JPH02121118A - Production of mirror surfaced substrate made of al alloy for magnetic disk - Google Patents

Production of mirror surfaced substrate made of al alloy for magnetic disk

Info

Publication number
JPH02121118A
JPH02121118A JP27232488A JP27232488A JPH02121118A JP H02121118 A JPH02121118 A JP H02121118A JP 27232488 A JP27232488 A JP 27232488A JP 27232488 A JP27232488 A JP 27232488A JP H02121118 A JPH02121118 A JP H02121118A
Authority
JP
Japan
Prior art keywords
alloy
surface finishing
substrate
annealing
mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27232488A
Other languages
Japanese (ja)
Other versions
JPH081699B2 (en
Inventor
Eiichi Kurihara
栗原 栄一
Kozo Hoshino
晃三 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP63272324A priority Critical patent/JPH081699B2/en
Publication of JPH02121118A publication Critical patent/JPH02121118A/en
Publication of JPH081699B2 publication Critical patent/JPH081699B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To allow the higher density recording of the magnetic disk without generating errors by inserting a heating treatment of 200 to 450 deg.C between the final surface finishing working and intermediate surface finishing working of the Al alloy substrate. CONSTITUTION:The heating treatment of 200 to 450 deg.C is inserted between the final surface finishing working and intermediate surface finishing working of the specular surfaced substrate made of the Al alloy. Namely, the substrate is subjected to annealing intended for stress relief annealing and thereafter, the heating treatment of 200 to 450 deg.C is inserted between the final surface finishing working and intermediate surface finishing working (usually rough cutting). The generation of blister defects in a film forming stage of the magnetic medium is, therefore, lessened. The generation of the errors after the formation of the magnetic film is obviated in this way.

