JPH02120235A - Ferrite powder for high density recording - Google Patents

Ferrite powder for high density recording

Info

Publication number
JPH02120235A
JPH02120235A JP63270634A JP27063488A JPH02120235A JP H02120235 A JPH02120235 A JP H02120235A JP 63270634 A JP63270634 A JP 63270634A JP 27063488 A JP27063488 A JP 27063488A JP H02120235 A JPH02120235 A JP H02120235A
Authority
JP
Japan
Prior art keywords
ferrite powder
composition
powder
magnetization
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63270634A
Other languages
Japanese (ja)
Other versions
JPH0647469B2 (en
Inventor
Toshio Ueda
俊雄 上田
Masayuki Nishina
正行 仁科
Yuichi Sato
祐一 佐藤
Satoshi Aizawa
聡 相澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Mining Co Ltd filed Critical Dowa Mining Co Ltd
Priority to JP63270634A priority Critical patent/JPH0647469B2/en
Publication of JPH02120235A publication Critical patent/JPH02120235A/en
Publication of JPH0647469B2 publication Critical patent/JPH0647469B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To improve saturation magnetization and remanent magnetization of a ferrite powder for high density recording by specifying the composition of the above-mentioned powder with the general formula containing Ba, V, Mn, O and Fe, etc. CONSTITUTION:The aimed ferrite powder for high density recording formed of a composition expressed by the general formula (M is a metal element selected from Ba, Sr, Pb and Ca; M' is a metal element selected from V, Sn, Ti, Zr, W and Nb; M'' is a metal element selected from Mn, Zn Cu, Co, Ni and Mg; n is 6.3-9; x is 0.01-0.3; y is 0-0.2; z is 0-0.2). The aimed ferrite powder is obtained by blending raw material substances so as to provide the composition expressed by the general formula. The above-mentioned powder has high saturation magnetization and remanent magnetization and is used for vertical magnetic recording medium.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は高密度磁気記録媒体、特に垂直磁気記録媒体更
に詳しくは、塗布型垂直磁気記録媒体に用いるのに好適
なフェライト粉末に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a ferrite powder suitable for use in a high-density magnetic recording medium, particularly a perpendicular magnetic recording medium, and more particularly, a ferrite powder suitable for use in a coated perpendicular magnetic recording medium.

〔従来の技術〕[Conventional technology]

塗布型磁気記録用媒体に用いられる磁性材料としては、
従来、’y −Fc203.Co含有r −Fc203
゜およびメタル粉の微粒子が用いられてきた。これらの
磁性4オ料を用いた記録媒体については、記録媒体の面
内長手方向に磁化する方法が採用されているが、この方
式による場合、記録媒体内の減磁界が増大し、媒体の磁
化は強い減磁作用を受けることになるので更に高密度化
を図る場合、困難を伴う。このような長手方向記録方式
に対して、高密度記録方式として、記録媒体層の表面に
垂直な方向に磁化することを特徴とする垂直磁気記録方
式が提案され、実用化が進められている。
Magnetic materials used in coated magnetic recording media include:
Conventionally, 'y-Fc203. Co-containing r-Fc203
Microparticles of powder and metal powder have been used. For recording media using these magnetic 4-O materials, a method is adopted in which the recording medium is magnetized in the in-plane longitudinal direction, but when this method is used, the demagnetizing field within the recording medium increases and the magnetization of the medium is Since it is subject to strong demagnetization, it is difficult to further increase the density. In contrast to such longitudinal recording methods, a perpendicular magnetic recording method, which is characterized by magnetization in a direction perpendicular to the surface of the recording medium layer, has been proposed as a high-density recording method, and is being put into practical use.

この垂直記録方式によると媒体内の隣り合う磁化では、
N、  S異極同士が並ぶので、減磁界が減少し強い残
留磁化が保持できるという性質を有し、このことから記
録波長が短くなる程減磁界が減少し又隣り合う異極の磁
化の間で吸引力が作用するため相互に磁化が強められる
ことになる。
According to this perpendicular recording method, adjacent magnetizations within the medium are
Since the N and S different poles are arranged side by side, the demagnetizing field is reduced and a strong residual magnetization can be maintained. Therefore, as the recording wavelength becomes shorter, the demagnetizing field decreases and the difference between the magnetization of adjacent different poles decreases. Since an attractive force acts on them, their mutual magnetization becomes stronger.

このように垂直磁気記録方式は、本質的に高密度記録に
適した方式といえる。この方式に用いられる記録媒体の
製法としては、例えば、Co −Cr合金のスパッター
法、真空蒸着法による薄膜形成法や、薄板状でC軸方向
に磁化容易軸を有する六方晶フェライト粉末をフィルム
などの支持体上に塗布する方法が提案されている。特に
塗布方式は、前者に比べて、生産性、耐久性の点で有利
とされていることから、実用化に向けて鋭意開発が進め
られている。この塗布方式による記録媒体では、その性
能が磁性層を形成している磁性体に強く依存することか
ら、該磁性体の特性向上が強く要望され、特に近年磁性
体にメタルを用いた塗布媒体の特性向上に著しい進歩が
あることから、従来の六方晶フェライト粉より更に、高
密度記録化に十分耐え得る磁性体の開発が強く望まれて
いる。
In this way, the perpendicular magnetic recording method can be said to be essentially a method suitable for high-density recording. The recording medium used in this method can be manufactured by, for example, using a Co-Cr alloy sputtering method, a thin film forming method using a vacuum evaporation method, or a thin film using hexagonal ferrite powder having an easy magnetization axis in the C-axis direction. A method of coating on a support has been proposed. In particular, the coating method is said to be advantageous in terms of productivity and durability compared to the former method, and therefore, intensive development is underway with a view to putting it into practical use. Since the performance of recording media using this coating method strongly depends on the magnetic material forming the magnetic layer, there is a strong demand for improving the characteristics of the magnetic material. Since remarkable progress has been made in improving properties, there is a strong desire to develop a magnetic material that can withstand even higher density recording than conventional hexagonal ferrite powder.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

