JPH02117703A - Manufacture of iron-nickel base alloy material for shadow mask - Google Patents

Manufacture of iron-nickel base alloy material for shadow mask

Info

Publication number
JPH02117703A
JPH02117703A JP27075188A JP27075188A JPH02117703A JP H02117703 A JPH02117703 A JP H02117703A JP 27075188 A JP27075188 A JP 27075188A JP 27075188 A JP27075188 A JP 27075188A JP H02117703 A JPH02117703 A JP H02117703A
Authority
JP
Japan
Prior art keywords
iron
shadow mask
temp
segregation
alloy material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27075188A
Other languages
Japanese (ja)
Other versions
JPH0569601B2 (en
Inventor
Norio Yuki
典夫 結城
Morinori Kamio
守則 神尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP27075188A priority Critical patent/JPH02117703A/en
Publication of JPH02117703A publication Critical patent/JPH02117703A/en
Publication of JPH0569601B2 publication Critical patent/JPH0569601B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)

Abstract

PURPOSE:To manufacture an alloy material for shadow masks restraining generation of stripe nonuniformity in etching work by continuously casting an iron- nickel base alloy material with the alloy electromagnetically agitated and hot rolling the material after heating at a specific temp. CONSTITUTION:The cause generating stripe nonuniformity in piercing by etching work for shadow masks is component segregation of nickel, manganese, etc. Electromagnetic agitation at a state near to the solidification point in continuous casting is performed to prevent the segregation. A material is heated at a temp. of 1100-1400 deg.C and is hot rolled to cancel component segregation by diffusion. If the temp. is lower than 1100 deg.C, the cancellation of component segregation by diffusion is not sufficient; if the temp. exceeds 1400 deg.C, oxidization is markedly increased stripe nonuniformity caused by component segregation is canceled, etching holes are accurately pierced, and a continuously cast material having advantages in manufacturing cost is usable for precision shadow masks.

Description

【発明の詳細な説明】 本発明は、カラーテレビブラウン管のシャドウマスク用
鉄−ニッケル基合金材料の製造方法に関するものであり
、特には電子ビーム通過用の孔を穿孔するためのエツチ
ング時のスジむらの発生を抑制しうるシャドウマスク用
鉄−ニッケル基合金材料の製造方法に関する。本発明に
従い製造されたシャドウマスク材料は、高精細マスクの
作製を可能とし、高品位カラーテレビやコンピューター
のデイスプレィ用シャドウマスク分野で有益に利用され
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing an iron-nickel based alloy material for a shadow mask of a color television cathode ray tube, and in particular, it relates to a method for manufacturing an iron-nickel based alloy material for a shadow mask of a color television cathode ray tube. The present invention relates to a method for manufacturing an iron-nickel based alloy material for a shadow mask that can suppress the occurrence of. The shadow mask material produced according to the present invention enables the production of high-definition masks and is advantageously utilized in the field of shadow masks for high-definition color television and computer displays.

1孔立11 カラーテレビブラウン管のシャドウマスク材としては一
般に軟鋼(リムド鋼あるいはアルミキルド鋼)が知られ
ている。カラーテレビブラウン管内では電子銃から出る
電子ビームがシャドウマスクの微小孔を通過して蛍光ス
クリーン上の所定の点に精密に照射されて,特定の色調
を与える。ところが、電子ビームは全部シャドウマスク
の微小孔を通過するわけではなく、シャドウマスクの微
小孔を通過せずにシャドウマスクに射突する電子ビーム
によってシャドウマスクは加熱される.そのため、シャ
ドウマスクは、熱膨張により、いわゆるドーミングと呼
ばれる変形を起こす.その結果、シャドウマスクと蛍光
スクリーンとの位置関係にずれが起り、電子ビームが正
確に蛍光スクリ−ンに照射されなくなり、色純度が低下
するという問題があった。
1 Hole Stand 11 Mild steel (rimmed steel or aluminum killed steel) is generally known as a shadow mask material for color television cathode ray tubes. In a color television cathode ray tube, an electron beam from an electron gun passes through the tiny holes in a shadow mask and is precisely irradiated onto a predetermined point on the fluorescent screen, giving it a specific color tone. However, not all of the electron beams pass through the small holes in the shadow mask, and the shadow mask is heated by the electron beams that strike the shadow mask without passing through the small holes in the shadow mask. Therefore, the shadow mask undergoes a deformation called doming due to thermal expansion. As a result, there is a problem in that the positional relationship between the shadow mask and the fluorescent screen is misaligned, so that the electron beam cannot be accurately irradiated onto the fluorescent screen, resulting in a decrease in color purity.

