態に伴って消失し、r値が劣化する。このようなこと
から、還元加熱焼鈍は、800〜900℃の温度範囲で
行うことが必要である。冷延板は、溶融亜鉛めっき浴に
導入される直前で、500〜650℃のインレット温度
に維持することが必要である。500℃未満のインレッ
ト温度では、図2に示すように還元加熱温度を変化させ
ても溶融亜鉛濡れ付着力が低下し、ピンホール,不めっ
き等の欠陥が鋼板表面に形成されることが避けられな
い。650℃を超えるインレット温度では、連続式溶融
亜鉛めっきラインにおいて表面傷が発生し易くなり、亜
鉛めっき浴の温度上昇に伴った亜鉛ヒューム等の放散が
活発化し操業上困難になる。 【0016】 【実施例】所定の組成に調整した溶鋼を連続鋳造し、ス
ラブを得た。表1は本発明に従った組成をもつ鋼材であ
り、表2は比較用の鋼材である。各種鋼材に対し、それ
ぞれ表3及び表4に示した条件下の熱間圧延を施し、板
厚3.2mmの熱延板を製造した。熱延板は、酸洗工程
及び冷間圧延工程を経て板厚0.8mmの冷延鋼板とし
た後、表3及び表4に示した条件下で連続式溶融亜鉛め
っきラインで還元焼鈍し、片面当り60g/m2 の目付
け量で溶融亜鉛めっきを施した。 【0017】 【表1】 【0018】 【表2】【0019】 【表3】【0020】 【表4】【0021】溶融亜鉛めっきされた鋼板に対し、インラ
インでめっき層を合金化処理した後、伸び率0.8%の
スキンパス圧延を行った。得られた溶融亜鉛めっき鋼板
は、表5及び表6に示す引張り特性,耐二次加工脆性及
び表面性状をもっていた。引張り特性の調査には、JI
S Z2201に規定されている5号試験片を使用し
た。耐二次加工脆性は、図3に示す手順で調査した。す
なわち、直径90mmに打ち抜いた素材を使用し、絞り
比2.73の三段絞りで直径33mmの平底円筒カップ
に成形した。カップ底部から35mmの位置で平底円筒
カップを切断し、円筒成形されたカップ上部から先端角
60度のポンチを徐々に押し込み、カップを圧潰した。
そして、脆性割れが発生しない最低温度を縦割れ限界温
度として測定し、この温度に基づいて耐二次加工脆性を
評価した。めっき鋼板の表面性状は、肌荒れ,欠陥発生
等に関して鋼板表面を観察し、観察結果を相対評価し
た。 【0022】 【表5】【0023】 【表6】【0024】表6にみられるように、試験番号B1〜B
4の溶融亜鉛めっき鋼板は、本発明で規定した素材の成
分に関する要件を満足し、390N/mm2 級以上の高
強度を示し、r値も1.3以上と高くなっている。しか
し、溶融亜鉛めっき条件が本発明で規定した範囲を外れ
ることから、表面肌荒れやピンホール,不めっき等の欠
陥が発生し、表面性状に劣るものであった。試験番号B
5〜B7の溶融亜鉛めっき鋼板は、Si,C及びMn含
有量の何れかが本発明で規定した範囲を外れ、溶融亜鉛
めっき条件も本発明で規定した範囲を外れることから、
r値や靭性に劣り、表面肌荒れやピンホール,不めっき
等の表面性状に問題があった。 【0025】P含有量が過剰な試験番号8及びB含有量
が過剰な試験番号B9溶融亜鉛めっき鋼板は、390N
/mm2 以上の高強度及び1.3以上のr値を示してい
るものの、耐二次加工脆性に劣っていた。また、試験番
号10の溶融亜鉛めっき鋼板は、熱延条件及びめっき条
件共に本発明で規定した要件を満足するものの、Bを含
んでいないことから縦割れ限界温度が大幅に高くなって
おり、耐二次加工脆性に劣っていた。同様な傾向は、P
を過剰に含む試験番号8でもみられた。これに対し、本
発明に従ったAグループの溶融亜鉛めっき鋼板は、表5
に示されているように大きな延性の低下もなく、390
N/mm2 以上の高強度及び1.3以上のr値を示して
いる。また、耐二次加工脆性も、縦割れ限界温度で−4
0℃以下と良好であり、しかも表面肌荒れやピンホー
ル,不めっき等の欠陥がない良好な表面品質をもってい
た。 【0026】表5と表6との対比から明らかなように、
優れた加工性及び表面品質の双方を兼ね備えさせるため
には、素材の成分,製造条件及び溶融亜鉛めっき条件を
本発明で規定した範囲に維持することが必要である。そ
して、素材成分及び溶融亜鉛めっき条件の何れかが条件
を満足されないと、加工性及び/又は表面品質に劣った
めっき鋼板となる。また、表面性状が良好な領域を、還
元性雰囲気中のH2 濃度及び還元加熱温度との関係で調
べたところ図1に示す関係、インレット温度と還元加熱
温度との関係で調べたところ図2に示す関係がそれぞれ
成立していた。図1及び図2から、良好な表面品質をも
つ溶融亜鉛めっき層を鋼板表面に形成するためには、H
2 濃度,還元加熱温度及びインレット温度との間に特定
の関係があることが判る。 【0027】 【発明の効果】以上に説明したように、本発明において
は、素材の組成,製造条件及び溶融亜鉛めっき条件を特
定された条件下で組み合わせることにより、表面品質が
良好な溶融亜鉛めっき層をもち、加工性及び耐食性に優
れた高強度溶融亜鉛めっき鋼板を製造している。得られ
た高強度溶融亜鉛めっき鋼板は、その優れた性質を活か
し、安全性,軽量化等を図った自動車用鋼板を始めとし
て広範な分野で使用される。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a high-strength hot-dip galvanized steel sheet having excellent surface properties and deep drawability, which is used for an automobile inner plate or the like. 2. Description of the Related Art High-strength steel sheets have been widely used as automotive steel sheets because of their improved safety, reduced vehicle body weight, and reduced material usage. Among high-strength steel sheets for automobiles, it is required to further improve corrosion resistance in order to prevent corrosion caused by salts contained in a snow melting agent for roads, for example, in a cold season. The corrosion resistance of a steel sheet is improved by a method of adding alloy elements such as Cu and Cr to the steel, a method of applying metal plating to the surface of the steel sheet, and the like. However, the method of adding an alloy element cannot expect a given effect in a use environment exposed to a severe corrosive atmosphere such as salt damage. Therefore, in order to provide corrosion resistance to withstand such severe corrosive environment,
Metal plating, particularly hot-dip galvanizing, which can be easily and inexpensively thickened, is usually employed. [0003] In applications where coating film adhesion and weldability are required, it is generally employed to perform an alloying treatment after galvanizing. However, the alloyed hot-dip galvanized steel sheet is inferior in press workability, particularly deep drawability, and cannot be subjected to a high degree of forming work. In this regard, it is desired to establish a method for mass-producing plated steel sheets having excellent workability in addition to corrosion resistance. Further, a high-strength galvannealed steel sheet contains a large amount of strengthening elements such as Si, Mn, and P in order to ensure high strength as compared with a soft steel sheet. Increasing the amount of the strengthening element is effective for improving the strength, but adversely affects the hot-dip galvanizing property. In particular, in a steel sheet containing a solid solution strengthening element such as Si or Mn, plating defects such as pinholes and non-plating and defects such as surface roughness of the scale pattern are generated on the product surface, and the surface quality is