JPH02118077A - Manufacture of oxide molded body and oxide pattern formation - Google Patents

Manufacture of oxide molded body and oxide pattern formation

Info

Publication number
JPH02118077A
JPH02118077A JP26943488A JP26943488A JPH02118077A JP H02118077 A JPH02118077 A JP H02118077A JP 26943488 A JP26943488 A JP 26943488A JP 26943488 A JP26943488 A JP 26943488A JP H02118077 A JPH02118077 A JP H02118077A
Authority
JP
Japan
Prior art keywords
oxide
pattern
molded body
ultraviolet rays
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26943488A
Other languages
Japanese (ja)
Inventor
Takao Kimura
隆男 木村
Shuichi Shibata
修一 柴田
Hisaaki Okazaki
岡崎 久晃
Takeshi Kitagawa
毅 北川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP26943488A priority Critical patent/JPH02118077A/en
Publication of JPH02118077A publication Critical patent/JPH02118077A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers

Abstract

PURPOSE:To easily manufacture an oxide molded body and an oxide pattern molding by irradiating a molded body of a composition composed principally of fine oxide grains and specific photosensitive resin or the above composition on which a mask of the prescribed pattern is placed with ultraviolet rays, removing an unexposed part and then carrying out solidification by heating. CONSTITUTION:A composition 3 prepared by adding photosensitive resin 2, such as polyester acrylate or methacrylate, to fine grains 1 of oxide, such as SiO2, ZrO2, TiO2, BaTiO3, LiNbO3, and SeO2, is put into a vessel 4 and irradiated with ultraviolet rays from a mercury lamp to undergo solidification and the resulting solid matter 5 is sintered so as to be formed into an oxide molded body 6, or, the above composition 3 is applied to a substrate 7, such as glass plate, to form a film 8 and a photomask 9 is allowed to adhere to the above film 8, and these are irradiated with ultraviolet rays, and then, an unexposed part is removed by means of organic solvent, etc., and an exposed part is solidified by heating and subjected to sintering, by which a pattern consisting of oxide can be easily formed.

Description

【発明の詳細な説明】 る。[Detailed description of the invention] Ru.

実施例1 テトラエトキシシラン、塩酸およびエタノールの混合溶
液を4時間還流した。次にこの溶液に水とエタノールを
加えさらに8時間還流した。室温まで6却した後、この
溶液にアジド系の光開始剤およびエチレングリコールジ
メタクリレート(平均分子全豹330)を所定の割合で
加え組成物とした。
Example 1 A mixed solution of tetraethoxysilane, hydrochloric acid and ethanol was refluxed for 4 hours. Next, water and ethanol were added to this solution, and the mixture was further refluxed for 8 hours. After cooling to room temperature, an azide-based photoinitiator and ethylene glycol dimethacrylate (average molecular weight: 330) were added to the solution at predetermined ratios to form a composition.

次にこの組成物をガラス基板上に約0.5μ山の厚さに
塗布し溶媒を除去した後、高圧水銀ランプにより塗布さ
れた組成物に紫外線を照射した。さらに常温から徐々に
800℃まで加熱し、800℃でガラス化させることに
より、酸化物成形体を得た。酸化物からなるパターンを
形成するには紫外線を照射する際に、塗布された組成物
の上に所定のパターンのマスクを載置し、未露光部を除
去してから加熱してガラス化する。
Next, this composition was applied onto a glass substrate to a thickness of about 0.5 μm, and after removing the solvent, the applied composition was irradiated with ultraviolet rays using a high-pressure mercury lamp. Furthermore, an oxide molded body was obtained by gradually heating from room temperature to 800°C and vitrifying at 800°C. To form a pattern made of oxide, when irradiating ultraviolet rays, a mask with a predetermined pattern is placed on top of the applied composition, the unexposed areas are removed, and then heated to vitrify.

第3図は本実施例におけるガラス微粒子とポリエチレン
グリコールジアクリレートからなる組成物における加熱
温度と膜)ゾの残率との関係を示す。ここで、1模厚の
残率とは、基板上に塗布した組成物の厚さと、加熱して
ガラス化した後の厚さとの比である。曲線Aはカラス微
粒子とポリエチレングリコールジメタクリレートの混合
比(重量比)=+/+の場合を示し、曲線Bは混合比(
重量比)=1/2を示す。膜厚の残率は混合比が1/1
のときの方か高く、いずれの混合比の場合も400℃−
800℃の加熱温度において膜厚の残率がほぼ一定にな
っている。
FIG. 3 shows the relationship between the heating temperature and the residual rate of the film in the composition comprising glass fine particles and polyethylene glycol diacrylate in this example. Here, the residual ratio of 1 thickness is the ratio between the thickness of the composition applied onto the substrate and the thickness after vitrification by heating. Curve A shows the case where the mixing ratio (weight ratio) of crow fine particles and polyethylene glycol dimethacrylate = +/+, and curve B shows the case where the mixing ratio (weight ratio) = +/+.
Weight ratio)=1/2. The remaining film thickness is at a mixing ratio of 1/1.
400℃-
At a heating temperature of 800° C., the remaining film thickness remains almost constant.

火胤聞ス テトラエトキシシラン、エタノールおよび希アンモニア
水を混合した後、70℃で1週間反応させた。得られた
反応溶液を濃縮しシリカガラスの濃度が70零(計数値
)になるように調節した。この溶液にシリカガラスの5
0重量%のポリエチレングリコールジアクリレート(平
均分子量:536)およびポリエチレングリコルジアク
リレートの3%のアセトフェノン系の光開始剤を加え十
分混合した。
After mixing the tetraethoxysilane, ethanol, and dilute ammonia water, the mixture was reacted at 70° C. for one week. The obtained reaction solution was concentrated and the concentration of silica glass was adjusted to 70 zero (count value). Add silica glass to this solution.
0% by weight of polyethylene glycol diacrylate (average molecular weight: 536) and 3% of the acetophenone photoinitiator of polyethylene glycol diacrylate were added and thoroughly mixed.

この混合物を一端が閉じた直径70a+mのガラス管に
入れ脱気した後、高圧水銀ランプにより紫外線を照射し
た。得られた成形物を11高105℃で乾燥した後、ヘ
リウム−酸素混合雰囲気中で常温から徐々に1350℃
まで加熱し、1350℃でガラス化して直径400mの
透明ガラスロフトを得た。
This mixture was placed in a glass tube with a diameter of 70 m+ with one end closed, degassed, and then irradiated with ultraviolet rays using a high-pressure mercury lamp. After drying the obtained molded product at 11 high and 105°C, it was gradually heated from room temperature to 1350°C in a helium-oxygen mixed atmosphere.
and vitrified at 1350°C to obtain a transparent glass loft with a diameter of 400 m.

1広±1 シリカガラス微粒子(比表面積約200m’/g 、商
品名しオロジル10)、3%の2.2−ジメトキシ−2
−フェニルアセトフェノンを含むポリプロピレングリコ
ールジアクリレートからなる組成物を150 x 15
0 mmの石英ガラス製容器に入れ、乾燥した後、紫外
線照射し組成物のシートを得た。次にこのシートをヘリ
ウム−酸素混合7囲気中で常温から徐々に1350℃ま
で加熱し、1350℃でガラス化して石英ガラス板を得
た。
1 wide ± 1 silica glass fine particles (specific surface area approximately 200 m'/g, trade name: Orozil 10), 3% 2.2-dimethoxy-2
- 150 x 15 compositions of polypropylene glycol diacrylate containing phenylacetophenone
The mixture was placed in a 0 mm quartz glass container, dried, and then irradiated with ultraviolet rays to obtain a sheet of the composition. Next, this sheet was gradually heated from room temperature to 1350°C in a helium-oxygen mixed atmosphere, and vitrified at 1350°C to obtain a quartz glass plate.

火五■4 光開始剤としての6gの2.2−ジメトキシ−2−フェ
ニルアセトフェノンを含むポリプロピレングリコールジ
アクリレート200g、テトラエトキシシランの加水分
解・重縮合によって得たシリカガラス微粒子200gお
よびポリエチレングリコール50gを」−分混合し、混
合物を石英ガラス基板上に厚さI mm1.:塗布した
後、溝幅2μm、深さ約500人、ヒ゛ツチ5μmのパ
ターンが描かれている金型により、組成物にこのパター
ンを転写した後、紫外線を照射し固化した。次にヘリウ
ム−酸素の混合容囲気中で常温から徐々に1200℃ま
で加熱し固化物を1200℃でガラス化した。金型のパ
ターンとほぼ同等のパターンのガラス成形体が得られた
Fire 5 ■4 200 g of polypropylene glycol diacrylate containing 6 g of 2,2-dimethoxy-2-phenylacetophenone as a photoinitiator, 200 g of silica glass fine particles obtained by hydrolysis/polycondensation of tetraethoxysilane, and 50 g of polyethylene glycol. - minutes and spread the mixture onto a quartz glass substrate to a thickness of I mm1. After coating, this pattern was transferred to the composition using a mold in which a pattern with a groove width of 2 μm, a depth of approximately 500 mm, and a hitch of 5 μm was drawn, and then ultraviolet rays were irradiated to solidify the composition. Next, the solidified product was vitrified at 1200°C by gradually heating from room temperature to 1200°C in a helium-oxygen mixed atmosphere. A glass molded body with a pattern almost the same as that of the mold was obtained.

また、混合物を石英ガラス基板上に厚さ200μmに塗
布した後、溝幅2μm、ピッチ5μmのパターンが描か
れているフォトマスクを用い、高圧水銀ランプにより紫
外線を照射した。未露光部をメチルエチル、ケトンで除
去したのち、ヘリウム−酸素の混合霊囲気中で常温から
徐々に1200℃まで加熱し1200℃でガラス化した
。得られたパターンはフォトマスクのパターンとほぼ同
等であった。
Further, after the mixture was applied to a thickness of 200 μm on a quartz glass substrate, ultraviolet rays were irradiated with a high-pressure mercury lamp using a photomask on which a pattern with a groove width of 2 μm and a pitch of 5 μm was drawn. After removing the unexposed area with methyl ethyl and ketone, it was heated gradually from room temperature to 1200°C in a helium-oxygen mixed atmosphere and vitrified at 1200°C. The pattern obtained was almost equivalent to the pattern of the photomask.

実施例5 テトラエトキシシラン、トリブトキシボロン。Example 5 Tetraethoxysilane, tributoxyboron.

エタノールおよび塩酸水溶液を混合した(テトラエトキ
シシランとトリブトキシボロンのモル比=872)。所
定時間反応させた後実施例4と同様な方法によフてパタ
ーンが転写されたガラス成形体および酸化物のパターン
を得た。なお木実層側においては最高加熱温度、すなわ
ち常温から徐々に温度を上げていったときの到達温度は
600℃であった。
Ethanol and an aqueous hydrochloric acid solution were mixed (molar ratio of tetraethoxysilane to tributoxyboron=872). After reacting for a predetermined period of time, the same method as in Example 4 was used to obtain a glass molded body and an oxide pattern onto which the pattern was transferred. Note that on the nut layer side, the maximum heating temperature, that is, the temperature reached when the temperature was gradually raised from room temperature was 600°C.

衷妻0址旦 テトラエトキシシラン、エタノールおよび希アンモニア
水を混合した後70℃で2週間反応させた。得られた反
応m液を濃縮しシソ力の濃度が70〜(計数値)になる
ように調節した。この溶液にシリカの50重量%のポリ
エチレングリコールジアクリレート(平均分子量:53
B) 、ポリエチレングリコルジアクリレートを3重量
%含むアセトフェノン系光開始剤を加え十分混合した。
After mixing tetraethoxysilane, ethanol and dilute ammonia water, the mixture was reacted at 70°C for two weeks. The obtained reaction mixture was concentrated and adjusted to have a perilla concentration of 70 to (count value). Add 50% by weight of silica to this solution of polyethylene glycol diacrylate (average molecular weight: 53).
B) An acetophenone photoinitiator containing 3% by weight of polyethylene glycoldiacrylate was added and thoroughly mixed.

この混合物を一端が閉じた直径70mmのガラス管に入
れ脱気した後、高圧水銀ランプにより紫外線を照射した
。得られた成形物を常温から徐々に105℃まで温度を
上げていき105℃で乾燥した後、ヘリウム、酸素、塩
素および4フッ化シリコン混合雰囲気中で常温から徐々
に1350℃まで加熱し、直径40m+nのフッ素添加
石英ガラス中空ロットを得た。
This mixture was placed in a glass tube with a diameter of 70 mm with one end closed, degassed, and then irradiated with ultraviolet rays using a high-pressure mercury lamp. The temperature of the obtained molded product was gradually raised from room temperature to 105°C, dried at 105°C, and then heated gradually from room temperature to 1350°C in a mixed atmosphere of helium, oxygen, chlorine, and silicon tetrafluoride. A 40m+n fluorine-doped quartz glass hollow lot was obtained.

次にこの中空ガラスロッドを外側から酸水素バーナで加
熱することにより中実化し、シングルモード光ファイバ
母材を得た。この母材を炭素抵抗発熱体を熱源とする線
引き機により線引きした。波長1.3μmにおける伝送
損失は0.4dB/ka+であった。
Next, this hollow glass rod was heated from the outside with an oxyhydrogen burner to make it solid, thereby obtaining a single mode optical fiber preform. This base material was drawn using a wire drawing machine using a carbon resistance heating element as a heat source. The transmission loss at a wavelength of 1.3 μm was 0.4 dB/ka+.

実施例7 等モルのL!0C2Hs とNb (OC2H51、を
エタノール中に加え24時間還流し、ダブルアルコキシ
ド溶液を調製した。このダブルアルコキシドにダブルア
ルコキシドと等モルの水を含むエタノール溶液を加え、
12時間常温で反応させた後24時開運流した。
Example 7 Equimolar L! 0C2Hs and Nb (OC2H51) were added to ethanol and refluxed for 24 hours to prepare a double alkoxide solution. To this double alkoxide was added an ethanol solution containing water in an equimolar amount to the double alkoxide.
After reacting at room temperature for 12 hours, the reactor was turned on at 24 hours.

溶液を濃縮した後、この溶液にLiNbO3の30重量
%のポリエチレングリコールジメタクリレート(平均分
子fi:560)およびポリエチレングリコールジメタ
クリレートを3型皿%含むアジド系光開始剤を加え十分
混合した。
After concentrating the solution, an azide photoinitiator containing 30% by weight of LiNbO3 polyethylene glycol dimethacrylate (average molecular fi: 560) and 3% polyethylene glycol dimethacrylate was added and thoroughly mixed.

次に混合溶液中にサファイア基板を浸漬し乾燥した後、
溝幅2μm、深さ約500人、ピッチ5μmのパターン
が描かれている金型により、組成物にパターンを転写し
た後、紫外線照射により固化した。次に酸素−ヘリウム
−水蒸気の混合雰囲気中で400℃で加熱した。金型の
パターンとほぼ同等のパターンのセラミック成形体が得
られた。
Next, after immersing the sapphire substrate in the mixed solution and drying it,
The pattern was transferred to the composition using a mold in which a pattern with a groove width of 2 μm, a depth of approximately 500 mm, and a pitch of 5 μm was drawn, and then solidified by ultraviolet irradiation. Next, it was heated at 400°C in a mixed atmosphere of oxygen-helium-steam. A ceramic molded body with a pattern almost the same as that of the mold was obtained.

また、混合溶液中にサファイア基板を浸漬し、乾燥した
後、溝幅2μm、ピッチ5μmのパターンが描かれてい
るフォトマスクを用い、紫外線照射した。未露光部をN
、N−ジメチルフォルムアミドで除去した後、酸素−ヘ
リウム−水蒸気の混合雰囲気中で400℃で加熱し、フ
ォトマスクとほぼ同等のLiNb0.のパターンを得た
Further, a sapphire substrate was immersed in the mixed solution, dried, and then irradiated with ultraviolet rays using a photomask on which a pattern with a groove width of 2 μm and a pitch of 5 μm was drawn. N the unexposed area
, N-dimethylformamide, and then heated at 400°C in a mixed atmosphere of oxygen, helium, and water vapor to form a LiNb0. I got the pattern.

友A■旦 バリウムイソプロポキシドのイソプロパツール(fg液
およびチタンイソプロポキシドのイソプロパツールi8
 Fj、をこの2種類のアルコキシドのモル比が1:!
になるように混合した。
Friend A ■ Barium isopropoxide isopropanol (FG liquid and titanium isopropoxide isopropanol i8
Fj, the molar ratio of these two types of alkoxides is 1:!
mixed so that

次にこの混合溶液を窒累気流中で6時間V流した後、水
を加え3時間還流を続けた。室温に冷却し24時間放1
11シた後溶液を濃縮し、この溶液に、BaTiO3の
20重量%のポリエチレングリコールジメタクリレート
(平均分子皿約560)およびポリエチレングリコール
ジメタクリレートの3重量%のアジド系光開始剤を加え
十分混合した。
Next, this mixed solution was passed through a nitrogen stream for 6 hours, and then water was added and reflux was continued for 3 hours. Cool to room temperature and leave for 24 hours.
After 11 hours, the solution was concentrated, and 20% by weight of BaTiO3 polyethylene glycol dimethacrylate (average molecular plate approximately 560) and an azide-based photoinitiator of 3% by weight of polyethylene glycol dimethacrylate were added and mixed thoroughly. .

次に混合?8?rIi中に石英基板を浸漬し乾燥した後
、溝幅2μm、深さ約500人、ピッチ5μmのパター
ンが描かれている金型により組成物にパターンを転写し
た後、高圧水銀ランプにより紫外線を照射して固化した
。次に酸素−ヘリウム−水蒸気の混合7囲気中で800
℃で加熱した。このようにして金型のパターンとほぼ同
等のパターンのセラミック成形体が得られた。
Mixed next? 8? After immersing the quartz substrate in rIi and drying it, the pattern was transferred to the composition using a mold in which a pattern with a groove width of 2 μm, a depth of approximately 500 mm, and a pitch of 5 μm was drawn, and then ultraviolet rays were irradiated with a high-pressure mercury lamp. and solidified. Then, in a mixed atmosphere of oxygen-helium-water vapor, 800
Heated at ℃. In this way, a ceramic molded body having a pattern almost identical to that of the mold was obtained.

また、混合溶液中に石英基板を浸漬して石英基板上に層
を形成し乾燥した後、溝幅2μm、ピッチ5μmのパタ
ーンが1箔かれているフォトマスクを上述の層の上に載
置し、高圧水銀ランプにより紫外線を照射した。未露光
部を除去した後、酸素−ヘリウム−水蒸気の混合7囲気
中で800℃で加熱し、フォトマスクとほぼ同等のBa
Ti0*のパターンを得た。
Also, after immersing a quartz substrate in the mixed solution to form a layer on the quartz substrate and drying it, a photomask on which a pattern with a groove width of 2 μm and a pitch of 5 μm is formed is placed on the above layer. , ultraviolet rays were irradiated with a high-pressure mercury lamp. After removing the unexposed area, it is heated at 800°C in a mixed atmosphere of oxygen, helium, and water vapor to make Ba almost equivalent to the photomask.
A pattern of Ti0* was obtained.

なお本実施例においては主としてSiO□ガラス膜につ
いて取り上げたが、先導波回路形成のため、実施例1で
述べた方法で基板上にF(フッ素)添加されたSin2
層を形成し、次いで実施例4の方法により、例えばY分
岐の回路パターンのSin、層を形成し、さらにその上
部にクラットとしてのF−Sin2ガラス層を形成する
ことにより、例えばY分岐先導波回路を形成するような
実施例を複合した方法も本発明の意図するものである。
Although this example mainly deals with the SiO□ glass film, in order to form a leading wave circuit, a SiO□ glass film doped with F (fluorine) was used on the substrate using the method described in Example 1.
Then, by the method of Example 4, for example, a Y-branch circuit pattern of a Sin layer is formed, and an F-Sin2 glass layer as a crat is formed on top of the Sin layer, for example, a Y-branch leading wave. Methods of combining such embodiments to form circuits are also contemplated by the present invention.

[発明の効果] 以上説明したように、本発明は酸化物微粒子と感光性樹
脂とからなる組成物を用い、光照射によりてパターンを
形成するため、大型のガラスやあるいは精密なガラス体
やセラミック体が成形でき、製造工程が極めて簡単であ
り、また、?311雑なパターンが容易に形成できる利
点がある。
[Effects of the Invention] As explained above, the present invention uses a composition consisting of oxide fine particles and a photosensitive resin to form a pattern by light irradiation, so it is possible to form a pattern on large glass or precision glass bodies or ceramics. The body can be molded, the manufacturing process is extremely simple, and... 311 has the advantage that a rough pattern can be easily formed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の酸化物成形体の製造プロセスを示す模
式図、 第2図は本発明によるパターン形成のプロセスを示す模
式図、 第3図は実施例1におけるガラス粉末とポリエチレング
リコールジアクリレートの混合比(重量比)と膜厚の関
係を示す図である。 1・・・酸化物微粒子、 2・・・感光性樹脂、 3・・・組成物、 4・・−容器、 5・・・固化物、 6・・・酸化物成形体、 7・・・基板、 8・・・月莫、 9・・・フォトマスク。 lO・・・酸化物微粒子膜。
Fig. 1 is a schematic diagram showing the manufacturing process of the oxide molded body of the present invention, Fig. 2 is a schematic diagram showing the pattern forming process according to the present invention, and Fig. 3 is the glass powder and polyethylene glycol diacrylate in Example 1. It is a figure showing the relationship between the mixing ratio (weight ratio) and film thickness. DESCRIPTION OF SYMBOLS 1... Oxide fine particles, 2... Photosensitive resin, 3... Composition, 4...-Container, 5... Solidified product, 6... Oxide molded body, 7... Substrate , 8...Monday Mo, 9...Photomask. lO: Oxide fine particle film.

Claims (1)

【特許請求の範囲】 1)酸化物微粒子および感光性樹脂を含む組成物に光を
照射して固化体を作製する工程と、該固化体を加熱する
工程とを含むことを特徴とする酸化物成形体の製造方法
。 2)酸化物微粒子および感光性樹脂を含む組成物に所定
のパターンのマスクを載置して光を照射する工程と、該
照射によって得られた露光部および未露光部のうちの未
露光部を除去し、前記露光部を加熱する工程とを含むこ
とを特徴とする酸化物パターン形成方法。
[Claims] 1) An oxide characterized by comprising the steps of: irradiating a composition containing oxide fine particles and a photosensitive resin with light to produce a solidified body; and heating the solidified body. Method for manufacturing a molded object. 2) A step of placing a mask with a predetermined pattern on a composition containing oxide fine particles and a photosensitive resin and irradiating it with light; A method for forming an oxide pattern, comprising the steps of: removing the exposed portion; and heating the exposed portion.
JP26943488A 1988-10-27 1988-10-27 Manufacture of oxide molded body and oxide pattern formation Pending JPH02118077A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26943488A JPH02118077A (en) 1988-10-27 1988-10-27 Manufacture of oxide molded body and oxide pattern formation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26943488A JPH02118077A (en) 1988-10-27 1988-10-27 Manufacture of oxide molded body and oxide pattern formation