この問題を解決するために、熱膨張係数の小さいアンバ
ーのような鉄−ニッケル基合金をシャドウマスク材とし
て使用することが提案された。
To solve this problem, it has been proposed to use an iron-nickel based alloy such as invar, which has a small coefficient of thermal expansion, as a shadow mask material.

1米且l しかし、このような鉄−ニッケル基合金シャドウマスク
材を通常の製造工程、例えばリードフレーム用42合金
材と同様の製造工程(連続鋳造(電磁撹拌なし)−熱間
圧延−酸洗、研摩−冷間圧延一焼鈍一冷間圧延、以降所
定板厚まで焼鈍、冷間圧延を適宜繰り返す)で製造する
と、シャドウマスク材に電子ビーム通過用の孔を穿孔す
るためのエツチングをした際スジむらが発生した。この
スジむらは、エツチングしたシャドウマスクを透過光(
斜光)で観察すると、圧延方向と平行に多数のスジが見
える現象である。軟鋼でも圧延方向と平行にスジが発生
することがあるが、これは軟鋼中の非金属介在物が原因
であることがわかっている。しかし、アンバーのような
鉄−ニッケル基合金の場合には1合金中の非金属介在物
を減少させてもスジむらは消失せず、鉄−ニッケル基台
金固宵の原因があると考えられ、改善が望まれていた。
However, such an iron-nickel based alloy shadow mask material can be manufactured using the same manufacturing process as 42 alloy material for lead frames (continuous casting (no electromagnetic stirring) - hot rolling - pickling). , polishing - cold rolling - annealing - cold rolling, then annealing and cold rolling to a predetermined thickness are repeated as appropriate). Uneven streaks occurred. These uneven streaks are caused by the etched shadow mask being exposed to transmitted light (
When observed under oblique light, many streaks appear parallel to the rolling direction. Even in mild steel, streaks may occur parallel to the rolling direction, but it is known that this is caused by nonmetallic inclusions in the mild steel. However, in the case of iron-nickel-based alloys such as Amber, the streaks do not disappear even if the non-metallic inclusions in the alloy are reduced, and it is thought that this is the cause of the iron-nickel-based metal hardness. , improvement was desired.

そこで、本件出願人は先に、鉄−ニッケル基合金材のス
ジむらについて種々の研究を行ない、その結果、スジむ
らの原因はニッケル、マンガン等の成分偏析であり、偏
析部は母材部とエツチング性に差があるため、エツチン
グ孔壁面に凹凸ができ、これらがスジ状に見えることを
解明した。そこで、本件出願人は、この偏析によるスジ
むらを解消するために、鉄−ニッケル基合金インゴット
を850℃以上で且つ融点以下の温度で加熱し、1ヒー
ト又は2ヒ一ト以上で、断面現象率40%以上の条件で
鍛造する製造方法を提案し5た(特開昭6O−1282
53)。
Therefore, the applicant first conducted various studies on streak unevenness in iron-nickel base alloy materials, and found that the cause of streak unevenness is segregation of components such as nickel and manganese, and that the segregated area is different from the base material. It was discovered that due to the difference in etching properties, unevenness occurs on the etching hole wall surface, and these appear as stripes. Therefore, in order to eliminate the unevenness of streaks caused by this segregation, the applicant heated an iron-nickel based alloy ingot at a temperature of 850°C or higher and below the melting point, and in one heat or two or more heats, the cross-sectional phenomenon proposed a manufacturing method of forging under conditions of 40% or more (Japanese Patent Application Laid-Open No. 6O-1282).
53).

が      よ  と  る 上記鍛造方法により確かにスジむら解消の効果は得られ
た。しかし、特にドーミングによる色純度の低下が問題
になる高精細のコンピューターのデイスプレィ用シャド
ウマスクでは、まだ、十分スジむらが解消できない問題
があった。また、前記鍛造を行なう方法であると1作業
性が悪く、インゴットを連続鋳造で製造するわけにはい
かないので、コスト的にも不利であった。
The forging method described above certainly had the effect of eliminating streak unevenness. However, shadow masks for high-definition computer displays, where reduction in color purity due to doming is a particular problem, still have the problem of not being able to sufficiently eliminate streaks. In addition, the forging method has poor workability and cannot produce ingots by continuous casting, which is disadvantageous in terms of cost.

従って、本発明の目的は、連続鋳造の採用を可能ならし
める、コスト的に有利な方法でエツチング時のスジむら
発生を一層充分に解消する方法を新たに開発することで
ある。
Accordingly, an object of the present invention is to develop a new method for more fully eliminating the occurrence of streaks during etching in a cost-effective manner that makes it possible to employ continuous casting.

l豆立互1 本発明者らは、これらの問題について種々の検討を行っ
た結果、偏析は主に鋳造スラブの中心部で起こることが
判明し、その為、加熱法が基本的には最も効果的との結
論に達した。しかし、連続鋳造により製造したスラブを
加熱し、成分偏析によるスジむらを完全に解消するため
には、加熱時間を非常に長くしなければならず、コスト
的に問題なうえ、スラブの酸化が重大な問題となる。そ
こで、検討を重ねたところ、鋳造時に電磁撹拌を行うこ
とで、加熱時の酸化問題を伴わず、成分偏析によるスジ
むらを完全に解消することに成功した。鋳造時の撹拌効
果と加熱による拡散効果をうまく利用することにより、
スジむらの完全解消が実現されたのである。
As a result of various studies on these problems, the present inventors found that segregation mainly occurs in the center of the cast slab, and therefore the heating method is basically the most effective method. The conclusion was reached that it was effective. However, in order to completely eliminate uneven streaks caused by component segregation by heating slabs manufactured by continuous casting, the heating time must be extremely long, which not only poses a cost problem but also causes serious oxidation of the slab. This becomes a problem. After repeated studies, we succeeded in completely eliminating the unevenness of streaks caused by component segregation by using electromagnetic stirring during casting, without the problem of oxidation during heating. By making good use of the stirring effect during casting and the diffusion effect of heating,
The complete elimination of uneven streaks has been achieved.

この知見に基づいて、本発明は、電磁撹拌を行いながら
連続鋳造した鉄−ニッケル基合金材料を1100〜14
00℃の温度に加熱しそして熱間圧延を行うことを特徴
とする、エツチング時のスジむらの発生を抑制しうるシ
ャドウマスク用鉄−ニッケル基合金材料の製造方法を提
供する。
Based on this knowledge, the present invention has developed an iron-nickel based alloy material continuously cast while performing electromagnetic stirring.
Provided is a method for producing an iron-nickel based alloy material for a shadow mask which can suppress the occurrence of streak unevenness during etching, which is characterized by heating to a temperature of 0.000C and hot rolling.

I豆ユ且婆正f1 本発明において、「鉄−ニッケル基台金」とはニッケル
を30〜45重量%含有する材料を基本とし、適宜Cr
lMn%Co、Ti、V、Nb。
In the present invention, "iron-nickel base metal" is basically a material containing 30 to 45% by weight of nickel, and Cr as appropriate.
lMn%Co, Ti, V, Nb.

Zr、Mo、Al、W等の副成分や添加材を5重量%ま
で添加したものを包括する。
This includes those containing up to 5% by weight of subcomponents and additives such as Zr, Mo, Al, and W.

シャドウマスクの一般的製造工程は次の通りである: 材料の溶解及び鋳造後適宜の圧延等の工程を経由し、そ
して最終冷間加工にて所定の厚さを有するシャドウマス
ク素材が製造される。シャドウマスク素材はエツチング
穿孔加工されてフラットマスクとなる。フラットマスク
は焼鈍されてプレス成形性を付与されその後プレスによ
り球面成形される0球面成形されたマスクは、黒化処理
を施されてシャドウマスクとなる。プレス成形性を付与
する焼鈍を最終圧延直後に実施する方式もあり、これは
プレアニール法と呼ばれている。もう少し詳しく説明す
ると、先ずシャドウマスク素材の製造方法として鉄−ニ
ッケル基合金材料を例えばVOD炉で溶製後、インゴッ
トに鋳造し、鍛造後熱間圧延及び冷間圧延し、その後焼
鈍と冷間圧延を繰り返し、所定の厚みまで最終冷間圧延
が施される。その後、スリットして所定板幅としてシャ
ドウマスク素材を得る。シャドウマスク素材は、脱脂後
、フォトレジストを両面に塗布しそしてパターンを焼付
けて現像後、エツチング液にてエツチング穿孔加工され
、個々に切断されてフラットマスクとなる。
The general manufacturing process for a shadow mask is as follows: After melting and casting the material, it goes through appropriate steps such as rolling, and then undergoes final cold working to produce a shadow mask material having a predetermined thickness. . The shadow mask material is etched and perforated to form a flat mask. The flat mask is annealed to give it press formability, and then pressed to form a spherical surface.The zero-spherical mask is subjected to a blackening treatment to become a shadow mask. There is also a method in which annealing to impart press formability is performed immediately after final rolling, and this is called a pre-annealing method. To explain in more detail, the method for manufacturing the shadow mask material is to first melt an iron-nickel based alloy material in a VOD furnace, cast it into an ingot, forge it, then hot-roll and cold-roll it, and then annealing and cold-rolling it. This process is repeated until final cold rolling is performed to a predetermined thickness. Thereafter, it is slit to obtain a shadow mask material having a predetermined width. After degreasing, the shadow mask material is coated with photoresist on both sides, a pattern is baked and developed, and then etched and perforated with an etching solution and cut into individual flat masks.

フラットマスクは、非酸化性雰囲気中で焼鈍されてプレ
ス成形性を付与される(プレアニール法ではこの焼鈍が
エツチング前に最終冷間圧延材に行われる)。レベラー
加工を経た後、プレスによりマスク、形態に球面成形さ
れる。
The flat mask is annealed in a non-oxidizing atmosphere to impart press formability (in pre-annealing this annealing is performed on the final cold rolled material before etching). After leveling, it is pressed into a spherical shape into a mask.

そして最後に1球面成形されたマスクは、脱脂後、水蒸
気又は燃焼ガス雰囲気中で黒化処理を施されて表面に黒
色酸化膜を形成する。こうしてシャドウマスクが作製さ
れる。
Finally, the one-spherical mask is degreased and then subjected to a blackening treatment in a steam or combustion gas atmosphere to form a black oxide film on the surface. In this way, a shadow mask is produced.

更には、前述の様な製造工程を取らず、エツチング穿孔
後のフラットマスクについて再結晶焼鈍やプレスによる
球面成形を行わないで、張力を付加した状態でフレーム
等に固定し黒化処理後ブラウン管に組み込む製造方式も
ある。
Furthermore, without using the manufacturing process described above, and without recrystallizing the flat mask after perforation by recrystallization or forming it into a spherical surface by pressing, it is fixed to a frame etc. under tension, and after being blackened, it is attached to a cathode ray tube. There is also a manufacturing method that incorporates it.

次に本発明を構成する条件の限定理由を説明する。Next, the reasons for limiting the conditions constituting the present invention will be explained.

本発明においては、連続鋳造時に電磁撹拌により、板厚
中心部に発生する偏析を板厚方向に分散させることを特
徴とするものであり、その結果、爾後の加熱により容易
に成分偏析の解消を可能ならしめたものである。電磁撹
拌は、溶融金属に強い磁場を適用し同時に鋳型の両端に
置かれた電極に直流を流すことにより、電流の通じる溶
融金属中に生じる磁場と外部磁場との相互作用によって
攪拌効果を得るものである。電磁撹拌は中心部偏析の低
減に非常に有効な手段である。従って、電磁撹拌はでき
るだけ凝固位置に近いところで行うのが好ましい。電磁
攪拌は、連続鋳造性を損なわない程度に行なえばよく、
撹拌の程度は、設備、処理容量等に応じて適宜決定され
うる。
The present invention is characterized by using electromagnetic stirring during continuous casting to disperse the segregation that occurs in the center of the plate thickness in the thickness direction, and as a result, the component segregation can be easily eliminated by subsequent heating. This made it possible. Electromagnetic stirring is a method in which a strong magnetic field is applied to the molten metal and at the same time a direct current is passed through electrodes placed at both ends of the mold, creating a stirring effect through the interaction between the magnetic field generated in the molten metal through which the current flows and an external magnetic field. It is. Electromagnetic stirring is a very effective means of reducing center segregation. Therefore, it is preferable to carry out electromagnetic stirring as close to the solidification position as possible. Electromagnetic stirring can be carried out to the extent that it does not impair continuous casting.
The degree of stirring can be determined as appropriate depending on the equipment, processing capacity, etc.

次に、成分偏析を拡散により解消するための加熱条件で
あるが、1100℃未満では成分偏析の拡散による解消
が十分でなく、他方1400℃を超えると極(短時間で
も酸化が著しくなるため、加熱温度は1100〜140
0℃とする。尚、この加熱は成分偏析の拡散と熱間圧延
のための加熱を兼ねることが製造コスト上からも好まし
い。
Next, regarding the heating conditions for eliminating component segregation by diffusion, if it is less than 1100°C, the elimination of component segregation by diffusion will not be sufficient, while if it exceeds 1400°C, the heating conditions will be extremely high (oxidation will become significant even in a short time). Heating temperature is 1100-140
The temperature shall be 0°C. Note that it is preferable from the viewpoint of manufacturing cost that this heating also serves as heating for diffusion of component segregation and heating for hot rolling.

以上のような方法を用いれば、従来中心偏析が強くシャ
ドウマスク用としては不適当だった連続鋳造による製造
が可能になり、従来不可欠であった鍛造工程を省略する
ことができる。
By using the method described above, it becomes possible to manufacture by continuous casting, which was conventionally unsuitable for shadow masks due to strong center segregation, and it is possible to omit the forging process, which was conventionally indispensable.

こうして偏析低減のための電磁撹拌を行いながら鋳造し
、偏析解消のための条件で熱間圧延を行った後、酸洗い
、冷間圧延及び再結晶焼鈍を所要数繰り返し、最終冷間
圧延を行い、シャドウマスク用素材とする。
After casting with electromagnetic stirring to reduce segregation and hot rolling under conditions to eliminate segregation, pickling, cold rolling, and recrystallization annealing are repeated the required number of times, followed by final cold rolling. , used as a material for shadow masks.

この後、前述したように、電子ビーム通過用の孔がエツ
チングにより穿孔されるが、この際に本発明によればス
ジむらの発生が最大限に抑制されるのである。
Thereafter, as described above, a hole for passing the electron beam is formed by etching, and at this time, according to the present invention, the occurrence of uneven streaks can be suppressed to the maximum extent.

次に実施例及び比較例を示し、本発明の詳細な説明する
Next, examples and comparative examples will be shown to provide a detailed explanation of the present invention.

〈実施例及び比較例〉 鉄−ニッケル基合金としてはアンバー(36%Ni−残
Fe)を用いた。合金はVOD炉で溶製後、電磁撹拌有
りと無しの2種類の方法で連続鋳造した(スラブ厚15
0mm)。
<Examples and Comparative Examples> Amber (36% Ni-remaining Fe) was used as the iron-nickel based alloy. The alloy was melted in a VOD furnace and then continuously cast using two methods: with and without electromagnetic stirring (slab thickness 15
0mm).

次に、第1表に示す各種条件で熱間圧延を行い板厚5m
mとした。
Next, hot rolling was performed under various conditions shown in Table 1, and the plate thickness was 5 m.
It was set as m.

その後、酸洗、冷間圧延、焼鈍、冷間圧延、焼鈍、冷間
圧延により、板厚0.1.5 m mのシャドウマスク
素材を製造した。
Thereafter, a shadow mask material having a plate thickness of 0.1.5 mm was manufactured by pickling, cold rolling, annealing, cold rolling, annealing, and cold rolling.

このようにして製造された素材を実際に高精細マスクに
エツチング穿孔し、スジむらの評価を行った。その結果
を第1表に併せて示す。
The material thus produced was actually etched into a high-definition mask, and the streak unevenness was evaluated. The results are also shown in Table 1.

及旦目と1呆 このように、鉄−ニッケル基合金材料を電磁撹拌を行い
ながら連続鋳造した後、特定の条件で熱間圧延すること
により支障なく成分偏析によるスジむらを解消すること
ができる。このため、エツチング孔を精密に生成出来、
しかも、製造コスト上有利な連続鋳造材が高精細マスク
として使用できるようになり、カラーテレビやコンピュ
ーターデイスプレィ用カラーブラウン管の高画質化と低
コスト化に大きく貢献する。
First and foremost, by continuously casting an iron-nickel based alloy material with electromagnetic stirring and then hot rolling it under specific conditions, it is possible to eliminate streaks caused by component segregation without any problems. . For this reason, etching holes can be created precisely.
Moreover, continuous casting materials, which are advantageous in terms of production cost, can now be used as high-definition masks, greatly contributing to higher image quality and lower costs for color cathode ray tubes for color televisions and computer displays.

第1表から明らかなように、本発明例は高精細マスクに
おいてもスジむらを発生しない。
As is clear from Table 1, the examples of the present invention do not cause uneven streaks even in high-definition masks.

Claims (1)

【特許請求の範囲】[Claims] 1)電磁撹拌を行いながら連続鋳造した鉄−ニッケル基
合金材料を1100〜1400℃の温度に加熱しそして
熱間圧延を行うことを特徴とする、エッチング時のスジ
むらの発生を抑制しうるシャドウマスク用鉄−ニッケル
基合金材料の製造方法。
1) A shadow that can suppress the occurrence of uneven streaks during etching, which is characterized by heating an iron-nickel base alloy material continuously cast with electromagnetic stirring to a temperature of 1100 to 1400°C and then hot rolling it. A method for manufacturing an iron-nickel based alloy material for masks.
JP27075188A 1988-10-28 1988-10-28 Manufacture of iron-nickel base alloy material for shadow mask Granted JPH02117703A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27075188A JPH02117703A (en) 1988-10-28 1988-10-28 Manufacture of iron-nickel base alloy material for shadow mask

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27075188A JPH02117703A (en) 1988-10-28 1988-10-28 Manufacture of iron-nickel base alloy material for shadow mask

Publications (2)

Publication Number Publication Date
JPH02117703A true JPH02117703A (en) 1990-05-02
JPH0569601B2 JPH0569601B2 (en) 1993-10-01

Family

ID=17490472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27075188A Granted JPH02117703A (en) 1988-10-28 1988-10-28 Manufacture of iron-nickel base alloy material for shadow mask