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、磁気ディスク用Al合金鏡面基板の製造方法
に係り、特に高記録密度磁気ディスク用のAl合合金面
基板の製造に適している。 (従来の技術) 磁気ディスク用基板の素材としては、非磁性、軽量、強
度の点からAl合金が適し、この中でも、Al−Mg系
合金が強度が高く、精密加工性も良好なため、5086
合金を基本組成とするAl−Mg系合金が一般に使用さ
れている。 ところで、磁気ディスク用Al合金鏡面基板は、常法に
て溶解、圧延により製造された板より、−般に打抜き(
ドーナツ形円板)、歪矯正及び軟質化焼鈍、精密切削或
いは精密研磨による鏡面加工の順序に加工されて製造さ
れる。磁気ディスクは、このようにして製造されたAl
合金鏡面基板上に磁性媒体を成膜して製造される。 近年、コンピュータの小型化、大容量化が著しく、磁気
ディスクの高記録密度化が進展した結果。 1ビット当りの磁化記録領域はますます微小化されると
共に、磁性膜の薄膜化及び磁気ヘッドと磁気ディスクと
の間隔の狭少化が必要となり、したがって、Al合合金
面基板の平坦度、表面の微小な突起や凹みなどの表面精
度に対する要求が極めて高度化してきている。 そのために、表面精度の優れた磁気ディスク用10合金
基板の製造法が提案されている(例、特公昭60−42
63号)。 (発明が解決しようとする課題) しかし、従来からの留意点である基板全体の平粗度、金
属間化合物等については全く問題のない鏡面仕上面であ
っても、磁性膜形成後、エラーが多発するという新たな
問題が生じてきている。そして、この問題については未
だ原因はもとより、有効な対策が開発されていないのが
現状である。 本発明は、か\る事情に鑑みてなされたものであり、磁
性膜形成後、エラーの発生のない磁気ディスク用Aff
合金鏡面基板を製造する方法を提供することを目的とす
るものである。 (課題を解決するための手段) 本発明者らは、まず、磁性膜形成後にエラーが発生する
現象の原因の究明に努め、種々調査した結果、磁性膜表
面に微小な突起が存在することが新たに問題となり、こ
の突起はAl合合金面基板自体の表面に突起が存在して
いるため、生成したものと判明した。 そして、この生成原因を究明した結果、磁性膜成膜工程
における加熱(200〜300℃加熱)の際、A1合金
鏡面も同時に加熱される結果、加熱前には存在していな
かった突起が生成することが明らかとなった。 そこで1本発明者らは、上記の如<、Al合金鏡面基板
表面に加熱後、微小な突起が発生する原因について更に
研究した結果、驚くべきことに。 鏡面基板表面に局所的に圧縮応力が残存していると、加
熱によりこの部分がふくれ、微小な突起を生成すること
を見出した。この調査結果を、以下に実験例を引用して
示す。 失象且よ 5086合金O材につき、以下の手順で微小突起の形成
原因をテストした。本テストでは、ビッカース硬度計で
圧痕を入れることにより、圧縮の応力が残留することを
利用した。 ブランク→粗切削→焼鈍(340’CX 2hr)→ミ
クロビッカース硬度計MHv(500g)で圧痕を入れ
る(圧痕深さ約20μm)→ダイヤモンド切削により圧
痕深さ以上まで切削し、鏡面とする→焼鈍(320℃X
3Qmin)。なお、ダイヤモンド切削の条件1回数に
より、切削条件変更材(粗度大)、通常切削条件材(1
回仕上、2回仕上)を得た。 上記の最終工程の焼鈍後、鏡面をl11察したところ、
微小突起が検知され、その部分を表面粗度計で測定した
結果、第1表に示すとおり、明らかに局部的残留応力の
大きさに対応して突起が形成されることが推定される。 大簾■又 実験例1の結果に基づき、更に確認のため、以下のテス
トを行った8 ブランク→粗切削→焼鈍(360℃X4hr)→ミクロ
ビッカース硬度計を用いてMHv(500g)で約20
μ■深さに、 MHv(1kg)で約30μm深さに圧
痕を入れる→ダイヤモンド切削(約30μm切削)→焼
鈍(3oO℃X1hr)。 上記の最終工程の焼鈍後、鏡面を1lIl!察したとこ
ろ、微小突起がamされ、その部分の表面粗度を測定し
た結果、第2表に示すとおりであった。
(Industrial Application Field) The present invention relates to a method for manufacturing an Al alloy mirror substrate for a magnetic disk, and is particularly suitable for manufacturing an Al alloy mirror substrate for a high recording density magnetic disk. (Prior art) Al alloys are suitable as materials for magnetic disk substrates because of their nonmagnetic properties, light weight, and strength. Among these, Al-Mg alloys have high strength and good precision machinability, so 5086
Al-Mg alloys whose basic composition is an alloy are generally used. By the way, Al alloy mirror-finished substrates for magnetic disks are generally produced by punching (
(doughnut-shaped disk), distortion correction, softening annealing, and precision cutting or precision polishing to create a mirror finish. The magnetic disk is made of Al manufactured in this way.
It is manufactured by depositing a magnetic medium on an alloy mirror substrate. In recent years, computers have become significantly smaller and larger in capacity, and the recording density of magnetic disks has increased. As the magnetic recording area per bit becomes smaller and smaller, it becomes necessary to make the magnetic film thinner and narrow the distance between the magnetic head and the magnetic disk. Requirements for surface precision such as minute protrusions and depressions are becoming extremely sophisticated. For this purpose, a method of manufacturing a 10 alloy substrate for magnetic disks with excellent surface precision has been proposed (for example, Japanese Patent Publication No. 60-42