easily deteriorated. . As a result, the rate of rejection due to poor appearance and poor corrosion resistance is high, and the current situation is that the yield of products cannot be said to be at a high level. The present inventors have conducted various investigations and researches on alloy components, hot rolling conditions, plating conditions, and the like in order to improve various surface properties of a high-strength galvannealed steel sheet. In the process, a solid solution strengthening element such as Mn, P, B, etc. is added to the ultra-low carbon Ti, Nb composite-added steel in a complex manner, subjected to hot rolling and annealing under controlled conditions, and then hot-dip galvanized. And 450-
It has been found that an alloyed hot-dip galvanized layer with few defects is formed when it is kept at a temperature of 600 ° C. for 1 second or more, and introduced as JP-A-2-163346. The resulting high-strength alloyed hot-dip galvanized steel sheet has excellent workability and does not cause secondary working cracks during press working. [0005] Further, in Japanese Patent Application Laid-Open No. 4-66653,
After hot rolling a steel sheet having a similar composition at a higher finishing temperature and a lower winding temperature, cold working at a high rolling rate of 70% or more, and then performing high-temperature reduction annealing in a hot-dip galvanizing tank, He introduced that workability can be improved. The present invention was devised in the course of continuous research and research on the workability and corrosion resistance of such high-strength hot-dip galvanized steel sheet. An object of the present invention is to form a hot-dip galvanized steel sheet having excellent workability and corrosion resistance by forming a hot-dip galvanized layer having excellent heat resistance on a steel sheet surface. According to the production method of the present invention, in order to achieve the object, C: 0.001 to 0.010% by weight, Si: 2.0% by weight or less, Mn: 0% or less. 0.5-3.0
% By weight, P: 0.03 to 0.30% by weight, S: 0.01
5 wt% or less, acid-soluble Al: 0.005 to 0.100 wt%, N: 0.007 wt% or less, B: 0.0002 to
0.0010% by weight, Ti: 0.10% by weight or less and N
b: contains 0.01 to 0.10% by weight, and contains Ti% /
The ultra-low carbon steel slab containing Ti-Nb composite satisfying 48 ≧ C% / 12 + N% / 14 + S% / 32 is 1150-12
After heating to 80 ° C., the hot rolling is completed at a temperature not lower than the Ar 3 transformation point and not higher than 1000 ° C., wound up at 400 to 600 ° C., passed through a continuous hot-dip galvanizing line after cold rolling,
800 to 90 in an atmosphere having a H 2 concentration of 40% by volume or more.
It is characterized by performing reduction heating in a temperature range of 0 ° C., controlling the temperature of a sheet immersed in a galvanizing bath in the subsequent cooling process to a temperature range of 500 to 650 ° C., and then performing hot dip galvanizing. Next, various conditions specified in the present invention will be described. [Components of Material Steel] C: C contained in the steel material used in the present invention is T
It is fixed as a carbonitride such as iC or NbC. The lower the C content, the more advantageous the deep drawability and ductility, and the lower the content of Ti, Nb, etc. used as the fixing element. In this regard, the upper limit of the C content is set to 0.010% by weight, thereby suppressing an increase in the consumption of Ti, Nb, etc. according to the C content, and avoiding an increase in steel material cost. However, 0.00
If the C content is less than 1% by weight, excessive decarburization scouring is required in the steel making process, which causes an increase in production cost. Therefore, in the present invention, 0.001-0.
The C content was determined in the range of 010% by weight. [0008] Si: an alloy element effective for improving the strength of a steel sheet. However, if the content exceeds 2.0% by weight, the adhesion of the plating layer is extremely reduced.
The upper limit of the i content was set to 2.0% by weight. Mn: Like Si, it is an effective alloying element for improving the strength of a steel sheet. When the content is 0.5% by weight or more, the effect of Mn becomes remarkable. However, a large amount of Mn exceeding 3.0% by weight
Is contained, the A 3 transformation point is greatly reduced, and the α → γ transformation of the metal structure is promoted during annealing. As a result, the texture of the {111} orientation formed during the recrystallization process is damaged,