Country Status (1)

Country Link
JP (1) JPH02117703A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6547893B1 (en) 1999-06-10 2003-04-15 Nippon Yakin Kogyo Co., Ltd. Fe-Ni based material for shadow mask
US7833570B2 (en) 2007-07-09 2010-11-16 Sony Corporation Dimensional stabilization of precision etched masks

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6056053A (en) * 1983-09-07 1985-04-01 Nippon Mining Co Ltd Iron-nickel alloy for shadow mask which suppresses generation of uneven stripe during etching
JPS613835A (en) * 1984-06-19 1986-01-09 Nippon Mining Co Ltd Manufacture of fe-ni alloy
JPS6364514A (en) * 1986-09-04 1988-03-23 株式会社日本ピツト Flat wiring taking out tool

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6056053A (en) * 1983-09-07 1985-04-01 Nippon Mining Co Ltd Iron-nickel alloy for shadow mask which suppresses generation of uneven stripe during etching
JPS613835A (en) * 1984-06-19 1986-01-09 Nippon Mining Co Ltd Manufacture of fe-ni alloy
JPS6364514A (en) * 1986-09-04 1988-03-23 株式会社日本ピツト Flat wiring taking out tool

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6547893B1 (en) 1999-06-10 2003-04-15 Nippon Yakin Kogyo Co., Ltd. Fe-Ni based material for shadow mask
US7833570B2 (en) 2007-07-09 2010-11-16 Sony Corporation Dimensional stabilization of precision etched masks
US7972442B2 (en) 2007-07-09 2011-07-05 Sony Corporation Photoplate for OLED deposition screen

Also Published As

Publication number Publication date
JPH0569601B2 (en) 1993-10-01

Similar Documents

Publication Publication Date Title
JPS6164853A (en) Base material for pipe parts and its manufacture
JPS61223188A (en) Iron-nickel alloy for shadow mask which suppresses generation of uneven stripe during etching
JPS60128253A (en) Manufacture of iron-nickel alloy for shadow mask which inhibits streaking during etching
JPH02117703A (en) Manufacture of iron-nickel base alloy material for shadow mask
JP3505055B2 (en) Steel plate for shadow mask, shadow mask and picture tube
JPS6364514B2 (en)
JPH03191024A (en) Manufacture of iron-nickel base alloy stock for shadow mask
JPH03191023A (en) Manufacture of iron-nickel base alloy stock for shadow mask
JP2597994B2 (en) Amber alloy for shadow mask
JP3615300B2 (en) Method for producing shadow mask material without uneven stripes
JP2799166B2 (en) Manufacturing method of shadow mask
JP3073734B1 (en) Method of manufacturing Fe-Ni alloy material for shadow mask
JPH1180839A (en) Production of low thermal expansion alloy thin sheet for electronic parts excellent in effect of suppressing unevenness in stripe
JP3401307B2 (en) Material for shadow mask excellent in recrystallization characteristics and manufacturing method
JPH0250919A (en) Production of iron-nickel based alloy material for shadow mask
JP2793544B2 (en) Shadow mask, color picture tube using the same, method of producing original amber alloy plate for shadow mask, and method of producing this shadow mask
JP3509643B2 (en) Low thermal expansion alloy steel slab excellent in etchability after thinning and method for producing the same
JPH0687398B2 (en) Method for manufacturing shed mask
JPH0251973B2 (en)
JP3401308B2 (en) Shadow mask material excellent in warm pressability and manufacturing method
JPH09241743A (en) Production of iron-nickel alloy sheet for shadow mask
JPS63286524A (en) Production of shadow mask
JPH0778270B2 (en) Method for producing Fe-Ni based alloy excellent in streak unevenness suppressing effect during etching
JP2002035804A (en) Method for manufacturing thin steel plate for high- strength shadow mask or aperture grill
JP2000096190A (en) Stock for shadow mask, free from striped irregularity at etching, and its manufacture