No. 63). (Problem to be solved by the invention) However, even if the mirror-finished surface has no problems with regard to the flatness of the entire substrate, intermetallic compounds, etc., which have traditionally been points to keep in mind, errors may occur after the magnetic film is formed. A new problem has arisen that occurs frequently. The current situation is that, let alone the cause of this problem, no effective countermeasures have yet been developed. The present invention has been made in view of the above circumstances, and provides an affix for magnetic disks that does not cause errors after forming a magnetic film.
The object of the present invention is to provide a method for manufacturing an alloy mirror-finished substrate. (Means for Solving the Problems) The present inventors first endeavored to investigate the cause of the phenomenon in which errors occur after forming a magnetic film, and as a result of various investigations, it was discovered that minute protrusions were present on the surface of the magnetic film. A new problem arose, and it was discovered that the protrusions were generated because protrusions were present on the surface of the Al alloy surface substrate itself. As a result of investigating the cause of this formation, it was found that during heating (200-300°C heating) in the magnetic film formation process, the A1 alloy mirror surface was also heated at the same time, resulting in the formation of protrusions that did not exist before heating. It became clear that Therefore, the inventors of the present invention further investigated the cause of the formation of minute protrusions on the surface of an Al alloy mirror-finished substrate after heating, as described above, and found a surprising result. We have discovered that if compressive stress remains locally on the surface of a mirrored substrate, this area swells due to heating, producing minute protrusions. The results of this investigation are shown below with reference to experimental examples. The cause of the formation of microprotrusions was tested using the following procedure for the 5086 alloy O material. In this test, we utilized the fact that compressive stress remains by making an indentation with a Vickers hardness tester. Blank → Rough cutting → Annealing (340'CX 2 hr) → Make an indentation using a micro Vickers hardness tester MHv (500 g) (indentation depth approximately 20 μm) → Cut to a mirror surface by diamond cutting to the depth of the indentation or more → Annealing ( 320℃
3Q min). In addition, depending on the diamond cutting conditions 1 time, the material with changed cutting conditions (large roughness), the material with normal cutting conditions (1
Two-time finishing and two-time finishing) were obtained. After the final annealing process described above, the mirror surface was observed.
As a result of detecting microprotrusions and measuring the portions with a surface roughness meter, as shown in Table 1, it is presumed that protrusions are clearly formed in response to the magnitude of local residual stress. Based on the results of Experimental Example 1, the following tests were carried out for further confirmation: 8 Blank → Rough cutting → Annealing (360°C x 4 hr) → Approximately 20 MHv (500 g) using a micro Vickers hardness tester
Make an indentation to a depth of about 30 μm using MHv (1 kg) → diamond cutting (cutting about 30 μm) → annealing (3oOC x 1 hr). After the final annealing process described above, the mirror surface is 1lIl! As a result, it was found that microprotrusions were formed, and the surface roughness of the part was measured, and the results were as shown in Table 2.

【以下余白1 したがって、この局所的に残存する圧縮応力の発生に関
し、鏡面仕上加工時及びこの加工以前に、或いは未然に
、局所的な圧縮応力を基板表面に与えることを防止する
ことにより、磁性膜成膜時のふくれ欠陥の発生の防止が
可能となることを知見したのである。 この圧縮応力は、次のような原因で発生する。 ■ 歪矯正軟質化焼鈍としては、従来、基板を重ね合せ
て荷重をかけて加熱する積層焼鈍が行われており、基板
表面に付着したホコリや微小な切り粉などが、冷却時に
基板表面に局所的な残留応力を与える。 ■ 積層焼鈍の際、基板同士の付着現象が生じ、この剥
離の際、基板同士がぶつかり、基板表面に局所的な残留
応力が生じる。 ■ 鏡面加工に至るまでの中間検査工程において、マイ
クロメータによる板厚測定などにより、基板表面に局所
的な残留応力を与える。 従来工程においては、このような局所的な残留応力の発
生を完全に防止することは非常に困難であるため、本発
明者らは、この局所的な残留応力の除去方法について鋭
意研究した結果、磁性膜成膜時のふくれ欠陥の発生を少
なくするAl合金鏡面基板の製造方法を開発したもので
ある。 すなわち、本発明は、AM合金鏡面基板の最終表面仕上
加工と中間表面仕上加工の間に、200〜450”Cの
加熱処理を挿入することを特徴とする磁性媒体の成膜工
程におけるふくれ欠陥の発生の少ない磁気ディスク用A
l合金鏡面基板の製造方法を要旨とするものである。 以下に本発明を更に詳細に説明する。 (作用) 前述の局所的な残留応力を除去する方法としては、 ■表層部を切削或いは研磨により機械的に除去する方法
及び化学的に溶解或いは研磨して除去する方法 ■加熱により応力を除去する方法 のいずれでもよいのであるが1表層部を機械的或いは化
学的に除去する方法は、残留応力の大きさにより十分に
除去するための表層部の厚さが異なり、確実性を見込む
と、元の基板厚さを十分に厚くしなければならないため
、材料コスト及び生産性の点から問題がある。したがっ
て、加熱により応力を除去する方法が優れている。 以上の理由から、本発明では、加熱により応力を除去す
る方法を採用するが、加熱温度と共に実施時期を特定し
たものとする必要がある。すなわち、歪矯正軟質化を目
的とする焼鈍後、鏡面の最終表面仕上加工と中間表面仕
上加工(通常、粗切削)の間に200℃以上450℃以
下の加熱処理を挿入することにより、本目的は達成され
る。しかし、200℃未満であると残留応力の除去が不
十分となる。また、450℃を超えると、結晶粒が粗大
化し易くなり、また中間表面仕上加工を行った表面が酸
化・変質し、最終仕上表面加工が困難となりがちとなる
ので好ましくない。 勿論、Al合金基板を表面仕上加工に供するまでの製造
条件1表面仕上加工の条件等は特に制限されないことは
云うまでもなく、前述の特公昭60−4263号も参照
される。また、本発明法で対象とするA2合金の材質も
、磁気ディスク用に供されるものであればよい。 なお、磁気ディスクの製造工程では、軟質化焼鈍に先立
って半硬質化焼鈍を行うことが多いが、半硬質化焼鈍の
有無は本発明の効果を何ら損なうものではない。 次に本発明の実施例を示す。 (実施例) 第3表に示す化学成分を有するアルミニウム合金を常法
に従って鋳造、圧延して2mm厚に仕上げた。 この2II11厚の板を外径130mmφ、内径40+
mφに打抜いて円板とした。次いで、第4表に示す条件
により、この円板の圧延及び打抜きによる歪矯正及び軟
質化焼鈍を行った。この焼鈍に際しては、80枚づつ積
層し、定盤にて500kgの荷重にて締め付け、雰囲気
焼鈍炉にて360〜240’CX2時間の加熱を行い、
室温へ冷却後、積層した円板を1枚づつ、剥離した。な
お、半硬質焼鈍を行う場合には同様の要領で行えばよい
。 その後、円板表面を粗切削後1局所的な残留応力除去の
ため、第4表に示す条件により、上記積層焼鈍法にて荷
重20kgにて雰囲気焼鈍を実施し、仕上切削加工を行
い、1,905mm厚さで表面粗度Rmax0.09μ
mの鏡面基板に仕上げた。 また、比較のため、粗切削後、直ちに仕上げ切削加工を
行って鏡面基板を得た。 これら各400枚の鏡面基板につき、200℃X30分
の加熱処理を行い、各面のふくれ欠陥発生率を測定した
。その結果を第5表に示す。 第5表より明らかなように、圧延及び打抜き歪矯正及び
軟質化焼鈍(或いは半硬質化焼鈍)後、最終鏡面仕上加
工前に加熱処理を挿入することにより、磁性膜成膜工程
におけるAl合合金面基板のふくれ欠陥の発生を著しく
減少させことができ、高密度記録磁気ディスク用AΩ合
金鏡面基板が得られることがわかる。 【以下余白】 (発明の効果) 以上詳述したように、本発明によれば、磁性媒体の成膜
工程における加熱において突起欠陥の発生を著減するこ
とができるので、エラーがなく、磁気ディスクの高記録
密度化に十分対応できるAl合合金面基板の製造が可能
となる。 特許出願人  株式会社神戸製鋼所 代理人弁理士 中  村   尚
[Margin below 1] Therefore, regarding the generation of locally residual compressive stress, it is necessary to prevent magnetic They discovered that it is possible to prevent the occurrence of blistering defects during film formation. This compressive stress is generated due to the following reasons. ■ Conventionally, strain correction and softening annealing has been carried out using lamination annealing, in which substrates are stacked one on top of the other and heated under a load, so that dust and fine chips adhering to the substrate surface are localized to the substrate surface during cooling. gives residual stress. ■ During lamination annealing, a phenomenon of adhesion between the substrates occurs, and when this peels off, the substrates collide with each other, creating local residual stress on the substrate surface. ■ In the intermediate inspection process leading up to mirror finishing, local residual stress is applied to the substrate surface by measuring the plate thickness with a micrometer. In conventional processes, it is extremely difficult to completely prevent the occurrence of such local residual stress, so the inventors of the present invention conducted extensive research into methods for removing this local residual stress, and as a result, A method for manufacturing an Al alloy mirror-surfaced substrate has been developed that reduces the occurrence of bulge defects during magnetic film deposition. That is, the present invention provides a method for preventing bulging defects in a magnetic medium film formation process, which is characterized by inserting heat treatment at 200 to 450"C between the final surface finishing and intermediate surface finishing of an AM alloy mirror-finished substrate. A for magnetic disks with little occurrence
The gist of this paper is a method for manufacturing an L-alloy mirror-finished substrate. The present invention will be explained in more detail below. (Function) Methods for removing the above-mentioned local residual stress include: -Mechanically removing the surface layer by cutting or polishing, and chemically dissolving or polishing -Removing stress by heating Any method may be used, but the method of mechanically or chemically removing the surface layer requires different thicknesses of the surface layer to remove the stress sufficiently depending on the magnitude of the residual stress. Since the substrate thickness must be sufficiently thick, there are problems in terms of material cost and productivity. Therefore, the method of removing stress by heating is superior. For the above reasons, the present invention employs a method of removing stress by heating, but it is necessary to specify the heating temperature and the timing of implementation. In other words, after annealing for the purpose of strain correction and softening, heat treatment at 200°C or more and 450°C or less is inserted between the final surface finishing of the mirror surface and the intermediate surface finishing (usually rough cutting). is achieved. However, if the temperature is less than 200°C, residual stress will not be removed sufficiently. Moreover, if the temperature exceeds 450° C., crystal grains tend to become coarse, and the surface subjected to intermediate surface finishing is oxidized and deteriorated, making final finishing surface processing difficult. Of course, it goes without saying that the manufacturing conditions 1 until the Al alloy substrate is subjected to surface finishing processing, the conditions for surface finishing processing, etc. are not particularly limited, and the above-mentioned Japanese Patent Publication No. 60-4263 is also referred to. Further, the material of the A2 alloy targeted by the method of the present invention may be any material as long as it is used for magnetic disks. In the manufacturing process of magnetic disks, semi-hardening annealing is often performed prior to softening annealing, but the presence or absence of semi-hardening annealing does not impair the effects of the present invention. Next, examples of the present invention will be shown. (Example) An aluminum alloy having the chemical components shown in Table 3 was cast and rolled to a thickness of 2 mm according to a conventional method. This 2II11 thick plate has an outer diameter of 130mmφ and an inner diameter of 40+
It was punched out to mφ to form a disk. Next, under the conditions shown in Table 4, this disk was subjected to strain correction by rolling and punching and softening annealing. For this annealing, 80 sheets were stacked one on top of the other, tightened with a load of 500 kg on a surface plate, and heated for 360 to 240'C x 2 hours in an atmospheric annealing furnace.
After cooling to room temperature, the laminated disks were peeled off one by one. In addition, when performing semi-hard annealing, it may be performed in a similar manner. After that, after rough cutting the disk surface, 1) To remove local residual stress, atmosphere annealing was performed using the above laminated annealing method at a load of 20 kg under the conditions shown in Table 4, and finishing cutting was performed. , 905mm thickness and surface roughness Rmax0.09μ
Finished with a mirror-like substrate of m. For comparison, a mirror-finished substrate was obtained by performing finish cutting immediately after rough cutting. Each of these 400 mirror-finished substrates was subjected to heat treatment at 200° C. for 30 minutes, and the rate of occurrence of blistering defects on each surface was measured. The results are shown in Table 5. As is clear from Table 5, by inserting heat treatment after rolling and punching strain correction and softening annealing (or semi-hardening annealing) and before the final mirror finish processing, the Al alloy in the magnetic film forming process can be improved. It can be seen that the occurrence of bulging defects on the flat substrate can be significantly reduced, and an AΩ alloy mirror-finished substrate for high-density recording magnetic disks can be obtained. [Blank below] (Effects of the Invention) As detailed above, according to the present invention, it is possible to significantly reduce the occurrence of protrusion defects during heating in the film forming process of a magnetic medium, so there is no error and the magnetic disk It becomes possible to manufacture an Al alloy surface substrate that can sufficiently cope with higher recording densities. Patent applicant Hisashi Nakamura, patent attorney representing Kobe Steel, Ltd.

Claims (1)

【特許請求の範囲】[Claims] Al合金基板の最終表面仕上加工と中間表面仕上加工の
間に、200〜450℃の加熱処理を挿入することを特
徴とする磁性媒体の成膜工程におけるふくれ欠陥の発生
の少ない磁気ディスク用Al合金鏡面基板の製造方法。
An Al alloy for magnetic disks with less occurrence of bulging defects in the film forming process of magnetic media, characterized by inserting heat treatment at 200 to 450°C between the final surface finishing process and the intermediate surface finishing process of the Al alloy substrate. A method for manufacturing a mirror substrate.
JP63272324A 1988-10-28 1988-10-28 Method for manufacturing an alloy mirror-finished substrate for magnetic disk Expired - Lifetime JPH081699B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63272324A JPH081699B2 (en) 1988-10-28 1988-10-28 Method for manufacturing an alloy mirror-finished substrate for magnetic disk

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63272324A JPH081699B2 (en) 1988-10-28 1988-10-28 Method for manufacturing an alloy mirror-finished substrate for magnetic disk

Publications (2)

Publication Number Publication Date
JPH02121118A true JPH02121118A (en) 1990-05-09
JPH081699B2 JPH081699B2 (en) 1996-01-10

Family

ID=17512299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63272324A Expired - Lifetime JPH081699B2 (en) 1988-10-28 1988-10-28 Method for manufacturing an alloy mirror-finished substrate for magnetic disk

Country Status (1)

Country Link
JP (1) JPH081699B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002049015A1 (en) * 2000-12-13 2002-06-20 Showa Denko K.K. Magnetic-disk substrate, and method for manufacturing the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103447552B (en) * 2013-09-24 2015-08-19 哈尔滨工业大学 The direct turnery processing rough machining method of optical collection mirror in extreme Ultraviolet Lithography Source

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS604263A (en) * 1983-06-22 1985-01-10 Nec Corp Mos field effect semiconductor device
JPS60110852A (en) * 1983-11-21 1985-06-17 Mitsubishi Electric Corp Heat treatment of disk for magnetic disk
JPS60247824A (en) * 1984-05-22 1985-12-07 Yokogawa Hokushin Electric Corp Production of disk substrate
JPS6143423A (en) * 1984-08-08 1986-03-03 Hitachi Ltd Mask aligner
JPS6191352A (en) * 1984-10-11 1986-05-09 Kobe Steel Ltd Method for annealing al alloy plate for substrate of magnetic disk hardly causing micro-waving
JPS61179842A (en) * 1985-02-04 1986-08-12 Sumitomo Light Metal Ind Ltd Aluminum alloy for magnetic disc superior in plating property
JPS61179843A (en) * 1985-02-04 1986-08-12 Sumitomo Light Metal Ind Ltd Aluminum alloy for magnetic disc superior in plating property
JPS6247450A (en) * 1985-08-27 1987-03-02 Sumitomo Light Metal Ind Ltd Aluminum alloy for magnetic disk combining superior plating suitability with minimized plating defects
JPS634050A (en) * 1986-06-24 1988-01-09 Sumitomo Light Metal Ind Ltd Manufacture of aluminum-alloy substrate for magnetic disk
JPS6362853A (en) * 1986-09-02 1988-03-19 Kobe Steel Ltd Manufacture of material for magnetic disk substrate
JPS63111153A (en) * 1986-10-30 1988-05-16 Kobe Steel Ltd Aluminum alloy sheet for vertical magnetic disk and its production
JPS63144414A (en) * 1986-12-05 1988-06-16 Kobe Steel Ltd Straightening method for metallic disk
JPS63223150A (en) * 1987-03-12 1988-09-16 Kobe Steel Ltd Production of al substrate for high strength magnetic disk
JPS63257917A (en) * 1987-04-15 1988-10-25 Kobe Steel Ltd Production of al substrate for magnetic disk

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS604263A (en) * 1983-06-22 1985-01-10 Nec Corp Mos field effect semiconductor device
JPS60110852A (en) * 1983-11-21 1985-06-17 Mitsubishi Electric Corp Heat treatment of disk for magnetic disk
JPS60247824A (en) * 1984-05-22 1985-12-07 Yokogawa Hokushin Electric Corp Production of disk substrate
JPS6143423A (en) * 1984-08-08 1986-03-03 Hitachi Ltd Mask aligner
JPS6191352A (en) * 1984-10-11 1986-05-09 Kobe Steel Ltd Method for annealing al alloy plate for substrate of magnetic disk hardly causing micro-waving
JPS61179842A (en) * 1985-02-04 1986-08-12 Sumitomo Light Metal Ind Ltd Aluminum alloy for magnetic disc superior in plating property
JPS61179843A (en) * 1985-02-04 1986-08-12 Sumitomo Light Metal Ind Ltd Aluminum alloy for magnetic disc superior in plating property
JPS6247450A (en) * 1985-08-27 1987-03-02 Sumitomo Light Metal Ind Ltd Aluminum alloy for magnetic disk combining superior plating suitability with minimized plating defects
JPS634050A (en) * 1986-06-24 1988-01-09 Sumitomo Light Metal Ind Ltd Manufacture of aluminum-alloy substrate for magnetic disk
JPS6362853A (en) * 1986-09-02 1988-03-19 Kobe Steel Ltd Manufacture of material for magnetic disk substrate
JPS63111153A (en) * 1986-10-30 1988-05-16 Kobe Steel Ltd Aluminum alloy sheet for vertical magnetic disk and its production
JPS63144414A (en) * 1986-12-05 1988-06-16 Kobe Steel Ltd Straightening method for metallic disk
JPS63223150A (en) * 1987-03-12 1988-09-16 Kobe Steel Ltd Production of al substrate for high strength magnetic disk
JPS63257917A (en) * 1987-04-15 1988-10-25 Kobe Steel Ltd Production of al substrate for magnetic disk

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002049015A1 (en) * 2000-12-13 2002-06-20 Showa Denko K.K. Magnetic-disk substrate, and method for manufacturing the same

Also Published As

Publication number Publication date
JPH081699B2 (en) 1996-01-10

Similar Documents

Publication Publication Date Title
US5569518A (en) Glass substrate for a magnetic disk with roughened edges
US4659606A (en) Substrate members for recording disks and process for producing same
JP5199714B2 (en) Method for manufacturing aluminum alloy substrate for magnetic disk
CN111164228B (en) Aluminum alloy substrate for magnetic disk, method for producing same, and magnetic disk using same
JP5480599B2 (en) Aluminum alloy plate for magnetic disk and manufacturing method thereof
WO2015146812A1 (en) Aluminum alloy plate for magnetic disk, aluminum alloy blank for magnetic disk, and aluminum alloy substrate for magnetic disk
JP6439064B1 (en) Magnetic disk, aluminum composite substrate for magnetic disk, and method for manufacturing the aluminum alloy substrate
TW201518528A (en) Metallic sputtering target integrated with backing plate, and method for manufacturing same
JPH07230621A (en) Glass substrate for magnetic disk and its production
JPH02121118A (en) Production of mirror surfaced substrate made of al alloy for magnetic disk
JP4751246B2 (en) Manufacturing method of aluminum alloy substrate for magnetic disk and aluminum alloy substrate for magnetic disk manufactured by this manufacturing method
JP2006302358A (en) Aluminum alloy substrate for magnetic recording medium and magnetic recording medium
JP5261203B2 (en) Aluminum alloy spacer and manufacturing method thereof
TW201400632A (en) Sputtering target for magnetic recording medium, and process for producing same
JP3107480B2 (en) Titanium substrate for magnetic disk
CN113168848A (en) Aluminum alloy substrate for magnetic disk and method for producing same, and magnetic disk and method for producing same
JP2015181077A (en) Magnetic disk titanium plate and manufacturing method of the same and magnetic disk
JPH03259419A (en) Maufacture of magnetic disk substrate comprising titanium
JP3011880B2 (en) Blank for magnetic disk substrate and method of manufacturing the same
JPH10121173A (en) Aluminum alloy clad plate for high capacity magnetic disk substrate excellent in plating property and blistering resistance and its production
JP2019091515A (en) Magnetic disk substrate made of aluminum alloy and method of manufacturing the same, and magnetic disk
JP2004143559A (en) Aluminum alloy substrate for magnetic disk, and production method therefor
JP3830240B2 (en) Aluminum alloy substrate for magnetic disk
JPH0798856A (en) Production of substrate for magnetic disk
JP2006249536A (en) Metal material to be mirror polished