JPS63286524A - Production of shadow mask - Google Patents

Production of shadow mask

Info

Publication number
JPS63286524A
JPS63286524A JP12019387A JP12019387A JPS63286524A JP S63286524 A JPS63286524 A JP S63286524A JP 12019387 A JP12019387 A JP 12019387A JP 12019387 A JP12019387 A JP 12019387A JP S63286524 A JPS63286524 A JP S63286524A
Authority
JP
Japan
Prior art keywords
annealing
shadow mask
steel sheet
rolled steel
etching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12019387A
Other languages
Japanese (ja)
Inventor
Morinori Kamio
守則 神尾
Norio Yuki
典夫 結城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd, NKK Corp, Nippon Kokan Ltd filed Critical Nippon Mining Co Ltd
Priority to JP12019387A priority Critical patent/JPS63286524A/en
Publication of JPS63286524A publication Critical patent/JPS63286524A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PURPOSE:To produce a shadow mask having an excellent perforating property by etching by subjecting a cold rolled steel sheet consisting of specifically composed C, Mn, S, Al, N, and Fe to perforation of many holes then to annealing in an atmosphere under specific conditions. CONSTITUTION:The cold rolled steel sheet consisting of <=0.004wt.% C, 0.05-0.50% Mn, <=0.010% S, 0.010-0.080% Sol Al, <=0.0100% N, and the balance Fe and inevitable impurities is subjected to perforation of many holes. This steel sheet is then annealed in gas contg. hydrogen and nitrogen. The annealing is executed at this time under the conditions satisfying either or both of maintenance of <=750 deg.C holding temp. of annealing and <=0 deg.C dew point of the annealing atmosphere. The shadow mask which has the excellent perforating property by punching, obviates generation of unevenness even after press molding and is used for a color television, etc., is thereby obtd.

Description

【発明の詳細な説明】 〈発明の分野〉 本発明はエツチング穿孔性に優れ、プレス成形後もムラ
の発生しないカラーテレビ、カラーディスプレイ等に用
いるシャドウマスクの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for producing a shadow mask for use in color televisions, color displays, etc., which has excellent etching perforation properties and does not cause unevenness even after press molding.

〈発明の背景〉 カラーテレビジョンやカラーディスプレイ等のブラウン
管には色選別電極としてシャドウマスクが使用されてい
る。
<Background of the Invention> Shadow masks are used as color selection electrodes in cathode ray tubes such as color televisions and color displays.

シャドウマスクの製造工程は概ね次の通りである。先ず
、材料の溶解及び鋳造後圧延等の工程を経由し、そして
最終冷間加工にて所定の厚さを有するシャドウマスク素
材が製造される。このシャドウマスク素材はエツチング
穿孔されてフラットマスクとなる。さらにこのフラット
マスクは焼鈍されてプレス成形性を付与され、その後プ
レスにより球面成形される0球面成形されたマスクは。
The manufacturing process of the shadow mask is generally as follows. First, a shadow mask material having a predetermined thickness is manufactured through processes such as melting the material, casting and rolling, and finally cold working. This shadow mask material is etched and perforated to form a flat mask. Furthermore, this flat mask is annealed to give it press formability, and then the mask is formed into a spherical surface by pressing.

黒化処理を施されてシャドウマスクとなる。プレス成形
性を付与する焼鈍を最終圧延直後に実施する方式もあり
、これはプレアニール法と呼ばれている。
It is blackened and becomes a shadow mask. There is also a method in which annealing to impart press formability is performed immediately after final rolling, and this is called a pre-annealing method.