Decrease the Rankford value (hereinafter referred to as r value).
Therefore, in order to secure required workability, the upper limit of the Mn content is set to 3.0% by weight. P: An alloying element that effectively works to improve the strength of the steel sheet. The effect of P becomes remarkable at 0.03% by weight or more. However, when a large amount of P exceeding 0.30% by weight is contained, secondary working cracks are remarkably generated during press working, and alloying in a continuous hot-dip galvanizing apparatus becomes difficult. S: A harmful element that forms nonmetallic inclusions by combining with Mn and generates defects such as work cracks during press working.
In addition, since TiS is formed, T required for fixing C is required.
It also increases the content of i and increases the cost of steel. Therefore, in the present invention, the upper limit of the S content is set to 0.015% by weight. Al: an element added as a deoxidizing agent, 0.00
An addition of 5% by weight or more is required. However, 0.10
When a large amount of Al is contained, the Al 2 O 3
Inclusions increase the workability and surface quality. N: An impurity element inevitably contained in steel, and the r value is improved by being fixed as TiN. When the N content exceeds 0.007% by weight, the amount of Ti necessary for stabilizing N increases, and the cost of steel material increases. Therefore, in the present invention, the upper limit of the N content is set to 0.007% by weight. B: Segregates preferentially at crystal grain boundaries over P to prevent press formability from deteriorating due to grain boundary embrittlement caused by P. In order to suppress grain boundary segregation of P and secure good press-formability, it is necessary to contain 0.0002% by weight or more of B. However, when a large amount of B is contained in excess of 0.0010% by weight, the growth of crystal grains is hindered, and the r value and ductility of the steel sheet decrease. Ti: While fixing S, N and C,
It is an effective alloying element for developing a {111} orientation recrystallization texture. In order to obtain this effect, the equivalents of S, N and C contained in the steel material, that is, (48/1
2) x C% + (48/14) x N% + (48/32) x
It is necessary to contain Ti in an amount of S% or more. However, if the content is 0.10% by weight or more, the effect corresponding to the increase of Ti cannot be obtained, which may rather increase the cost of steel material. Nb: Stable Ti carbonitride is used as a nucleus, and coarse composite carbide of Ti and Nb is generated during hot rolling. By the formation of the composite carbide, the recrystallization texture of the {111} orientation is more easily developed, and the drawability and the in-plane anisotropy of the r value are improved. The effect of such Nb is that the content is 0.01% by weight.
It becomes remarkable above, and saturates at 0.10% by weight. [Manufacturing conditions] In a converter, an electric furnace or the like, a steel material whose content of each alloy element is adjusted is continuously cast into a slab. The slab is directly sent without cooling, or is subjected to hot rolling after re-heating the once cooled slab. The hot-rolled material becomes a thin steel sheet through a cold rolling process. Hot rolling conditions: A steel material having the composition specified in the present invention becomes a steel sheet exhibiting extremely excellent deep drawability by controlling the slab heating conditions in the hot rolling process. That is, 1
When reheating to a temperature below 280 ° C and hot rolling,
The precipitate in the hot-rolled material and the precipitate during the subsequent cold rolling annealing are adjusted, and the formation of a texture advantageous for deep drawability is promoted. The lower limit of the hot rolling start temperature is set to 1150 ° C. in order to secure a required hot rolling finishing temperature. In the hot rolling, the hot rolling finishing temperature is set to be equal to or higher than the Ar 3 transformation point in order to grow a {111} orientation recrystallization texture. When the hot-rolling finishing temperature is lower than the Ar 3 transformation point, a hot-rolled texture that adversely affects the {111} orientation recrystallization texture is likely to be generated. The upper limit of the hot rolling finishing temperature is set to 1000 ° C. When the hot-rolling finishing temperature exceeds 1000 ° C., the crystal grain size of the hot-rolled material increases, and the nucleation