このように、従来の六方晶フェライト粉末を用いた塗布
型垂直磁気記録媒体に比べて、−層の高密度記録化に十
分耐えるためには、磁性体の飽和磁化(σ )および残
留磁化(σ )を向上させS            
          「ることが必要である。
In this way, compared to conventional coated perpendicular magnetic recording media using hexagonal ferrite powder, it is necessary to increase the saturation magnetization (σ ) and residual magnetization (σ ) to improve S
``It is necessary to do so.

一般に垂直磁気記録媒体に用いられる六方晶系フェライ
ト粉の平均粒度は0.3庫以下で、BET値は30〜8
(W/gである。このように微粒子化が進むと、磁性粉
のσ の低下を招いて、高々54etsu/ g程度と
なり、更には角型比(SQ−σ /σ )が0.47未
満に低下し、結果としてS σ の低下を招くことになる。
Generally, the average particle size of hexagonal ferrite powder used in perpendicular magnetic recording media is 0.3 or less, and the BET value is 30 to 8.
(W/g. As the particle size progresses in this way, the σ of the magnetic powder decreases to about 54 etsu/g at most, and the squareness ratio (SQ-σ/σ) is less than 0.47. This results in a decrease in S σ .

このような六方晶フェライト微粒子のび を向上させる
方法として、特開昭60−255629にはバリウムフ
ェライト粒子表面を、マグネタイト層で変性させる方法
が開示されている。しかしながら、この場合飽和磁化が
向上するもの・の、粒子表面層に形成された軟磁性層に
より、角型比(SQ)の低下が避けられず、結果として
σ の向上は期待できない。
As a method for improving the growth of such hexagonal ferrite fine particles, Japanese Patent Laid-Open No. 60-255629 discloses a method of modifying the surface of barium ferrite particles with a magnetite layer. However, in this case, although the saturation magnetization is improved, a decrease in squareness ratio (SQ) is unavoidable due to the soft magnetic layer formed on the grain surface layer, and as a result, no improvement in σ can be expected.

更に、特開昭61−138923には、六方晶系フェラ
イト粉を還元性雰囲気で焼成することにより、同フェラ
イトに含有されているFe(Illlr)をFe(II
)に置換し、σ を向上させる方法が開示されている。
Furthermore, in JP-A-61-138923, Fe(Illr) contained in hexagonal ferrite powder is converted to Fe(II) by firing hexagonal ferrite powder in a reducing atmosphere.
) to improve σ is disclosed.

しかしながら、この場合Fe(II)の置換量が増加す
ることによりFe (In)  −Fe (II)  
−0系の量論的な原子価バランスが損なわれ磁気的に不
安定となることから、SQの劣化を招くことになる。
However, in this case, as the amount of Fe(II) substitution increases, Fe(In)-Fe(II)
The stoichiometric valence balance of the -0 series is impaired and becomes magnetically unstable, leading to deterioration of SQ.

このように、これまでの公知技術でσ を向上させる方
法では、どうしてもSQの低下が避けられず、結果とし
てσ 向上を期待することができなかった。
As described above, with the methods of improving σ using conventional techniques, a decrease in SQ cannot be avoided, and as a result, no improvement in σ can be expected.

したがって、SQの低下を伴なうことなく、σ を向上
させた新規なフェライト粉末を開発することが、発明が
解決しようとする課題である。
Therefore, the problem to be solved by the present invention is to develop a new ferrite powder with improved σ without a decrease in SQ.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の目的は垂直磁気記録媒体に好適で、高い飽和磁
化と残留磁化を有する新規なフェライト粉末を提供する
ことにある。
An object of the present invention is to provide a novel ferrite powder suitable for perpendicular magnetic recording media and having high saturation magnetization and residual magnetization.

従来垂直磁気記録媒体に用いられてきた六方晶フェライ
トは、 一般式:  MO−n (Fet−、M;)2 o3−
・・■〔但し、MはBa、Sr、Pb、Caからなる金
属元素のうち1種以上。M′は保磁力調整用金属元素。
The hexagonal ferrite conventionally used in perpendicular magnetic recording media has the general formula: MO-n (Fet-, M;)2 o3-
...■ [However, M is one or more of the metal elements consisting of Ba, Sr, Pb, and Ca. M' is a metal element for coercive force adjustment.

n−6〕 で表わされる組成をもつもので、マグネトブランバイト
型フェライトのFe(m)を他の金属元素で置換し保磁
力を調整したものであった。
n-6], and the coercive force was adjusted by replacing Fe(m) of magnetoblanbite type ferrite with another metal element.

しかしながら、上記組成を有し、且つ平均粒度が0.3
m以下のフェライト粉末に於いて、そのσ、を向上させ
ることは難しく、高々50〜54e■u/g程度にしか
ならなかった。一方、更にσ を向上させるための方法
として前出の特開昭S Go −255629、および特開昭61−13692
3に開示されている方法では、既に記載したように、S
Qの低下に伴い、結果としてσ の向上が期待できない
However, it has the above composition and an average particle size of 0.3
It is difficult to improve the σ of ferrite powder with a particle size of 50 to 54 e■u/g at most. On the other hand, as a method for further improving σ, the above-mentioned Japanese Patent Application Laid-Open No. Sho S Go-255629 and Japanese Patent Laid-Open No. 61-13692
In the method disclosed in 3, as already described, S
As Q decreases, no improvement in σ can be expected as a result.