もう少し詳しく説明すると、先ずシャドウマスク素材の
製造方法として低炭素AQキルド鋼を例に挙げると、鋼
を転炉で溶製後連続鋳造又はインゴット鋳造し、これを
熱間圧延(必要に応じ鍛造後に熱間圧延)及び冷間圧延
し、オープンコイル焼鈍により脱炭処理し、その後所定
の厚みまで最終冷間圧延が施される。その後、前記冷間
圧延材をスリットして所定板幅のシャドウマスク素材を
得る。
To explain in more detail, first of all, taking low carbon AQ killed steel as an example of a method for producing a shadow mask material, the steel is melted in a converter, then continuously cast or ingot cast, and then hot rolled (if necessary, after forging). The material is hot rolled) and cold rolled, decarburized by open coil annealing, and then final cold rolled to a predetermined thickness. Thereafter, the cold rolled material is slit to obtain a shadow mask material having a predetermined width.

このようにして得られたシャドウマスク素材は、脱脂後
、フォトレジストを両面に塗布しそしてパターンを焼付
けて現像後、塩化第2鉄を主とするエツチング液にてエ
ツチング穿孔し、これを個々に切断してフラットマスク
とする。
After degreasing the shadow mask material obtained in this way, photoresist is applied to both sides, a pattern is baked and developed, and holes are etched with an etching solution mainly containing ferric chloride. Cut it to make a flat mask.

フラットマスクは、通常非酸化性雰囲気中で焼鈍されて
プレス成形性を付与される(プレアニール法ではこの焼
鈍がエツチング前に最終冷間圧延材に行われる)、レベ
ラー加工を経た後、プレスによりマスク形態に球面成形
される。
Flat masks are usually annealed in a non-oxidizing atmosphere to give them press formability (in pre-annealing, this annealing is performed on the final cold-rolled material before etching), and after leveling, the mask is formed by pressing. Molded into a spherical shape.

そして、最後に、球面成形されたマスクは、脱脂後、水
蒸気又は燃焼ガス雰囲気中で黒化処理を施されて表面に
黒色酸化膜を形成する、こうしてシャドウマスクが作製
される。
Finally, the spherical mask is degreased and then subjected to a blackening treatment in a steam or combustion gas atmosphere to form a black oxide film on the surface, thus producing a shadow mask.

〈従来技術及び問題点〉 上記のようにして製造される初期のシャドウマスク素材
としては低炭素リムド冷延鋼板が用いられていた。この
場合、鋼中の非金属介在物あるいは炭化物によるフォト
エツチング時の孔形状不良が生ずること、最終焼鈍でフ
ラットマスク間の密着防止のため低温焼鈍を行うと鋼の
結晶粒が小さくなり、プレス成形前にレベラーをかけて
も十分に歪が入らず、プレス成形時に固溶Cと固溶Nに
基づく降伏点伸びによるストレッチャーストレインが発
生しやすいこと等の欠点があった。このストレッチャー
ストレインは穴縁を歪め、色むらをひきおこすので、シ
ャドウマスクの性能を満足させるためにはその発生を防
止しなければならない。
<Prior Art and Problems> A low carbon rimmed cold-rolled steel plate was used as the initial shadow mask material manufactured as described above. In this case, non-metallic inclusions or carbides in the steel may cause defective hole shapes during photoetching, and if low-temperature annealing is performed to prevent adhesion between the flat masks in the final annealing, the crystal grains of the steel will become smaller, resulting in press forming. Even if a leveler is applied beforehand, sufficient strain is not introduced, and there are drawbacks such as stretcher strain is likely to occur due to elongation at yield point due to solute C and solute N during press molding. This stretcher strain distorts the hole edges and causes color unevenness, so its occurrence must be prevented in order to satisfy the performance of the shadow mask.

また、リムド鋼では高温で焼鈍すると結晶粒が粗大化し
てシャドウマスクのプレス時にやはり細孔の穴縁を歪め
る問題があり、これらの問題を防ぐため、鋼成分の変動
と最終焼鈍の条件変動を厳しく制限しなければならなか
った。
In addition, when rimmed steel is annealed at high temperatures, the crystal grains become coarse and the edges of the pores are distorted when pressing the shadow mask. had to be severely restricted.