rate of the recrystallized texture having a {111} orientation decreases during cold rolling. As a result, the r value after annealing decreases. The hot-rolled sheet material is wound up in a temperature range of 400 to 600 ° C. When the winding temperature is higher than 600 ° C., the pickling property of the scale formed on the surface of the hot-rolled material is reduced. Conversely, if the winding temperature is lower than 400 ° C., defects such as poor shape are likely to occur in the wound steel sheet. Hot-dip galvanizing conditions: The hot-rolled material is cold-rolled after the surface of the steel sheet is cleaned by ordinary pickling. The obtained cold rolled sheet is introduced into an in-line annealing type continuous hot-dip galvanizing apparatus. The atmosphere in the line is maintained as a reducing atmosphere having an H 2 concentration of 30% by volume or more. The H 2 concentration of 30% by volume or more in the reducing atmosphere is an important factor in preventing the occurrence of surface property defects such as pinholes and non-plating in the hot-dip galvanized layer formed on the surface of the steel sheet. When the H 2 concentration is less than 30% by volume, as shown in FIG. 1, even if the conditions such as the reduction heating temperature and the temperature at which the steel sheet is immersed in the galvanizing bath (hereinafter referred to as the inlet temperature) are changed, Inevitably, defects such as non-plating occur. In the present application, it is described in claim of H 2 concentration of 40% by volume or more of the atmosphere as an invention specific requirements. [0015] The introduced cold rolled sheet is placed in a reducing atmosphere for 8 hours.
Heat annealing is performed in a temperature range of 00 to 900 ° C. When the reduction heating temperature is lower than 800 ° C., when the cold-rolled sheet is introduced into the hot-dip galvanizing bath, the wet adhesion of the molten zinc to the steel sheet surface decreases, and defects such as pinholes and non-plating cannot be eliminated. The decrease in wet adhesion of molten zinc is caused by the solid solution strengthening element S
It is presumed that the oxide film of i and Mn is formed thickly on the surface of the steel sheet, and the thick oxide film remains during the hot-dip galvanizing treatment. On the other hand, at a reduction heating temperature exceeding 900 ° C., the recrystallization texture of the {111} orientation changes from α → γ
It disappears with the transformation, and the r value deteriorates. For this reason, it is necessary to perform the reduction heating annealing in a temperature range of 800 to 900 ° C. The cold-rolled sheet needs to be maintained at an inlet temperature of 500 to 650 ° C just before being introduced into the hot-dip galvanizing bath. At an inlet temperature of less than 500 ° C., as shown in FIG. 2, even if the reduction heating temperature is changed, the molten zinc wet adhesion decreases, and defects such as pinholes and non-plating are prevented from being formed on the steel sheet surface. Absent. At an inlet temperature exceeding 650 ° C., surface flaws are apt to occur in the continuous hot-dip galvanizing line, and the diffusion of zinc fume and the like accompanying the rise in the temperature of the galvanizing bath becomes active, making operation difficult. EXAMPLE A slab was obtained by continuously casting molten steel adjusted to a predetermined composition. Table 1 is a steel having the composition according to the present invention, and Table 2 is a steel for comparison. Various steel materials were subjected to hot rolling under the conditions shown in Tables 3 and 4, respectively, to produce hot-rolled sheets having a thickness of 3.2 mm. The hot-rolled sheet is subjected to a pickling step and a cold rolling step to form a 0.8 mm-thick cold-rolled steel sheet, and then subjected to reduction annealing in a continuous galvanizing line under the conditions shown in Tables 3 and 4, Hot-dip galvanizing was applied at a basis weight of 60 g / m 2 per side. [Table 1] [Table 2] [Table 3] [Table 4] The galvanized steel sheet was subjected to in-line alloying treatment with a plating layer, and then subjected to skin pass rolling at an elongation of 0.8%. The resulting hot-dip galvanized steel sheet had the tensile properties, secondary work brittleness resistance and surface properties shown in Tables 5 and 6. For the investigation of tensile properties, JI