本発明者らはこれらの問題点を解決するために研究を行
ない、下記0式により特定される新規な組成を有するフ
ェライト粉末を調製して試験をくり返し、これらがSQ
の低下がなく、高い飽和磁化及び高い残留磁化を示す新
規なフェライト粉末であることを確認して本発明を達成
した。
The present inventors conducted research to solve these problems, prepared ferrite powder having a new composition specified by the following formula 0, and repeated tests.
The present invention was achieved by confirming that this is a new ferrite powder that exhibits high saturation magnetization and high residual magnetization without any decrease in magnetization.

次に、本発明の新規なフェライト粉末について、更に詳
細に説明する。
Next, the novel ferrite powder of the present invention will be explained in more detail.

本発明のフェライト粉末を製造する方法は、■式に示さ
れる組成が得られる方法であれば、共沈法、フラックス
法、水熱合成法、ガラス結晶化法のいずれでもよい。例
えば水熱合成法による製造方法を以下に示す。
The method for producing the ferrite powder of the present invention may be any of the coprecipitation method, flux method, hydrothermal synthesis method, and glass crystallization method as long as the composition shown in formula (1) can be obtained. For example, a manufacturing method using a hydrothermal synthesis method is shown below.

先ず、原料の調整は 一般式: %式% Caから選ばれる1種以上の金属元素。M′はZr 、
 Ti 、 V、  Sn 、 W、 Nb カラ選ハ
tLル1種以上の金属元素。M′はCo、Cu、Zn。
First, the raw materials are prepared according to the general formula: % formula % One or more metal elements selected from Ca. M′ is Zr,
Ti, V, Sn, W, Nb One or more metal elements. M' is Co, Cu, and Zn.

Mn 、Mg 、Niから選ばれる1種以上の金属元素
。x、  y、  zは次に規定する範囲である二〇、
01< x≦0.03.  Q<y≦0.2.0<z≦
0.2〕で表わされるフェライト組成に基づいて所定比
率の金属成分が均一に混合された混合物をN2雰囲気中
で調整する。
One or more metal elements selected from Mn, Mg, and Ni. x, y, z are within the range specified below.
01<x≦0.03. Q<y≦0.2.0<z≦
A mixture in which metal components are uniformly mixed in a predetermined ratio based on the ferrite composition expressed as [0.2] is prepared in an N2 atmosphere.

組成式■に於いて6.3≦n≦9とするのは、nが6.
3未満では本発明の目的とする磁性粉末の飽和磁化、及
び角形比(SQ)の向上の両立が望めないからである。
In composition formula (■), 6.3≦n≦9 means that n is 6.3≦n≦9.
This is because if it is less than 3, it is not possible to achieve both the saturation magnetization and improvement of squareness ratio (SQ) of the magnetic powder, which are the objectives of the present invention.

またn>9では粒子の粗大化が進行し、粒径が0.5 
m以上となり高密度磁気記録用磁性粉として不適当とな
るためである。更に、Fe(n)含有量について0.0
1<x≦0.3としたのは、Xが0601以下の場合は
飽和磁化の向上の効果が望めず、Xが0.3より大とな
るほどにFe(II)が過剰の場合は軟磁性と思われる
非板状の異形粒子が生成し飽和磁化(よ向上するものの
角形比(SQ)が低下するためである。
In addition, when n>9, the particles become coarser and the particle size becomes 0.5
This is because the particle size exceeds m, making it unsuitable as a magnetic powder for high-density magnetic recording. Furthermore, 0.0 for Fe(n) content
The reason for setting 1<x≦0.3 is that if X is 0601 or less, no effect of improving saturation magnetization can be expected, and if X is larger than 0.3 and Fe(II) is excessive, soft magnetism This is because non-plate-like irregularly shaped particles are produced, and the saturation magnetization (although the saturation magnetization is improved considerably, the squareness ratio (SQ) is reduced).

また、該磁性粉の保磁力制御を目的として添加する金属
元素、すなわちM′としてはZr、TI。
Further, the metal elements added for the purpose of controlling the coercive force of the magnetic powder, ie, M', include Zr and TI.

V、  Sn 、 W、 Nbから選ばれる1種以上の
金属元素、M′としてはCo、Cu、Zn、Mn。
One or more metal elements selected from V, Sn, W, and Nb, and M' is Co, Cu, Zn, and Mn.

Mg、Niから選ばれる1種以上の金属元素を組み合わ
せることで保磁力の制御を行うことができる。
Coercive force can be controlled by combining one or more metal elements selected from Mg and Ni.

M′としてZrを選び、M′としてCo、CuおよびZ
nのうちから1種以上を選んだ組合せを保磁力制御用の
添加金属元素として使用するとき、特に効果が良好であ
り安定していることが確認された。
Zr is selected as M′, and Co, Cu and Z are selected as M′.
It was confirmed that when a combination of one or more selected from n is used as an additive metal element for coercive force control, the effect is particularly good and stable.

保磁力制御を目的として添加する金属元素の含有量をO
<y≦0.2.0<z≦0.2と限定した理由は、無添
加では保磁力が1500 (Oe)より大きくなり本発
明の要求を満足することができず、方0.2< y 、
  0.2< zでは保磁力が40(i (Oe)未満
となるからである。
The content of metal elements added for the purpose of coercive force control is O
The reason for limiting <y≦0.2.0<z≦0.2 is that without additives, the coercive force would be greater than 1500 (Oe) and the requirements of the present invention could not be satisfied. y,
This is because when 0.2<z, the coercive force becomes less than 40 (i (Oe)).