このような欠点を改善すべく、最近では上記の例に示す
ようなC含有量が0.005%以下の低炭素AQキルド
冷延鋼板が用いられている。
In order to improve these drawbacks, low carbon AQ killed cold rolled steel sheets with a C content of 0.005% or less, as shown in the above example, have recently been used.

ところが近年、シャドウマスクは急速に高精細度化され
ており、板厚0.1mm程度の冷延鋼板により多くの孔
を精度良くあけられることが必要となってきている。ま
た、カラーブラウン管の改良のもう1つの動きとして、
ブラウン管前面スクリーンパネルを角型としかつ平坦化
したいわゆるFS管が増えてきている。これは前面を角
型かつ平面化することで情報量の増加と映像のより忠実
な再現のため、さらには観視者の外光反射による目の疲
労の低減を狙うものである。そしてこのFS管に用いる
シャドウマスクは熱膨張によるドーミング現象による色
ズレの発生を抑えるために、板厚0.2〜0.3111
1程度の冷延鋼板が用いられている。
However, in recent years, the definition of shadow masks has rapidly increased, and it has become necessary to drill many holes with high precision in cold-rolled steel sheets with a thickness of about 0.1 mm. In addition, as another move to improve color cathode ray tubes,
So-called FS tubes, which have a rectangular and flattened cathode ray tube front screen panel, are on the rise. By making the front square and flat, this design aims to increase the amount of information and reproduce images more faithfully, and also to reduce eye fatigue caused by the reflection of external light on the viewer. The shadow mask used for this FS tube has a plate thickness of 0.2 to 0.3111 in order to suppress the occurrence of color shift due to the doming phenomenon caused by thermal expansion.
A cold-rolled steel plate of approximately 100 mm is used.

この様なシャドウマスクの高精細度化やFS管の増加に
伴ない、従来では問題のなかった低炭素AQキルド冷延
鋼板を用いても十分満足のいくものとはいえない状態に
なってきた。
As the definition of shadow masks increases and the number of FS tubes increases, it is no longer completely satisfactory even when using low carbon AQ killed cold rolled steel sheets, which had no problems in the past. .

最終冷間圧延後のシャドウマスクの製造工程は。The manufacturing process of the shadow mask after final cold rolling.

主に冷延鋼板を脱脂後レジスト腹を塗布しパターンを焼
付は現像後塩化第2鉄を主とする溶液でエツチング穿孔
しフラットマスクを作る工程と、このエツチング穿孔後
のフラットマスクを焼鈍後所定の形状へプレス成形する
工程と、さらに熱処理によりシャドウマスクの表面に黒
色の酸化膜を形成せしめる工程とからなるが、このうち
エツチング穿孔の工程でM n Sを主体とする中心偏
析による偏析物が素地部より優先的に腐食されるためそ
の部分のエツチング壁面に穴状の欠陥が生じ、いわゆる
透過ムラを生じる問題がある。これは近年のシャドウマ
スクの高精細度化に伴い従来にくらベエッチング穿孔さ
れる面積が大巾に増加したために、従来では問題がない
とされていたレベルの材料を用いても近年では不良とな
る確率が高くなってきたためである。
Mainly, after degreasing a cold-rolled steel sheet, a resist layer is applied, a pattern is baked, and after development, etching holes are made with a solution mainly containing ferric chloride to create a flat mask, and after this etching hole is annealed, the flat mask is formed into a predetermined shape. It consists of a step of press-forming into the shape of a shadow mask, and a step of forming a black oxide film on the surface of the shadow mask by heat treatment.In the etching and perforation step, segregated substances mainly composed of MnS due to central segregation are removed. Since the corrosion occurs more preferentially than the base portion, hole-like defects occur on the etched wall surface in that portion, causing a problem of so-called uneven transmission. This is due to the fact that the area traditionally used for hole-etching has increased dramatically as shadow masks have become more precise in recent years, and even if materials used are of a level that was previously thought to have no problems, they are now becoming defective. This is because the probability of this happening has increased.