No. 5 test piece specified in SZ2201 was used. The secondary work brittleness resistance was investigated by the procedure shown in FIG. That is, using a blank punched to a diameter of 90 mm, a three-stage drawing with a drawing ratio of 2.73 was used to form a flat-bottomed cylindrical cup with a diameter of 33 mm. The flat-bottomed cylindrical cup was cut at a position 35 mm from the bottom of the cup, and a punch having a tip angle of 60 ° was gradually pushed in from the top of the cylindrically formed cup to crush the cup.
Then, the lowest temperature at which no brittle cracking occurred was measured as the vertical cracking limit temperature, and the secondary working brittleness resistance was evaluated based on this temperature. Regarding the surface properties of the plated steel sheet, the steel sheet surface was observed with respect to surface roughness, occurrence of defects, and the like, and the observation results were relatively evaluated. [Table 5] [Table 6] As shown in Table 6, test numbers B1 to B
The hot-dip galvanized steel sheet No. 4 satisfies the requirements for the components of the raw material specified in the present invention, has a high strength of 390 N / mm 2 class or higher, and has an r value as high as 1.3 or higher. However, since the hot-dip galvanizing conditions were out of the range specified in the present invention, defects such as surface roughening, pinholes, and non-plating occurred, resulting in poor surface properties. Test number B
In the hot-dip galvanized steel sheets of Nos. 5 to B7, any one of the Si, C and Mn contents is out of the range specified in the present invention, and the hot-dip galvanizing condition is also out of the range specified in the present invention.
Inferior in r value and toughness, there were problems in surface properties such as surface roughness, pinholes, and non-plating. Test No. 8 with an excessive P content and Test No. B9 with an excessive B content were galvanized steel sheets of 390 N
/ Mm 2 or more and an r value of 1.3 or more, but poor in secondary work brittleness resistance. Further, although the hot-dip galvanized steel sheet of Test No. 10 satisfies the requirements specified in the present invention in both hot rolling conditions and plating conditions, since it does not contain B, the vertical crack limit temperature is significantly higher, It was inferior in secondary work brittleness. A similar trend is P
In Test No. 8 containing an excess of On the other hand, the hot-dip galvanized steel sheet of Group A according to the present invention is shown in Table 5
No significant decrease in ductility as shown in FIG.
It shows high strength of N / mm 2 or more and r value of 1.3 or more. In addition, the secondary work brittleness resistance is -4 at the vertical crack limit temperature.
It was as good as 0 ° C. or less, and had good surface quality without defects such as surface roughness, pinholes, and non-plating. As is clear from the comparison between Table 5 and Table 6,
In order to have both excellent workability and surface quality, it is necessary to maintain the components of the material, the manufacturing conditions and the hot-dip galvanizing conditions within the ranges specified in the present invention. If any of the raw material components and the hot-dip galvanizing conditions do not satisfy the conditions, a plated steel sheet having poor workability and / or surface quality is obtained. In addition, when a region having a good surface property was examined in relation to the H 2 concentration in the reducing atmosphere and the reduction heating temperature, the relationship shown in FIG. 1 and the relationship between the inlet temperature and the reduction heating temperature were examined. The relationships shown in FIG. From FIG. 1 and FIG. 2, in order to form a hot-dip galvanized layer having good surface quality on the steel sheet surface,
2 It can be seen that there is a specific relationship between the concentration, the reduction heating temperature, and the inlet temperature. As described above, in the present invention, by combining the composition of the material, the manufacturing conditions and the hot-dip galvanizing conditions under specified conditions, the hot-dip galvanized steel having a good surface quality is obtained. Manufactures high-strength hot-dip galvanized steel sheets with layers and excellent workability and corrosion resistance. The obtained high-strength hot-dip galvanized steel sheet is used in a wide range of fields, such as a steel sheet for automobiles, which has taken advantage of its excellent properties to achieve safety and weight reduction.