これらの金属成分を与える原料物質はハロゲン化物、硝
酸塩またはその他の水溶性金属塩または水酸化物のいず
れでもよい。そのさいに、全ての原料物質が水溶性金属
塩である場合の原料混合物は所定比率の金属イオンを含
む水溶液であり、方、原料物質として水酸化物を選ぶ原
料混合物はスラリー状の混合物となる。また、水溶性金
属塩と水酸化物を共存させる場合には、金属イオンと金
属水酸化物を含むスラリーとなる。なお、Fe(m)成
分を与える原料物質として、オキシ水酸化鉄も使用でき
る。
The raw materials providing these metal components may be halides, nitrates, other water-soluble metal salts, or hydroxides. At this time, when all the raw materials are water-soluble metal salts, the raw material mixture is an aqueous solution containing metal ions in a predetermined ratio, whereas when hydroxide is selected as the raw material, the raw material mixture is a slurry-like mixture. . Moreover, when a water-soluble metal salt and a hydroxide are allowed to coexist, a slurry containing metal ions and metal hydroxide is obtained. Note that iron oxyhydroxide can also be used as a raw material for providing the Fe(m) component.

次いで、この所定比率に調整された原料混合物とアルカ
リ(アルカリ物質を含むアルカリ溶液)とをN2雰囲気
゛中で接触せしめる。これによって、通常は沈殿が生成
してアルカリ性のスラリー状物質を得る。用いるアルカ
リ量は、スラリー中に酸根が存在するときは酸根に対す
るアルカリ当量比が1.0を越える量である。酸根が存
在しない場合には、上記の原料混合物とアルカリ溶液を
N2雰囲気中で接触させて得られたアルカリ性スラリー
状物質のpHが11.0以上となるようなアルカリ量で
ある。いずれにしても、アルカリ性スラリー状物質は金
属水酸化物とオキシ水酸化鉄を含むスラリー、またはこ
れらに金属イオンを含むスラリー状物質である。アルカ
リ量をこのような範囲に規定する理由はこの範囲外であ
るとフェライト相の生成量が著しく少なくなるからであ
る。
Next, the raw material mixture adjusted to a predetermined ratio is brought into contact with an alkali (an alkaline solution containing an alkaline substance) in an N2 atmosphere. This typically results in the formation of a precipitate, resulting in an alkaline slurry-like material. The amount of alkali used is such that when acid radicals are present in the slurry, the alkali equivalent ratio to acid radicals exceeds 1.0. When no acid radical is present, the amount of alkali is such that the pH of the alkaline slurry material obtained by contacting the raw material mixture and the alkaline solution in an N2 atmosphere is 11.0 or more. In any case, the alkaline slurry-like substance is a slurry containing metal hydroxide and iron oxyhydroxide, or a slurry-like substance containing metal ions in these. The reason for specifying the amount of alkali within this range is that outside this range, the amount of ferrite phase produced will be significantly reduced.

使用するアルカリ溶液は、NaOH,LiOH。The alkaline solutions used are NaOH and LiOH.

NH4OHの溶液若しくはこれらの混合溶液、またはそ
の他の強アルカリ性を示す物質を含む溶液から選ばれる
The solution is selected from a solution of NH4OH, a mixed solution thereof, or a solution containing another substance exhibiting strong alkalinity.

また、これらの操作は全てN2雰囲気中で行われるが、
その理由はFe(II)が酸化されてFe(III)と
なるのを防止するためである。
In addition, all of these operations are performed in an N2 atmosphere,
The reason for this is to prevent Fe(II) from being oxidized to Fe(III).

次いで、このようにして得られたアルカリ性スラリー状
物質に水熱処理を施す。その方法は次のように行われる
Next, the alkaline slurry material thus obtained is subjected to hydrothermal treatment. The method is performed as follows.

上記組成式■で表わされる所定比率の金属成分量を含む
アルカリ性スラリー状物質を、100℃を越えるH20
媒体中で且つ酸根に対するアルカリ当量比が1.0を越
える二のアルカリの存在下、又は反応系のpHが11以
上となるアルカリの存在下、更には0 を含まないN2
雰囲気下で水熱処理することによりフェライト粒子を生
成させる。ここで水熱処理とは、オートクレーブ中での
水を媒体としたフェライト合成反応を行うことを意味す
る。
An alkaline slurry-like material containing a predetermined ratio of metal components represented by the above composition formula
In the medium and in the presence of two alkalis with an alkali equivalent ratio of more than 1.0 to acid radicals, or in the presence of an alkali that makes the pH of the reaction system 11 or more, and furthermore, N2 that does not contain 0.
Ferrite particles are generated by hydrothermal treatment in an atmosphere. Here, hydrothermal treatment means performing a ferrite synthesis reaction using water as a medium in an autoclave.

オートクレーブ内でのフェライト化反応の反応温度につ
いては、100℃を越える温度、好ましくは120〜4
00℃が適当である。オートクレーブ内の温度が400
℃を越えると、超高圧となり経済的に不利である。同じ
<120℃未満ではフェライトの生成量が少なく、もは
や発明の目的を達し得ない。この温度および圧力の保持
時間は10時間以内で十分であり、場合によっては1時
間程度でも十分に目的が達せられる場合もある。
Regarding the reaction temperature of the ferritization reaction in the autoclave, the temperature is higher than 100°C, preferably 120°C to 4°C.
00°C is appropriate. The temperature inside the autoclave is 400℃.
If the temperature exceeds ℃, the pressure becomes extremely high, which is economically disadvantageous. If the temperature is lower than <120° C., the amount of ferrite produced is small and the object of the invention can no longer be achieved. It is sufficient to maintain this temperature and pressure for less than 10 hours, and in some cases even about 1 hour may be sufficient to achieve the purpose.

さらに水熱合成反応をN2雰囲気中で行う理由は、Fe
(II)のFe(m)への酸化を防止するためである。
Furthermore, the reason why the hydrothermal synthesis reaction is performed in an N2 atmosphere is that Fe
This is to prevent oxidation of (II) to Fe(m).

このようにして得られたフェライト粉末は化学分析の結
果から、前記組成式■に示される金属元素の組成比を満
足し、平均粒子径0.01〜04mの板状粒子であり、
またV S M al定の結果から該フェライト粉末の
飽和磁化値は55ca+u/g以上であり角形比は0.
47以上であった。このように角形比を低下させること
なく飽和磁化を高めた本発明の目標とする特性条件を満
足する高い残留磁化を持つフェライト粉末の製造が可能
であることが認められた。
According to the results of chemical analysis, the ferrite powder thus obtained satisfies the composition ratio of the metal elements shown in the above composition formula (2) and is plate-shaped particles with an average particle size of 0.01 to 0.04 m,
Further, from the results of V SM al determination, the saturation magnetization value of the ferrite powder is 55ca+u/g or more, and the squareness ratio is 0.
It was 47 or higher. It has thus been confirmed that it is possible to produce a ferrite powder with high residual magnetization that satisfies the target characteristic conditions of the present invention and has increased saturation magnetization without reducing the squareness ratio.

以下実施例により説明する。This will be explained below using examples.

〔実施例1〕 組成式 %式% になるように、3.37111oI/flのF e C
II a溶液259 ml、 347mofI/1)の
F e CI 2溶液37m1゜2.45IDoj7/
DのB a CI 2溶液37m1、水10100Oに
四塩化チタン24.20g、塩化亜鉛8.0Og、無水
塩化ニッケル8.87gを溶解した水溶液をN2雰囲気
中で十分混合せしめた後、常温にてこの混合溶液に18
.45a+oj! IIIのNaOH水溶液845m1
を添加し、褐色沈殿物を得た。
[Example 1] F e C of 3.37111 oI/fl so that the composition formula % formula %
II a solution 259 ml, 347mofI/1) of F e CI 2 solution 37ml 1° 2.45IDoj7/
After thoroughly mixing 37 ml of B a CI 2 solution of D, an aqueous solution of 24.20 g of titanium tetrachloride, 8.0 Og of zinc chloride, and 8.87 g of anhydrous nickel chloride dissolved in 10,100 O of water in an N2 atmosphere, the mixture was prepared at room temperature. 18 in the mixed solution
.. 45a+oj! III NaOH aqueous solution 845ml
was added to obtain a brown precipitate.

次いで、この混合物をオートクレーブ中N2雰囲気下で
400℃にて5時間反応させた。こうして得られた反応
生成物について十分な洗浄を施し、不純物を除去した後
、乾燥解粒を施し磁性粉末を得た。この粉末は形状が板
状であり、その平均粒子径は0.124であった。また
最大印加磁場10kOeによるVSM測定から、その飽
和磁化は57.5emu/g1残留磁化は27.2em
u/g−、保磁力はfi80(Oe)であった。
This mixture was then reacted for 5 hours at 400° C. under N2 atmosphere in an autoclave. The reaction product thus obtained was thoroughly washed to remove impurities, and then dried and granulated to obtain magnetic powder. This powder had a plate-like shape and an average particle size of 0.124. Also, from VSM measurement with a maximum applied magnetic field of 10 kOe, its saturation magnetization is 57.5 emu/g1 residual magnetization is 27.2 emu.
u/g-, coercive force was fi80 (Oe).

〔実施例2〕 組成式■において、Fe(II)の含有量、すなわちx
−0,1がx−0,05になるように原料の組成を変え
た以外は、実施例1と同一の操作及び評価を行った。こ
れらの組成条件及び特性を第1表に示した。
[Example 2] In the compositional formula (■), the content of Fe(II), that is, x
The same operations and evaluation as in Example 1 were performed except that the composition of the raw materials was changed so that -0,1 became x-0,05. The composition conditions and properties of these are shown in Table 1.

〔実施例3〕 組成式■において、n−7がn−8になるように原料の
組成を変えた以外は、実施例1と同一の操作及び評価を
行った。、これらの組成条件及び特性を第1表に示した
[Example 3] The same operations and evaluation as in Example 1 were performed except that in the composition formula (2), the composition of the raw materials was changed so that n-7 became n-8. , their compositional conditions and properties are shown in Table 1.

〔実施例4〕 組成式■において、y−o、tをy−0,12に、また
zmo、lをz=0.12になるように原料の組成を変
えた以外は、実施例1と同一の操作及び評価を行った。
[Example 4] Same as Example 1 except that in the composition formula (■), the composition of the raw materials was changed so that yo, t became y-0,12, and zmo, l became z=0.12. The same operations and evaluations were performed.

これらの組成条件及び特性を第1表に示した。The composition conditions and properties of these are shown in Table 1.

〔実施例5〕 に於いて、M−Ba 、M’ −Zr 、M’ −Zn
 +Cu 、  n−7,x−0,1、7=(1,1、
z−0,1になるように、3.371+loΩ/ΩのF
 e CI) a溶液259 ml、 347moff
 /ΩのFeCΩ2溶液37m1゜1.38IIloi
J /lのB a Cf) 2溶液85m1.水101
00Oにオキシ塩化ジルコニウム43.29g、塩化亜
鉛8.60g1塩化第2銅10.02gを溶解した水溶
液をN2雰囲気中で十分混合せしめた後、常温にてこの
混合溶液に18.45mojl) /DのNaOH水溶
液607 mlを添加し、褐色沈殿物を得た。
[Example 5] In M-Ba, M'-Zr, M'-Zn
+Cu, n-7,x-0,1,7=(1,1,
F of 3.371+loΩ/Ω so that z-0,1
e CI) a solution 259 ml, 347 moff
/Ω FeCΩ2 solution 37ml1゜1.38IIloi
J/l of B a Cf) 2 solution 85 ml. water 101
After thoroughly mixing an aqueous solution in which 43.29 g of zirconium oxychloride, 8.60 g of zinc chloride, and 10.02 g of cupric chloride were dissolved in 00O in an N2 atmosphere, 18.45 mojl/D of the mixed solution was added at room temperature. 607 ml of NaOH aqueous solution was added to obtain a brown precipitate.

次いで、この混合物をオートクレーブ中N2雰囲気下で
400℃にて5時間反応させた。こうして得られた反応
生成物について十分な洗浄を施し、不純物を除去した後
、乾燥解粒を施し磁性粉末を得た。この粉末は形状が板
状であり、その平均粒子径は0.06μsであった。ま
た最大印加磁場10kOeによるVSM11′Pl定か
ら、その飽和磁化は5B、8Bmu/g1残留磁化は2
8.1Bmu/g、保磁力は625(Oe)であった。
This mixture was then reacted for 5 hours at 400° C. under N2 atmosphere in an autoclave. The reaction product thus obtained was thoroughly washed to remove impurities, and then dried and granulated to obtain magnetic powder. This powder had a plate-like shape and an average particle diameter of 0.06 μs. Also, from the VSM11'Pl constant with the maximum applied magnetic field of 10 kOe, its saturation magnetization is 5B, and the residual magnetization of 8Bmu/g1 is 2.
The magnetic field was 8.1 Bmu/g, and the coercive force was 625 (Oe).

〔実施例6〕 組成式■において、Fe(If)の含有量、すなわちx
mO,lがx−0,05になるように原料の組成を変え
た以外は、実施例5と同一の操作及び評価を行った。こ
れらの組成条件及び特性を第1表に示した。
[Example 6] In the composition formula (■), the content of Fe (If), that is, x
The same operations and evaluation as in Example 5 were performed except that the composition of the raw materials was changed so that mO,l became x-0.05. The composition conditions and properties of these are shown in Table 1.

〔実施例7〕 組成式■において、n=7がnmgになるように原料の
組成を変えた以外は、実施例5と同一の操作及び評価を
行った。これらの組成条件及び特性を第1表に示した。
[Example 7] The same operations and evaluation as in Example 5 were performed except that in compositional formula (1), the composition of the raw materials was changed so that n=7 was nmg. The composition conditions and properties of these are shown in Table 1.

〔実施例8〕 組成式■において、Y−0,1をy−0,12に、また
ZaO,lをz−0,12になるように原料の組成を変
えた以外は、実施例5と同一の操作及び評価を行った。
[Example 8] Same as Example 5 except that in the composition formula (■), the composition of the raw materials was changed so that Y-0,1 was changed to y-0,12 and ZaO,l was changed to z-0,12. The same operations and evaluations were performed.

これらの組成条件及び特性を第1表に示した。The composition conditions and properties of these are shown in Table 1.

〔実施例9〕 組成式■において、M’=Co+Cuになるように原料
の組成を変えた以外は実施例5と同一の操作及び評価を
行った。これらの組成条件及び特性を第1表に示した。
[Example 9] The same operation and evaluation as in Example 5 were performed except that in the composition formula (2), the composition of the raw materials was changed so that M'=Co+Cu. The composition conditions and properties of these are shown in Table 1.

〔比較例1〕 組成式 %式% mol/IのB a Cj! 2溶液1181mlをN
2雰囲気下で十分に混合した後、常温にてこの混合液に
LB、45IIlof) /IIのNaOH溶液520
m1を添加し、褐色沈殿物を含む高アルカリ性スラリー
状物質を得た。次いでこのスラリー状物質をオートクレ
ーブ中N2雰囲気下で400℃にて5時間反応させた。
[Comparative Example 1] B a Cj of composition formula % formula % mol/I! 2 solution 1181ml with N
After thoroughly mixing under 2 atmospheres, add LB, 45IIof)/II NaOH solution 520 to this mixture at room temperature.
ml was added to obtain a highly alkaline slurry containing a brown precipitate. This slurry material was then reacted in an autoclave at 400°C under N2 atmosphere for 5 hours.

こうして得られた反応生成物について十分な洗浄を施し
不純物を除去した後、乾燥解粒を施しフェライト粉末を
得た。
The reaction product thus obtained was thoroughly washed to remove impurities, and then dried and granulated to obtain ferrite powder.

得られたフェライト粉末は透過型電子顕微鏡による観察
の結果、板状粒子よりなりその平均粒度は0.45虜で
あった。
As a result of observation using a transmission electron microscope, the obtained ferrite powder was found to consist of plate-shaped particles with an average particle size of 0.45 mm.

また最大印加゛磁場10kOcによるVSM測定から、
その飽和磁化は34.2ctsu/ g s残留磁化は
13.7cfllu/g1また保磁力は1730(Oc
)であった。
Also, from VSM measurement with the maximum applied magnetic field of 10 kOc,
Its saturation magnetization is 34.2 ctsu/gs, residual magnetization is 13.7 cfllu/g1, and coercive force is 1730 (Oc
)Met.

〔比較例2〕 組成式 %式% 化チタン24.20g、塩化亜鉛8.130[、塩化第
二銅10.62gを溶解した水溶液をN2雰囲気中で十
分混合せしめた後、常温にてこの混合溶液に18.45
troll/りのNaOH水溶液850m1を添加し、
褐色沈殿物を得た。
[Comparative Example 2] Composition Formula % Formula % An aqueous solution in which 24.20 g of titanium chloride, 8.130 g of zinc chloride, and 10.62 g of cupric chloride were dissolved was thoroughly mixed in an N2 atmosphere, and then the mixture was heated at room temperature. 18.45 in solution
Add 850ml of NaOH aqueous solution,
A brown precipitate was obtained.

次いで、この混合物をオートクレーブ中N2雰囲気下で
400℃にて5時間反応させた。こうして得られた反応
生成物について十分な洗浄を施し、不純物を除去した後
、乾燥解粒を施し磁性粉末を得た。この粉末は形状が板
状であり、その平均粒子径は0612ρであった。また
最大印加磁場LOkOeによるVSMal11定から、
その飽和磁化は53.5emu/g1残留磁化は24.
2emu/g、その保磁力は810(Oe)であった。
This mixture was then reacted for 5 hours at 400° C. under N2 atmosphere in an autoclave. The reaction product thus obtained was thoroughly washed to remove impurities, and then dried and granulated to obtain magnetic powder. This powder had a plate-like shape and an average particle size of 0612ρ. Also, from the VSMal11 constant due to the maximum applied magnetic field LOkOe,
Its saturation magnetization is 53.5 emu/g1 and its residual magnetization is 24.
2 emu/g, and its coercive force was 810 (Oe).

〔比較例3〕 組成式 %式% になるように、3.37tnoll /flのF e 
Cj! a溶液259 ml、 3.37mojJ /
(lのFeCΩ2溶液37m1゜3J5mojJ /1
’のB a CI) 2溶液31m1.水10100O
に四塩化チタン24.20g、塩化亜鉛8.60g、無
水塩化ニッケル8.87gを溶解した水溶液をN2雰囲
気中で十分混合せしめた後、常温にてこの混合溶液に1
8.45+noff /flのNaOH水溶液650m
1を添加し、褐色沈殿物を得た。
[Comparative Example 3] Fe of 3.37tnoll/fl was added so that the composition formula %formula%
Cj! a solution 259 ml, 3.37 mojJ /
(l of FeCΩ2 solution 37ml 1゜3J5mojJ /1
'B a CI) 2 solution 31 ml. Water 10100O
After thoroughly mixing an aqueous solution in which 24.20 g of titanium tetrachloride, 8.60 g of zinc chloride, and 8.87 g of anhydrous nickel chloride were dissolved in N2 atmosphere, 1% of this mixed solution was added at room temperature.
8.45+noff/fl NaOH aqueous solution 650ml
1 was added to obtain a brown precipitate.

次いで、この混合物をオートクレーブ中N2雰囲気下で
400℃にて5時間反応させた。こうして得られた反応
生゛放物について十分な洗浄を施し、不純物を除去した
後、乾燥解粒を施し磁性粉末を得た。この粉末は形状が
板状であり、その平均粒子径は0.0!llumであっ
た。また最大印加磁場10kOeによるVSM測定から
、その飽和磁化は55.8eIIlu/g1残留磁化は
24.5etnu/ g s保磁力は755(Oe)で
あった。
This mixture was then reacted for 5 hours at 400° C. under N2 atmosphere in an autoclave. The reaction product thus obtained was thoroughly washed to remove impurities, and then dried and granulated to obtain magnetic powder. This powder has a plate-like shape, and its average particle size is 0.0! It was llum. Further, VSM measurement with a maximum applied magnetic field of 10 kOe revealed that the saturation magnetization was 55.8eIIlu/g1, the residual magnetization was 24.5etnu/gs, and the coercive force was 755 (Oe).

〔効  果〕〔effect〕

従来、塗布型の垂直磁気記録媒体に用いられてきた一般
式■を有する六方晶フェライトは、その組成を有し、且
つ平均粒度0.3−以下のフェライト粉末として製造す
るとき、σ を向上させることが困難であって高々50
〜54emu/ gのものしか得られなかった。特別の
処理によってそのσ を高めようとして開発された種々
の方法はSQの低下を伴ない、結果としてσ の向上が
期待できな「 かった。これに対し、前記一般式■で特定される新規な
組成のフェライト粉末である本発明のフェライト粉末は
SQの低下を伴なうことなく得られたび の高められた
フェライト粉末であって高密度記録用として好適なフェ
ライト粉末である。このような特性を持つ本発明のフェ
ライト粉末は、目標組成が前記一般式■で表わされる組
成となるように原料物質を配合することによって、各種
の公知の方法で容易に製造することができるが、特に制
御された反応条件の下に、オートクレーブ中にて100
℃を越える温度で行なう水熱合成によって好都合に製造
され得る。
The hexagonal ferrite having the general formula (2), which has been conventionally used in coated perpendicular magnetic recording media, has this composition and improves σ when manufactured as a ferrite powder with an average particle size of 0.3- or less. It is difficult to
Only ~54 emu/g was obtained. Various methods developed to increase σ through special treatments have resulted in a decrease in SQ, and as a result, no improvement in σ can be expected.On the other hand, the new method specified by the general formula The ferrite powder of the present invention, which is a ferrite powder with a composition such as The ferrite powder of the present invention can be easily produced by various known methods by blending raw materials so that the target composition becomes the composition represented by the general formula 100 in an autoclave under the same reaction conditions.
They may be conveniently prepared by hydrothermal synthesis carried out at temperatures above .degree.

Claims (2)

【特許請求の範囲】[Claims] 1.一般式: MO・n(Fe^(III)_1_−_x_−_y_−_
zFe^(II)_xM′_yM″_z)_2O_3・・
・(1)〔但し、式中のMはBa,Sr,PbおよびC
aからなる群より選ばれる1種以上の金属元素を表わし
、M′はV,Sn,Ti,Zr,WおよびNbからなる
群より選ばれる1種以上の金属元素を表わし、M″はM
n,Zn,Cu,Co,NiおよびMgからなる群より
選ばれる1種以上の金属元素を表わし、nは6.3≦n
≦9の数値を表わし、x,y,zはそれぞれ下記の式:
0.01<x≦0.3,0<y≦0.2,0<z≦0.
2を満足する数値を表わす。〕 で表わされる組成をもつ高密度記録用フェライト粉末。
1. General formula: MO・n(Fe^(III)_1_-_x_-_y_-_
zFe^(II)_xM'_yM″_z)_2O_3...
・(1) [However, M in the formula is Ba, Sr, Pb and C
M′ represents one or more metal elements selected from the group consisting of a, M′ represents one or more metal elements selected from the group consisting of V, Sn, Ti, Zr, W and Nb, and M″ represents M
represents one or more metal elements selected from the group consisting of n, Zn, Cu, Co, Ni and Mg, where n is 6.3≦n
Represents a numerical value of ≦9, and x, y, and z are each expressed by the following formula:
0.01<x≦0.3, 0<y≦0.2, 0<z≦0.
Represents a numerical value that satisfies 2. ] A ferrite powder for high-density recording having a composition expressed by:
2.前記一般式(1)におけるM′がZrであり、M″
がCo,CuおよびZnからなる群より選ばれる1種以
上の金属元素である請求項1記載のフェライト粉末。
2. M′ in the general formula (1) is Zr, and M″
The ferrite powder according to claim 1, wherein is one or more metal elements selected from the group consisting of Co, Cu and Zn.
JP63270634A 1988-10-28 1988-10-28 Ferrite powder for high density recording Expired - Lifetime JPH0647469B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63270634A JPH0647469B2 (en) 1988-10-28 1988-10-28 Ferrite powder for high density recording

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63270634A JPH0647469B2 (en) 1988-10-28 1988-10-28 Ferrite powder for high density recording

Publications (2)

Publication Number Publication Date
JPH02120235A true JPH02120235A (en) 1990-05-08
JPH0647469B2 JPH0647469B2 (en) 1994-06-22

Family

ID=17488819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63270634A Expired - Lifetime JPH0647469B2 (en) 1988-10-28 1988-10-28 Ferrite powder for high density recording

Country Status (1)

Country Link
JP (1) JPH0647469B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63270636A (en) * 1987-04-28 1988-11-08 Takeda Chem Ind Ltd Production of concentrated solution of fumaric acid
JPS63270635A (en) * 1987-04-30 1988-11-08 Nippon Shokubai Kagaku Kogyo Co Ltd Production of 1,4-naphthoquinone

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63270636A (en) * 1987-04-28 1988-11-08 Takeda Chem Ind Ltd Production of concentrated solution of fumaric acid
JPS63270635A (en) * 1987-04-30 1988-11-08 Nippon Shokubai Kagaku Kogyo Co Ltd Production of 1,4-naphthoquinone

Also Published As

Publication number Publication date
JPH0647469B2 (en) 1994-06-22

Similar Documents

Publication Publication Date Title
US4778734A (en) Barium ferrite magnetic powder and magnetic recording medium containing the same
US4820433A (en) Magnetic powder for magnetic recording
JPS5856232A (en) Magnetic recording medium
JPH02283622A (en) Platy complex ferrite fine particle powder for magnetic recording and production thereof
JPH02120235A (en) Ferrite powder for high density recording
JPH0359007B2 (en)
JPH02120237A (en) Ferrite powder for high density recording having small temperature dependency of coercive force
JPH0247209A (en) Production of fine platy barium ferrite powder
JP3429881B2 (en) Composite type hexagonal ferrite magnetic powder and method for producing the same
JPH02120236A (en) Ferrite powder for high density recording
JP3328017B2 (en) Method for producing acicular hexagonal ferrite magnetic powder having perpendicular magnetic anisotropy
JPH0614486B2 (en) Plate-shaped composite ferrite fine particle powder for magnetic recording and method for producing the same
JPH0717385B2 (en) Method for producing composite ferrite magnetic powder
JPH04362019A (en) Ferritic magnetic powder and its production
JP2958369B2 (en) Method for producing composite ferrite magnetic powder
JPH0712933B2 (en) Magnetic powder for magnetic recording
JP3011787B2 (en) Acicular hexagonal ferrite magnetic powder and method for producing the same
JP2651795B2 (en) Method for producing ferromagnetic fine powder for magnetic recording
JPS6260209A (en) Manufacture of hexagonal system ferrite magnetic powder
JPH04362020A (en) Ferritic magnetic powder and its production
JPH0669017A (en) Manufacture of compound ferrite magnetic powder
JPH01123403A (en) Planer magnetoplumbite type ferrite fine-grain powder for magnetic recording
JPH05319831A (en) Ferrite magnetic powder and its production
JPH0677034A (en) Method of manufacturing compound ferrite magnetic particles
JPS63260107A (en) Magnetic powder for magnetic recording

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090622

Year of fee payment: 15

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090622

Year of fee payment: 15

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090622

Year of fee payment: 15