また、運良くエツチング穿孔工程で透過ムラが生じなか
った場合でも1次工程のフラットマスクを焼鈍し、所定
の形状へプレス成形する工程でプレス成形後に透過ムラ
を生じるものが発生した。
In addition, even in cases where uneven penetration did not occur during the etching and perforation process, uneven penetration occurred after press forming during the step of annealing the flat mask in the first step and press forming it into a predetermined shape.

これを詳細に調査したところ、やはりその部位にはM 
n Sを主体とする中心偏析による偏析物が存在してお
り、この中心偏析を持つ部位と中心に偏析がなく清浄な
部位の伸びの特性が微妙に異なるため、プレス成形によ
り孔形状にわずかでも狂いを生じ、そのために透過ムラ
が生じることが判明したのである。この現象も近年のF
S管の増加に伴って増加してきている問題であり、まさ
に従来にはない問題であった。
When we investigated this in detail, we found that M
There are segregated substances due to center segregation, mainly composed of nS, and the elongation characteristics of the area with this center segregation and the clean area with no center segregation are slightly different. It was discovered that this caused distortion, which caused uneven transmission. This phenomenon also occurs in recent years.
This is a problem that is increasing with the increase in the number of S tubes, and is truly a problem that has never existed before.

この様な実態に鑑み本発明者らは、M n Sを主体と
した偏析の低減をはかったシャドウマスク用低炭素AQ
キルド鋼を開発し、エツチング穿孔性においては多大な
る改善が確認されたが、一方でシャドウマスク素材のS
含有量を低減させた場合、通常の焼鈍では窒素の吸収量
が多くなり、その後のプレス成形でムラ不良が発生する
という問題が生じた。
In view of this situation, the present inventors have developed a low carbon AQ for shadow masks that is mainly composed of MnS and aims to reduce segregation.
Although a significant improvement in etching perforability was confirmed by the development of killed steel, on the other hand, the shadow mask material S
When the content is reduced, the amount of nitrogen absorbed increases during normal annealing, resulting in a problem that unevenness occurs during subsequent press forming.

すなわち、これまでシャドウマスク製造時の焼鈍工程で
は基本的に水素と窒素からなるガスを用い、固溶Cによ
るストレッチャーストレインを防止するために650〜
850℃の温度で脱炭焼鈍を行ってきた。しかしS含有
量の少ないものではこれらの条件では窒素吸収が生じ、
プレス時に部分的な伸びムラが発生するという問題がで
てきたのである。
That is, in the annealing process during the production of shadow masks, a gas consisting basically of hydrogen and nitrogen has been used, and in order to prevent stretcher strain caused by solid solution C, a gas of 650~
Decarburization annealing was performed at a temperature of 850°C. However, with low S content, nitrogen absorption occurs under these conditions,
A problem arose in that local elongation unevenness occurred during pressing.

〈発明の構成〉 本発明者らは上記の問題点について種々の研究をくり返
し、本発明に至ったものでありその要旨と−するところ
は、重量%でC0,004%以下、Mn0.05〜0.
50%、S 0.010%以下。
<Structure of the Invention> The present inventors have repeatedly conducted various studies regarding the above-mentioned problems, and have arrived at the present invention. 0.
50%, S 0.010% or less.

S o Q、AQ 0.010〜0.080%、N0.
0100%以下、残部Fe及び不可避的不純物からなる
冷延鋼板に多数の開孔を穿設後、水素と窒素を含有する
ガス中で焼鈍を行うに際し、焼鈍保持温度を750℃以
下、焼鈍雰囲気の露点を0℃以上とするいずれか一方、
又は両方を満たした条件下で焼鈍を行うこと番特徴とす
るシャドウマスクの製造方法にある。
S o Q, AQ 0.010-0.080%, N0.
After drilling a large number of holes in a cold-rolled steel sheet consisting of 0.0100% or less, the balance being Fe and unavoidable impurities, annealing is performed in a gas containing hydrogen and nitrogen. Either setting the dew point to 0℃ or higher,
Alternatively, the method for producing a shadow mask is characterized in that annealing is performed under conditions that satisfy both conditions.