【図面の簡単な説明】 【図1】 還元性雰囲気中のH2 濃度及び還元加熱温度
が溶融亜鉛めっき鋼板の表面性状に及ぼす影響を表した
グラフ 【図2】 インレット温度及び還元加熱温度が溶融亜鉛
めっき鋼板の表面性状に及ぼす影響を表したグラフ 【図3】 耐二次加工脆性の試験方法を示した図
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a graph showing the effect of the H 2 concentration in the reducing atmosphere and the reduction heating temperature on the surface properties of a hot-dip galvanized steel sheet. Graph showing the effect on the surface properties of galvanized steel sheet [Figure 3] Diagram showing the test method for secondary work brittleness resistance

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI C22C 38/14 C22C 38/14 (72)発明者 田中 照夫 広島県呉市昭和町11番1号 日新製鋼株 式会社鉄鋼研究所内 (56)参考文献 特開 平4−66653(JP,A) 特開 平3−191047(JP,A) (58)調査した分野(Int.Cl.7,DB名) C21D 9/46 C23C 2/06 C23C 2/40 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification code FI C22C 38/14 C22C 38/14 (72) Inventor Teruo Tanaka 11-1 Showa-cho, Kure-shi, Hiroshima Pref. Nisshin Steel Corporation (56) References JP-A-4-66653 (JP, A) JP-A-3-191047 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C21D 9/46 C23C 2/06 C23C 2/40