Publications (1)

Publication Number Publication Date
JPH02118077A true JPH02118077A (en) 1990-05-02

Family

ID=17472381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26943488A Pending JPH02118077A (en) 1988-10-27 1988-10-27 Manufacture of oxide molded body and oxide pattern formation

Country Status (1)

Country Link
JP (1) JPH02118077A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57200209A (en) * 1981-06-03 1982-12-08 Hitachi Ltd Composition for forming metal oxide coating and the process for forming the same
JPS59155038A (en) * 1983-02-23 1984-09-04 東レ株式会社 Inorganic coating film and manufacture thereof
JPH01197303A (en) * 1988-01-29 1989-08-09 Murata Mfg Co Ltd Production of multiple oxide thin film
JPH01313329A (en) * 1988-06-13 1989-12-18 Mitsubishi Metal Corp Production of thin film of compound metal oxide

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57200209A (en) * 1981-06-03 1982-12-08 Hitachi Ltd Composition for forming metal oxide coating and the process for forming the same
JPS59155038A (en) * 1983-02-23 1984-09-04 東レ株式会社 Inorganic coating film and manufacture thereof
JPH01197303A (en) * 1988-01-29 1989-08-09 Murata Mfg Co Ltd Production of multiple oxide thin film
JPH01313329A (en) * 1988-06-13 1989-12-18 Mitsubishi Metal Corp Production of thin film of compound metal oxide

Similar Documents

Publication Publication Date Title
JP3040278B2 (en) Method for producing product made of high silica glass
US7589040B2 (en) Doped silica glass articles and methods of forming doped silica glass boules and articles
KR20080107299A (en) Titania-doped quartz glass for nanoimprint molds
US5932498A (en) Magnet and method for manufacturing a magnet
JP2002060227A (en) Method for manufacturing synthetic quartz glass, synthetic quartz glass and synthetic quartz glass substrate
US5919280A (en) Method for fabricating silica glass
JPH02118077A (en) Manufacture of oxide molded body and oxide pattern formation
JPH0812442A (en) Slurry for ceramic composite material and method for molding the same
JP2000191329A (en) Production of optical quartz glass for excimer laser
JPH0891940A (en) Optical molding method for ceramic
JPH06329460A (en) Method for optical forming of ceramic
JP3582093B2 (en) Method for producing silica glass
JP2897861B2 (en) Nonlinear optical silica glass and method for producing the same
JP3408567B2 (en) Synthetic silica glass and method for producing the same
JPH02271928A (en) Production of glass
JPH05147950A (en) Production of glass
JP2002121035A (en) METHOD FOR PRODUCING SiO2-TiO2 GLASS HAVING LOW COEFFICIENT OF THERMAL EXPANSION, AND THE GLASS
JPH0733259B2 (en) Ultraviolet-resistant synthetic quartz glass and method for producing the same
Mendoza et al. Photolithographic imaging of planar optical waveguides and integrated optic devices onto porous silicate glasses and silica sol-gels
JP3787850B2 (en) Silica glass and method for producing the same
JPH02199033A (en) Production of optical glass
JPS6049301A (en) Manufacture of light guide
JPH0393636A (en) Production of glass
JPH03174330A (en) Production of glass
JPS638228A (en) Production of quartz glass