〈発明の詳細な説明〉 次に本発明をより具体的に説明するために、冷延鋼板の
成分の限定の理由及び製造条件について説明する。
<Detailed Description of the Invention> Next, in order to explain the present invention more specifically, the reasons for limiting the components of the cold rolled steel sheet and the manufacturing conditions will be explained.

C: 冷延鋼板中のC量が多いと鉄炭化物が生成し、こ
の炭化物がエツチング穿孔性を害する。
C: When the amount of C in a cold rolled steel sheet is large, iron carbides are generated, and these carbides impair etching perforability.

また、シャドウマスクとして穿孔後フラットマスクを焼
鈍したとき、固溶Cを少なくしないとプレス成形で不均
一成形(ストレッチャーストレインの発生)がおきる。
Furthermore, when a flat mask is annealed after perforation as a shadow mask, non-uniform molding (occurrence of stretcher strain) will occur during press molding unless the solid solution C is reduced.

この両方の要求を満たすためには冷延アルミキルド鋼板
のC含有量の上限を0.004%とする必要がある。C
含有量がこの範囲内にあれば固溶C量も十分に少なく問
題はない。脱炭焼鈍炉でC含有量をこのレベルまで効率
的に下げるには製鋼の段階でC含有量を0.060%以
下にするのが望ましい。
In order to satisfy both of these requirements, it is necessary to set the upper limit of the C content of the cold-rolled aluminum killed steel sheet to 0.004%. C
If the content is within this range, the amount of solid solute C will be sufficiently small and there will be no problem. In order to efficiently reduce the C content to this level in a decarburization annealing furnace, it is desirable to reduce the C content to 0.060% or less at the steel manufacturing stage.

以上のことより冷延鋼板のCは0.004%以下、熱延
鋼板以前のCは0.060%以下とする。
From the above, the C content of the cold-rolled steel sheet is 0.004% or less, and the C content before the hot-rolled steel sheet is 0.060% or less.

Mn:Mnは脱酸の目的の他にシャドウマスクの諸特性
を劣化させずに鋼の強度向上に役立つ。
Mn: In addition to the purpose of deoxidizing, Mn is useful for improving the strength of steel without degrading the properties of the shadow mask.

その他にMnの役割は鋼中のSと結合して鋼の赤熱脆性
を防止することである。そのためMnは少なくとも0.
05%必要であり、そしてMnとSとの重量比において
M n (%)/S(%)≧7とすることが望ましい。
In addition, the role of Mn is to combine with S in the steel to prevent red heat embrittlement of the steel. Therefore, Mn is at least 0.
05% is necessary, and it is desirable that the weight ratio of Mn and S is M n (%)/S (%)≧7.

しかし、Mnは0゜50%を超えるとシャドウマスクと
しては硬くなりすぎフラットマスクの成形性を損う。従
ってMnの成分範囲は0.05〜0.50%とするS:
  WI中のSを低減することは直接MnSの中心偏析
の低減につながる。エツチング穿孔やプレス成形で問題
となるM n Sの中心偏析に着目した場合、その効果
は0.010%以下で現われる。
However, when Mn exceeds 0.50%, it becomes too hard as a shadow mask and impairs the formability of a flat mask. Therefore, the component range of Mn is 0.05 to 0.50% S:
Reducing S in WI directly leads to reducing center segregation of MnS. When focusing on the center segregation of MnS, which is a problem in etching holes and press forming, the effect appears at 0.010% or less.

なお連続鋳造で造塊する場合は、電磁攪伴を使用すると
さらに改善効果が認められる。
Furthermore, when forming ingots by continuous casting, further improvement is observed when electromagnetic stirring is used.

SoQ、AQ:  鋼を脱酸し介在物を少なくする作用
以外に固溶NをARNとして固定し、プレス成形時のス
トレッチャーストレインを防止するため、SoQ、AQ
(酸可溶性AQ)としてAQが含有されている必要があ
る。しかし、多量に含む場合は延性を悪くする。
SoQ, AQ: In addition to deoxidizing the steel and reducing inclusions, SoQ, AQ fixes solid solution N as ARN and prevents stretcher strain during press forming.
AQ must be contained as (acid-soluble AQ). However, when it is contained in a large amount, it deteriorates ductility.

脱酸の点から0.010%以上が必要であり、延性の点
からその上限は0.080%である。
From the viewpoint of deoxidation, 0.010% or more is required, and from the viewpoint of ductility, the upper limit is 0.080%.

また固溶NをAlxとして固定させるためには(SoQ
、AQ%−0,003)/N%≧6を満足するA′fi
量の添加が望ましい。
In addition, in order to fix solid solution N as Alx (SoQ
, A'fi that satisfies AQ%-0,003)/N%≧6
It is desirable to add a certain amount.

N: Nは降伏点伸びを増加させ、ストレッチャースト
レインを起こす原因となるため可能な限り少ないほうが
望ましい。しかし、過度に低減させる場合にはコストが
かかるために本特許では0.0100%以下とする。
N: Since N increases the elongation at yield point and causes stretcher strain, it is preferable that it be as small as possible. However, if it is reduced excessively, it will be costly, so in this patent, it is set to 0.0100% or less.

焼鈍時の窒素吸収の挙動については第1図及び第2図に
示した様に保持温度が750℃より高く、雰囲気の露点
が0℃より低いと窒素吸収が多くなる傾向にある。この
傾向はS含有量が0.010%より多いものについては
顕著でなく、第3図に示した様にS含有量が0.010
%以下のもので著しい窒素吸収を示す。
Regarding the behavior of nitrogen absorption during annealing, as shown in FIGS. 1 and 2, when the holding temperature is higher than 750°C and the dew point of the atmosphere is lower than 0°C, nitrogen absorption tends to increase. This tendency is not remarkable when the S content is higher than 0.010%, and as shown in Figure 3, the S content is higher than 0.010%.
% or less shows significant nitrogen absorption.

なお、焼鈍の雰囲気ガスは基本的には水素と窒素ガスか
らなるが、不可避的に混入する酸素等の微量ガスは当然
含有されるものとする。
Note that although the annealing atmosphere gas basically consists of hydrogen and nitrogen gas, it is assumed that it naturally contains trace gases such as oxygen that are inevitably mixed in.

〈実施例〉 第1表に示した成分の冷延鋼板に多数の開孔を穿設し、
エツチング穿孔ムラの状況をチェックし第1表に併記し
た。この材料を用い第2表の条件で焼鈍しプレス後ムラ
の発生を調査した。結果を第2表に併記した。
<Example> A large number of holes were drilled in a cold-rolled steel plate having the composition shown in Table 1,
The situation of etching and perforation unevenness was checked and is also listed in Table 1. This material was annealed under the conditions shown in Table 2, and the occurrence of unevenness after pressing was investigated. The results are also listed in Table 2.

第1表から明らかな様に本発明例A−Cはエツチング後
のムラの発生がなく、エツチング穿孔性は極めて良好で
ある。一方、比較例D−Eは圧延方向に平行なスジ状の
透過ムラの発生があった。
As is clear from Table 1, Examples A to C of the present invention have no unevenness after etching and have extremely good etching perforation. On the other hand, in Comparative Examples DE, streak-like transmission unevenness parallel to the rolling direction occurred.

第2表は焼鈍後プレスを行った際の状況であるが、本発
明例1〜5は第1表のA、Bのマスクを用いたものであ
り、プレス時の伸びムラもなく極めて良好なシャドウマ
スクを得ることが可能であった。一方、比較例■のNα
6〜9は第1表のA及びBのマスクを用いたものである
が、保持温度が高く、露点が低いため、窒素吸収による
伸びムラ不良が発生した。
Table 2 shows the situation when pressing was performed after annealing, and Examples 1 to 5 of the present invention used masks A and B in Table 1, and there was no uneven elongation during pressing, which was extremely good. It was possible to obtain a shadow mask. On the other hand, Nα of comparative example ■
Samples Nos. 6 to 9 used the masks A and B in Table 1, but because the holding temperature was high and the dew point was low, uneven elongation caused by nitrogen absorption occurred.

また、比較例■のNQIO〜12は第1表りのマスクを
用いたものであり、どの条件でも窒素吸収はわずかであ
るが、M n Sの偏析に起因すると考えられる圧延平
行方向の透過スジが新たに発生した。
In addition, NQIO~12 of Comparative Example (■) uses the mask shown in the first table, and the nitrogen absorption is slight under all conditions, but there are transmission lines in the direction parallel to the rolling direction that are thought to be caused by segregation of MnS. has newly occurred.

以下余白 第  1  表 第  2  表 拳その他の焼鈍条件  8%−−ba12.N2  保
持 15min
Margins below Table 1 Table 2 Other annealing conditions 8%--ba12. N2 hold 15min

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はS含有量の異なる2つの鋼に対する焼鈍保持温
度と窒素吸収量の関係を示すグラフ(8%H2−残N2
、露点−30℃、30分保持)、第2図は露点と窒素吸
収量の関係を示すグラフ(8%H2−残N2.800℃
、30分保持)、第3図はS含有量と窒素吸収量の関係
を示すグラフ(8%H2−残N2、露点−30℃、80
0℃×30分)である。 第1因 イ呆オテ温刀j  (’C) 第2図 需熊(oC) 第3図 3合有量(%) 手続補正書 昭和62年8月6日 特許辰官小用邦夫殿 事件の表示 昭和62年 特願第120193 号発明
の名称  シャドウマスクの製造方法補正をする者
Figure 1 is a graph showing the relationship between annealing holding temperature and nitrogen absorption amount for two steels with different S contents (8% H2 - residual N2
, dew point -30℃, held for 30 minutes), Figure 2 is a graph showing the relationship between dew point and nitrogen absorption amount (8% H2 - residual N2.800℃).
, held for 30 minutes), Figure 3 is a graph showing the relationship between S content and nitrogen absorption (8% H2 - residual N2, dew point -30°C, 80%
0°C x 30 minutes). 1st cause ('C) Fig. 2 Demand bear (oC) Fig. 3 3 combined amount (%) Procedural amendment dated August 6, 1988, Patent officer Kunio Koyo case Indication Patent Application No. 120193 of 1988 Title of Invention Person who corrects the manufacturing method of shadow mask

Claims (1)

【特許請求の範囲】[Claims] (1)重量%でC0.004%以下、Mn0.05〜0
.50%、S0.010%以下、Sol.Al0.01
0〜0.080%、N0.0100%以下、残部Fe及
び不可避的不純物からなる冷延鋼板に多数の開孔を穿設
後、水素と窒素を含有するガス中で焼鈍を行うに際し、
焼鈍保持温度を750℃以下、焼鈍雰囲気の露点を0℃
以上とするいずれか一方、又は両方を満たした条件下で
焼鈍を行うことを特徴とするシャドウマスクの製造方法
(1) C0.004% or less, Mn 0.05-0 in weight%
.. 50%, S0.010% or less, Sol. Al0.01
After drilling a large number of holes in a cold rolled steel sheet consisting of 0 to 0.080%, N 0.0100% or less, the balance Fe and unavoidable impurities, when annealing in a gas containing hydrogen and nitrogen,
The annealing holding temperature is 750℃ or less, and the dew point of the annealing atmosphere is 0℃.
A method for manufacturing a shadow mask, characterized in that annealing is performed under conditions that satisfy one or both of the above conditions.
JP12019387A 1987-05-19 1987-05-19 Production of shadow mask Pending JPS63286524A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12019387A JPS63286524A (en) 1987-05-19 1987-05-19 Production of shadow mask

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12019387A JPS63286524A (en) 1987-05-19 1987-05-19 Production of shadow mask

Publications (1)

Publication Number Publication Date
JPS63286524A true JPS63286524A (en) 1988-11-24

Family

ID=14780213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12019387A Pending JPS63286524A (en) 1987-05-19 1987-05-19 Production of shadow mask

Country Status (1)

Country Link
JP (1) JPS63286524A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02254139A (en) * 1989-03-28 1990-10-12 Toyo Kohan Co Ltd Shadow mask material and its production
WO1998040526A1 (en) * 1997-03-10 1998-09-17 Toyo Kohan Co. Ltd. Steel sheet for shadow mask, shadow mask, production method of shadow mask, and color picture tube
WO2001077399A1 (en) * 2000-04-05 2001-10-18 Toyo Kohan Co., Ltd. Raw material for shadow mask, method for production thereof, shadow mask and picture tube

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02254139A (en) * 1989-03-28 1990-10-12 Toyo Kohan Co Ltd Shadow mask material and its production
WO1998040526A1 (en) * 1997-03-10 1998-09-17 Toyo Kohan Co. Ltd. Steel sheet for shadow mask, shadow mask, production method of shadow mask, and color picture tube
WO2001077399A1 (en) * 2000-04-05 2001-10-18 Toyo Kohan Co., Ltd. Raw material for shadow mask, method for production thereof, shadow mask and picture tube

Similar Documents

Publication Publication Date Title
JPS6411095B2 (en)
JPS63259054A (en) Shadow mask
JPS61223188A (en) Iron-nickel alloy for shadow mask which suppresses generation of uneven stripe during etching
JPS63286524A (en) Production of shadow mask
JPS60128253A (en) Manufacture of iron-nickel alloy for shadow mask which inhibits streaking during etching
JPS6411103B2 (en)
JPH10219397A (en) Steel sheet for shadow mask, shadow mask, and picture tube
JPH0251973B2 (en)
JP3379301B2 (en) Method for producing low thermal expansion alloy thin plate for shadow mask excellent in plate shape and heat shrink resistance
JP3360033B2 (en) Fe-Ni alloy for shadow mask and method for producing the same
KR900008792B1 (en) Making method of shadowmask
JPH1180839A (en) Production of low thermal expansion alloy thin sheet for electronic parts excellent in effect of suppressing unevenness in stripe
KR20010050289A (en) LOW-EXPANSION Fe-Ni ALLOY FOR SEMI-TENSION MASK, SEMI-TENSION MASK OF THE ALLOY, AND COLOR PICTURE TUBE USING THE MASK
KR100486325B1 (en) High strength alloy bar for flat mask with good etching perforation property
TW403930B (en) A steel sheet for shadow mask, a shadow mask, a producing method of shadow mask, and a color picture tube
KR100312050B1 (en) Fe-Ni Alloy Used for a Shadow Mask and a Method for Producing a Shadow Mask
JP3414919B2 (en) Manufacturing method of shadow mask material
JPH01264143A (en) Shadow mask and manufacture thereof
JP3401308B2 (en) Shadow mask material excellent in warm pressability and manufacturing method
JPH03191024A (en) Manufacture of iron-nickel base alloy stock for shadow mask
JP2002060908A (en) LOW THERMAL EXPANSION Fe-Ni BASED ALLOY SHEET FOR SHADOW MASK EXCELLENT IN ETCHING PROPERTY AND DEFORMATION RESISTANCE AND ITS PRODUCTION METHOD
JP2003247048A (en) Low thermal expansion alloy thin sheet having excellent etch rate and etch precision and production method thereof
JP3793122B2 (en) Method for manufacturing mask material for color picture tube
JP3326897B2 (en) Fe-Ni alloy thin plate for shadow mask
JPS61174330A (en) Manufacture of cold rolled steel sheet for shadow mask having superior magnetic characteristic