Claims (1)

(57)【特許請求の範囲】 【請求項1】 C:0.001〜0.010重量%,S
i:2.0重量%以下,Mn:0.5〜3.0重量%,
P:0.03〜0.30重量%,S:0.015重量%
以下,酸可溶Al:0.005〜0.100重量%,
N:0.007重量%以下,B:0.0002〜0.0
010重量%,Ti:0.10重量%以下及びNb:
0.01〜0.10重量%を含有し、且つTi%/48
≧C%/12+N%/14+S%/32を満足するTi
−Nb複合含有極低炭素鋼スラブを1150〜1280
℃に加熱した後、Ar3変態点以上1000℃以下の温
度で熱間圧延を終了し、400〜600℃で巻き取り、
冷間圧延後に連続溶融亜鉛めっきラインに通板し、 2
濃度40体積%以上の雰囲気において800〜900℃
の温度範囲で還元加熱し、その後の冷却過程で亜鉛めっ
き浴に浸漬する板温を500〜650℃の温度範囲に制
御し、次いで溶融亜鉛めっきすることを特徴とする表面
性状に優れた深絞り用高強度溶融亜鉛めっき鋼板の製造
方法。
(57) [Claims 1] C: 0.001 to 0.010% by weight, S
i: 2.0% by weight or less, Mn: 0.5 to 3.0% by weight,
P: 0.03 to 0.30% by weight, S: 0.015% by weight
Hereinafter, acid-soluble Al: 0.005 to 0.100% by weight,
N: 0.007% by weight or less, B: 0.0002 to 0.0
010% by weight, Ti: 0.10% by weight or less and Nb:
0.01 to 0.10% by weight, and Ti% / 48
Ti satisfying ≧ C% / 12 + N% / 14 + S% / 32
-Nb composite-containing ultra-low carbon steel slab is 1150-1280
After heating to ° C., the hot rolling ends at Ar 3 transformation point or higher 1000 ° C. or less of the temperature, taken up at 400 to 600 ° C.,
After cold rolling to Tsuban a continuous galvanizing line, H 2
800-900 ° C in an atmosphere with a concentration of 40% by volume or more
Deep drawing with excellent surface properties characterized by reducing and heating at a temperature in the range described above, controlling the temperature of the sheet immersed in the galvanizing bath in the subsequent cooling process to a temperature in the range of 500 to 650 ° C., and then performing galvanizing. For manufacturing high-strength hot-dip galvanized steel sheet.
JP11464493A 1993-05-17 1993-05-17 Manufacturing method of high strength hot-dip galvanized steel sheet for deep drawing with excellent surface properties Expired - Fee Related JP3497201B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11464493A JP3497201B2 (en) 1993-05-17 1993-05-17 Manufacturing method of high strength hot-dip galvanized steel sheet for deep drawing with excellent surface properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11464493A JP3497201B2 (en) 1993-05-17 1993-05-17 Manufacturing method of high strength hot-dip galvanized steel sheet for deep drawing with excellent surface properties

Publications (2)

Publication Number Publication Date
JPH06330181A JPH06330181A (en) 1994-11-29
JP3497201B2 true JP3497201B2 (en) 2004-02-16

Family

ID=14642967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11464493A Expired - Fee Related JP3497201B2 (en) 1993-05-17 1993-05-17 Manufacturing method of high strength hot-dip galvanized steel sheet for deep drawing with excellent surface properties

Country Status (1)

Country Link
JP (1) JP3497201B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110408876A (en) * 2019-09-03 2019-11-05 陈城立 A kind of hot galvanizing hanger

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW504519B (en) * 1999-11-08 2002-10-01 Kawasaki Steel Co Hot dip galvanized steel plate excellent in balance of strength and ductility and in adhesiveness between steel and plating layer, and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110408876A (en) * 2019-09-03 2019-11-05 陈城立 A kind of hot galvanizing hanger

Also Published As

Publication number Publication date
JPH06330181A (en) 1994-11-29

Similar Documents

Publication Publication Date Title
TWI507535B (en) Alloyed molten galvanized steel sheet
JP5092507B2 (en) High tensile alloyed hot dip galvanized steel sheet and its manufacturing method
JP2007070659A (en) Hot dip galvanized steel sheet and alloyed hot dip galvanized steel sheet having excellent corrosion resistance, elongation and hole expandability, and method for producing them
KR20180120722A (en) The present invention relates to a method for manufacturing a hot-rolled steel sheet, a method for manufacturing a hot-rolled steel sheet, a method for manufacturing a hot-rolled steel sheet, a method for manufacturing a thin steel sheet,
WO2017168991A1 (en) Thin steel sheet, plated steel sheet, hot-rolled steel sheet manufacturing method, cold-rolled full hard steel sheet manufacturing method, thin steel sheet manufacturing method, and plated steel sheet manufacturing method
JP2576894B2 (en) Hot-dip galvanized high-tensile cold-rolled steel sheet excellent in press formability and method for producing the same
JP5655363B2 (en) Alloyed hot-dip galvanized steel sheet and method for producing the same
JP3023875B2 (en) Method for producing hot-dip galvanized steel sheet with excellent surface properties
JP3497201B2 (en) Manufacturing method of high strength hot-dip galvanized steel sheet for deep drawing with excellent surface properties
JP3435986B2 (en) Manufacturing method of high workability plated steel sheet
JP3295900B2 (en) High strength alloyed hot-dip galvanized steel sheet for deep drawing with excellent secondary work brittleness resistance
JP3185530B2 (en) Surface-treated steel sheet for deep drawing excellent in corrosion resistance and method for producing the same
JP3347152B2 (en) Method for producing cold-rolled high-strength hot-dip galvanized steel sheet with excellent resistance to pitting corrosion
JP2002249849A (en) High tensile strength cold rolled steel sheet and production method therefor
JPH0657337A (en) Production of high strength galvannealed steel sheet excellent in formability
JPH10183253A (en) Production of cold rolled steel sheet or hot dip plated steel sheet excellent in surface property and workability
JP3602263B2 (en) Manufacturing method of high strength hot-dip galvanized steel sheet with excellent deep drawability
KR102484978B1 (en) High strength galvannealed steel sheet having excellent powdering resistance and manufacturing method for the same
JP3399748B2 (en) Cold rolled steel sheet with excellent press formability and chemical conversion treatment and alloyed hot-dip galvanized steel sheet with excellent press workability and powdering resistance
JPH1096051A (en) Slab for high strength cold rolled steel sheet excellent in deep drawability or hot-dip plated steel sheet, and its production
JP3716439B2 (en) Manufacturing method of high-tensile alloyed hot-dip galvanized steel sheet with excellent plating characteristics
JP2565054B2 (en) Method for producing galvannealed steel sheet with excellent deep drawability and plating adhesion
JP2812769B2 (en) Manufacturing method of alloyed hot-dip galvanized cold rolled steel sheet for ultra deep drawing with excellent powdering resistance
JP3257715B2 (en) Method for producing high-strength galvannealed steel sheet for high working with excellent plating adhesion
JP3016333B2 (en) Cold drawn steel sheet for deep drawing excellent in corrosion resistance and method for producing the same

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031118

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081128

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091128

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees