JPH0211642B2 - - Google Patents

Info

Publication number
JPH0211642B2
JPH0211642B2 JP56121723A JP12172381A JPH0211642B2 JP H0211642 B2 JPH0211642 B2 JP H0211642B2 JP 56121723 A JP56121723 A JP 56121723A JP 12172381 A JP12172381 A JP 12172381A JP H0211642 B2 JPH0211642 B2 JP H0211642B2
Authority
JP
Japan
Prior art keywords
powder
molding
aid
acid
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56121723A
Other languages
Japanese (ja)
Other versions
JPS5822304A (en
Inventor
Noritoshi Horie
Ryo Yamaya
Masaki Kobayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tungaloy Corp
Original Assignee
Toshiba Tungaloy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Tungaloy Co Ltd filed Critical Toshiba Tungaloy Co Ltd
Priority to JP56121723A priority Critical patent/JPS5822304A/en
Publication of JPS5822304A publication Critical patent/JPS5822304A/en
Publication of JPH0211642B2 publication Critical patent/JPH0211642B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material

Landscapes

  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、粉末冶金法によつて粉末をプレス成
形するときに必要な成形剤又は潤滑剤であつて、
炭化物、窒化物、酸化物、硼化物、硫化物及び硅
化物等の非金属粉末と金属粉末との混合粉末又は
金属粉末との混合粉末をプレス成形するのに適し
た粉末冶金のための原料粉末用成形助剤に関す
る。 一般に粉末冶金における製造工程は、大別する
と粉末の混合粉砕工程、造粒工程、乾燥篩別工
程、プレス成形工程、予備焼結工程、焼結工程が
ある。これらの工程の内、造粒工程では、粉末を
取り扱い易くすることゝ後工程であるプレス成形
工程での粉末の流動性と充填性から造粒粉末の形
状、大きさ及び硬さを調整する必要があり、この
ために造粒粉末中に成形剤又は潤滑剤を混在して
おく必要がある。プレス成形工程では、金型に振
り込まれた粉末相互間の摩擦、金型に振り込まれ
た粉末と金型壁との摩擦及び金型のピンとダイと
の接触部に於ける摩擦を緩和するためとプレス成
形した圧粉体の形状が崩れないようにするために
成形剤又は潤滑剤を必要とする。このような成形
剤又は潤滑剤のような成形剤としては、従来から
使用されているものとしてはパラフイン、樟脳、
ステアリン酸及びステアリン酸亜鉛等がある。 これら従来の成形助剤の内パラフインは、安全
衛生上、作業上、コスト及び溶解度等種々の問題
から適する溶媒がなく、一般にはアセトンを溶媒
として使用するが溶解度が低いために少し昇温し
てパラフインと液状にすることにより粉末と混合
する方法がとられている。このために粉末中のパ
ラフインの分布が不均一になり、乾燥篩別工程で
網目に詰つたり、パラフインが多く分布している
粉末が一部網目を通過しなくなる等の問題が生じ
る。又、成形助剤は焼結工程では不必要で害にな
るために予備焼結工程で取り除くのであるがパラ
フインは、予備焼結工程で分解した後カーボンと
なつて圧粉体表面に付着する等の問題が生じるた
めに予備焼結方法及び条件が非常に難しく、特に
真空中で予備焼結すると分解したパラフインが炉
体内に付着し真空度を低下させる等の問題があ
る。更にパラフインを成形助剤とした混合粉末か
ら焼結体を得るとパラフインの不均一分布が原因
であると考えられる巣が生じ、これが焼結体の強
度低下を引き起すと云う重要な問題がある。 成形助剤としての樟脳は、エーテルに溶け易い
が作業上、安全衛生上に問題があり、エタノール
にも或る程度溶解するがエタノールの蒸発速度か
ら造粒工程に問題がある。又パラフインに比較し
て樟脳は粘性が低いために圧粉体強度が低く、圧
粉体強度が低いと予備焼結後の圧粉体にクラツク
が発生し易くなること、及び焼結体にしたときに
巣が発生し易くなると云う問題がある。 ステアリン酸及びステアリン酸亜鉛は、適当な
溶媒がなくメタノール又はエタノールを溶媒とし
て使用するが樟脳と同様造粒工程に問題があり、
又溶解度が低いことから造粒工程において粉末中
に均一に分布し難く、このために焼結体にしたと
きにクラツクや巣が発生し易くなるという問題が
ある。 本発明は、以上のような種々の問題点を解決す
る目的で研究を繰返した結果完成した粉末冶金に
適した原料粉末用成形助剤である。 本発明の原料粉末用成形助剤は、グリセリンの
縮合体にオレフインオキシドおよび/または脂肪
酸を反応させて得られる化合物である。 本発明の原料粉末用成形助剤は、有機溶剤特に
メタノール、エタノール及びアセトン等に溶解し
易く、取り扱い上及び安全衛生上からも問題がな
く、しかもオレフインオキシドおよび/または脂
肪酸を反応させた化合物であることから付着性及
び粘ちよう性があり、これらの溶解性、付着性及
び粘ちよう性が造粒工程において成形助剤を粉末
中に均一に分布させるという作用をし、造粒粉末
の形状、大きさ及び硬さのバラツキを少なくし安
定した造粒粉末を作るのに役立つている。又プレ
ス成形工程では、本発明の原料粉末用成形助剤が
造粒粉末の形状、大きさ及び硬さのバラツキを少
なくし、しかも適度の硬さと粘ちよう性を保持さ
せるために、造粒粉末を用いてプレス成形すると
造粒粉末中に成形助剤が均一に分布しているこ
とゝ造粒粉末の流動性、充填性が優れていること
から圧粉体が均一に加圧され易くなること、圧粉
体の強度が高くなること及び圧粉体が適度の離型
性をもつことからプレスクラツク及び欠けの起り
難い成形体が得られる。予備焼結工程では、本発
明の原料粉末用成形助剤が低温度で蒸発するこ
と、及び蒸発速度も適当な速さであることから成
形助剤のガス分解中においても圧粉体にガスが悪
影響を及ぼさず、このため予備焼結後の圧粉体に
はクラツクが生じ難くなる。予備焼結によつて本
発明の成形助剤を取り除いた圧粉体を焼結すると
一般に成形助剤が直接的及び間接的に影響を及ぼ
すことによつて生じる焼結体のクラツクや巣孔が
ない優れた焼結体が得られる。 グリセリンの縮合体とは、グリセリン
[CH2OH−CHOH−CH2OH]が縮合反応により
形成される物質、すなわちグリセリンが複数個結
合された構造のものであつて、具体的には、分子
量が数万からなるもので、特に3万〜4万の分子
量からなるものが好ましいものである。オレフイ
ンオキシドは、プロピレンオキシド、1−ブテン
オキシド、イソブチレンオキシド、1−ペンテン
オキシド、2−ペンテンオキシド、イソアミレン
オキシド等があるが特にエチレンオキシドを付加
反応して得られる本発明の原料粉末用成形助剤が
造粒の特性プレス成形性等から判断して適してい
る。脂肪酸は、動植物油脂肪酸、硬化動植物油脂
肪酸及び石油酸等があるが中でも炭素数8以上の
高級脂肪酸が適しており、例えばカプリル酸、カ
プリン酸、ミリスチン酸、パルミチン酸、ステア
リン酸、アラキン酸、ベヘン酸、セロチン酸、メ
リシン酸、スベリン酸、アゼライン酸、セバシン
酸、ブラシル酸、エライジン酸、オレイン酸、エ
ルカ酸、ペラルゴン酸、マルガリン酸等がある。 本発明の原料粉末用成形助剤は、有機溶剤に対
する溶解度が高く、潤滑性、粘ちよう性及び離型
性が有ることから造粒工程、プレス成形工程で著
しく優れた効果を発揮する。また、成形助剤が不
必要になつて予備焼結工程によつて取り除くとき
には本発明の原料粉末用成形助剤は、低温度で蒸
発し、蒸発速度も急速でなく容易に蒸発し真空炉
内でも残留物が殆んどない優れた成形助剤であ
る。 粉末冶金としては、多孔質部品、焼結鋼、鉄・
銅合金・非鉄合金、高融点合金、耐熱耐食合金、
電気接点材料、原子力材料、固体潤滑材料、摩擦
材料があり、これらの粉末冶金の材料に本発明の
原料粉末用成形助剤が効果を示し特に、超硬合
金、サーメツト等予備焼結工程で影響を受け易い
粉末冶金関係の材料に著しい効果を発揮する。
又、4a、5a及び6a族金属の炭化物、窒化物、硼
化物、硅化物及び硫化物等の粉末と金属粉末又は
金属酸化物を含有する粉末と金属粉末の成形助剤
としては本発明の原料粉末用成形助剤が有効であ
る。 次に実施例に従つて本発明の粉末冶金のための
原料粉末用成形助剤を詳細に説明する。 実施例 1 重量組成で40%TiC−15%WC−15%TiN−20
%Mo2C−10%Niの混合粉砕した粉末に成形助剤
を混合して−40〜+100メツシユに造粒篩別後
1.0ton/cm2の圧力で10×10φmmの円柱形に圧縮成
形し、これを真空中400℃の予備焼結で成形助剤
を除去した後真空中1400℃1時間で焼結するのに
成形助剤として下記のものを使用して比較した。 a グリセリン縮合体にエチレンオキシド及びオ
レイン酸を反応させた本発明の成形助剤を3重
量%添加。 b グリセリン縮合体にエチレンオキシド及びス
テアリン酸を反応させた本発明の成形助剤を3
重量%添加。 c グリセリン縮合体にプロピレンオキシド及び
オレイン酸を反応させた本発明の成形助剤を3
重量%添加。 d 比較用成形助剤としてパラフインを3重量%
添加。 e 比較用成形助剤としてポリエチレングリコー
ルを3重量%添加。 f 比較用成形助剤としてロジンを2重量%添
加。 以上a、b、c、d、e、fの各成形助剤を添
加した混合粉末から得た圧粉体の状態及びこの圧
粉体を焼結した各焼結体の巣、気孔の状態を表1
に示した。尚、本発明の成形助剤a、b、cに用
いたグリセリン縮合体の縮合度は、約360〜400で
ある。但し、縮合度は、グリセリン縮合体を構成
する単量体の数として求めたものである。 表1の結果から本発明の原料粉末用成形助剤
a、b、cを使用したものは、比較用成形助剤
d、e、fを使用したものに比べて圧粉体の状態
が極めて良好で且つ焼結体の巣、気孔の発生も少
ないことが確認できた。
The present invention is a molding agent or lubricant necessary when press-molding powder by a powder metallurgy method,
Raw material powder for powder metallurgy suitable for press-molding a mixed powder of nonmetallic powder such as carbide, nitride, oxide, boride, sulfide, and silicide with metal powder or mixed powder with metal powder. Regarding molding aids. In general, manufacturing processes in powder metallurgy can be roughly divided into a powder mixing and pulverizing process, a granulation process, a drying and sieving process, a press molding process, a preliminary sintering process, and a sintering process. Among these processes, in the granulation process, it is necessary to make the powder easy to handle, and it is necessary to adjust the shape, size, and hardness of the granulated powder based on the fluidity and filling properties of the powder in the subsequent press forming process. Therefore, it is necessary to mix a molding agent or a lubricant in the granulated powder. In the press forming process, in order to reduce friction between the powder poured into the mold, friction between the powder poured into the mold and the mold wall, and friction at the contact area between the pin of the mold and the die. A molding agent or lubricant is required to keep the shape of the pressed powder compact. Conventionally used molding agents or molding agents such as lubricants include paraffin, camphor,
Examples include stearic acid and zinc stearate. Among these conventional molding aids, there is no suitable solvent for paraffin due to various problems such as safety and health, work, cost, and solubility.Generally, acetone is used as a solvent, but due to its low solubility, paraffin is heated slightly. The method used is to mix it with powder by making it liquid with paraffin. As a result, the distribution of paraffin in the powder becomes uneven, causing problems such as clogging of the mesh during the drying and sieving process, and a portion of the powder containing a large amount of paraffin not passing through the mesh. In addition, forming aids are unnecessary and harmful in the sintering process, so they are removed in the preliminary sintering process, but paraffin decomposes in the preliminary sintering process, becomes carbon, and adheres to the surface of the compact. Due to these problems, the preliminary sintering method and conditions are very difficult. In particular, when preliminary sintering is performed in a vacuum, decomposed paraffin adheres to the inside of the furnace, reducing the degree of vacuum. Furthermore, when a sintered body is obtained from a mixed powder using paraffin as a forming aid, cavities appear, which are thought to be caused by the non-uniform distribution of paraffin, and this poses the important problem of reducing the strength of the sintered body. . Camphor, which is used as a molding aid, is easily soluble in ether, but poses problems in terms of operational safety and health.Although it is soluble to some extent in ethanol, it poses problems in the granulation process due to the evaporation rate of ethanol. In addition, compared to paraffin, camphor has a lower viscosity, so the strength of the compact is lower, and if the strength of the compact is low, cracks are likely to occur in the compact after preliminary sintering, and it is difficult to make a sintered compact. There is a problem that sometimes nests are more likely to occur. Stearic acid and zinc stearate do not have a suitable solvent, so methanol or ethanol is used as a solvent, but like camphor, there are problems in the granulation process.
Furthermore, due to its low solubility, it is difficult to distribute it uniformly in the powder during the granulation process, which causes the problem that cracks and cavities are likely to occur when it is made into a sintered body. The present invention is a forming aid for raw material powder suitable for powder metallurgy, which was completed as a result of repeated research aimed at solving the various problems mentioned above. The molding aid for raw material powder of the present invention is a compound obtained by reacting a glycerin condensate with an olefin oxide and/or a fatty acid. The molding aid for raw material powder of the present invention is easily soluble in organic solvents, particularly methanol, ethanol, acetone, etc., poses no problems in terms of handling, safety and hygiene, and is a compound made by reacting olefin oxide and/or fatty acid. These solubility, adhesion, and stickiness act to uniformly distribute the forming aid in the powder during the granulation process, and the granulated powder has adhesion and stickiness. It helps to reduce variations in shape, size, and hardness and makes stable granulated powder. In addition, in the press molding process, the forming aid for raw material powder of the present invention is used in the granulation process to reduce variations in the shape, size, and hardness of the granulated powder, and to maintain appropriate hardness and viscosity. When press-molding powder, the forming aid is uniformly distributed in the granulated powder.The granulated powder has excellent fluidity and filling properties, making it easier to press the green compact uniformly. In addition, since the strength of the green compact is increased and the green compact has appropriate mold releasability, a compact that is less prone to press cracks and chipping can be obtained. In the preliminary sintering process, the forming aid for raw powder of the present invention evaporates at a low temperature and the evaporation rate is also appropriate, so that gas does not enter the green compact even during the gas decomposition of the forming aid. There is no adverse effect, and therefore cracks are less likely to occur in the green compact after preliminary sintering. When a green compact from which the forming aid of the present invention has been removed through preliminary sintering is sintered, cracks and pores in the sintered compact caused by the direct and indirect effects of the forming aid are generally removed. An excellent sintered body can be obtained. A glycerin condensate is a substance formed by a condensation reaction of glycerin [CH 2 OH-CHOH-CH 2 OH], that is, a structure in which multiple glycerin molecules are bonded together, and specifically, the molecular weight is The molecular weight is tens of thousands, and those having a molecular weight of 30,000 to 40,000 are particularly preferred. Olefin oxides include propylene oxide, 1-butene oxide, isobutylene oxide, 1-pentene oxide, 2-pentene oxide, isoamylene oxide, etc., but in particular, the molding aid for the raw material powder of the present invention obtained by addition reaction with ethylene oxide. Judging from the characteristics of granulation, press moldability, etc., these agents are suitable. Fatty acids include animal and vegetable oil fatty acids, hydrogenated animal and vegetable oil fatty acids, and petroleum acids, among which higher fatty acids having 8 or more carbon atoms are suitable, such as caprylic acid, capric acid, myristic acid, palmitic acid, stearic acid, arachidic acid, Examples include behenic acid, cerotic acid, melisic acid, suberic acid, azelaic acid, sebacic acid, brassylic acid, elaidic acid, oleic acid, erucic acid, pelargonic acid, and margaric acid. The molding aid for raw material powder of the present invention has high solubility in organic solvents, and has lubricity, stickiness, and mold releasability, so it exhibits extremely excellent effects in the granulation process and press molding process. Furthermore, when the forming aid becomes unnecessary and is removed in the preliminary sintering process, the forming aid for the raw material powder of the present invention evaporates at a low temperature, does not have a rapid evaporation rate, and evaporates easily in the vacuum furnace. However, it is an excellent molding aid with almost no residue. Powder metallurgy includes porous parts, sintered steel, iron and
Copper alloys/nonferrous alloys, high melting point alloys, heat-resistant and corrosion-resistant alloys,
There are electrical contact materials, nuclear materials, solid lubricating materials, and friction materials, and the forming aid for raw material powder of the present invention is effective for these powder metallurgy materials, especially in the preliminary sintering process of cemented carbide, cermet, etc. It exhibits remarkable effects on powder metallurgy-related materials that are susceptible to damage.
In addition, powders such as carbides, nitrides, borides, silicides, and sulfides of group 4a, 5a, and 6a metals, powders containing metal powders or metal oxides, and molding aids for metal powders include the raw materials of the present invention. Powder forming aids are effective. Next, the forming aid for raw material powder for powder metallurgy of the present invention will be explained in detail according to Examples. Example 1 Weight composition: 40%TiC-15%WC-15%TiN-20
% Mo2C -10%Ni mixed and pulverized powder is mixed with a forming aid and granulated into -40 to +100 mesh after sieving.
Compression molding into a cylinder of 10 x 10 φ mm at a pressure of 1.0 ton/cm 2 , pre-sintering in vacuum at 400℃ to remove the molding aid, and sintering in vacuum at 1400℃ for 1 hour. A comparison was made using the following as an auxiliary agent. a Add 3% by weight of the molding aid of the present invention, which is a glycerin condensate reacted with ethylene oxide and oleic acid. b The molding aid of the present invention made by reacting a glycerin condensate with ethylene oxide and stearic acid.
wt% addition. c The molding aid of the present invention made by reacting a glycerin condensate with propylene oxide and oleic acid.
wt% addition. d 3% by weight of paraffin as a comparative molding aid
Addition. e 3% by weight of polyethylene glycol was added as a comparative molding aid. f 2% by weight of rosin was added as a comparative molding aid. The conditions of the compacts obtained from the mixed powders to which the forming aids a, b, c, d, e, and f have been added and the conditions of the nests and pores of each sintered compact obtained by sintering the compacts are as follows. Table 1
It was shown to. Incidentally, the degree of condensation of the glycerin condensate used for the molding aids a, b, and c of the present invention is about 360 to 400. However, the degree of condensation is determined as the number of monomers constituting the glycerin condensate. From the results in Table 1, the powder compacts using the molding aids a, b, and c of the present invention for raw powder are in extremely good condition compared to those using the comparative molding aids d, e, and f. In addition, it was confirmed that there were fewer cavities and pores in the sintered body.

【表】 実施例 2 重量組成で95%WC−5%Coの混合粉砕した粉
末に成形助剤を3重量%を混合してスプレードラ
イング法により造粒し、この造粒粉末を0.5、
0.7、0.9ton/cm2圧力で圧粉体を作成し、これを
実施例1と同様な方法で焼結体とした。こゝで使
用した成形助剤は、下記に示した本発明の原料粉
末用成形助剤a、b、cと比較用の成形助剤とし
てパラフインdを加えて行なつた。 a グリセリン縮合体にエチレンオキシド及びカ
プリル酸を反応させた本発明の成形助剤。 b グリセリンの縮合体にプロピレンオキシド及
びパルミチン酸を反応させた本発明の成形助
剤。 c グリセリン縮合体にエチレンオキシド及びマ
ルガリン酸を反応させた本発明の成形助剤。 以上a、b、c、dの各成形助剤を使用し、プ
レス圧力の異なつた圧粉体を焼結した各焼結体の
巣、気孔の状態を表2に示した。尚、ここで用い
たグリセリン縮合体は、実施例1で用いたものと
同一である。
[Table] Example 2 A mixed and pulverized powder with a weight composition of 95% WC and 5% Co was mixed with 3% by weight of a forming aid and granulated by a spray drying method.
Powder compacts were produced at pressures of 0.7 and 0.9 ton/cm 2 and sintered in the same manner as in Example 1. The molding aids used here were molding aids a, b, and c for raw material powders of the present invention shown below, and paraffin d was added as a comparative molding aid. a The molding aid of the present invention made by reacting a glycerin condensate with ethylene oxide and caprylic acid. b The molding aid of the present invention, which is made by reacting a glycerin condensate with propylene oxide and palmitic acid. c The molding aid of the present invention made by reacting a glycerin condensate with ethylene oxide and margaric acid. Table 2 shows the state of the cavities and pores in each sintered compact obtained by sintering green compacts using the forming aids a, b, c, and d at different pressing pressures. The glycerin condensate used here is the same as that used in Example 1.

【表】 表2の結果から本発明の原料粉末用成形助剤
a、b、cを使用したものは、プレス圧力
0.5ton/cm2と低くても充分に緻密な焼結体が得ら
れ比較用のパラフインdより優れていることが確
認できた。又本発明の成形助剤a、b、cを使用
した圧粉体は、表面に光沢がありクラツクキズも
ない精密度のものが得られた。 実施例 3 表3に示す成分組成の各試料に実施例1で用い
たグリセリン縮合体にエチレンオキシド及びオレ
イン酸を反応させた本発明の原料粉末用成形助剤
を添加したものa、b、c、d、eと比較用成形
助剤であるパラフインを添加したものf、g、
h、i、jを各々10×10φmm円柱形に1t/cm2でプ
レス成形する。これら各試料を水素中、窒素中、
水素−窒素混合ガス中及び真空中で400℃−1時
間の条件で予備焼結した後各試料のトータルカー
ボン量を分析し、成形助剤添加前の混合粉砕粉末
のトータルカーボン量に対する増加量を求めた結
果を表4に示した。
[Table] From the results in Table 2, the press pressure was
It was confirmed that a sufficiently dense sintered body was obtained even at a low value of 0.5 ton/cm 2 and was superior to the comparative paraffin d. Moreover, the green compacts using the molding aids a, b, and c of the present invention had glossy surfaces and high precision without cracks. Example 3 A molding aid for raw material powder of the present invention prepared by reacting the glycerin condensate used in Example 1 with ethylene oxide and oleic acid was added to each sample having the component composition shown in Table 3, a, b, c, d, e and those with paraffin added as a comparative molding aid f, g,
Each of h, i, and j is press-formed into a cylinder shape of 10×10φmm at 1 t/cm 2 . Each of these samples was placed in hydrogen, nitrogen,
After preliminary sintering at 400℃ for 1 hour in a hydrogen-nitrogen mixed gas and in vacuum, the total carbon content of each sample was analyzed, and the increase in the total carbon content of the mixed pulverized powder before addition of the forming aid was calculated. The obtained results are shown in Table 4.

【表】【table】

【表】 表4の結果本発明の原料粉末用成形助剤は、カ
ーボン量の増加が0.02〜0.05重量%であるのに対
しパラフインを使つた比較用成形助剤のカーボン
量増加は、0.15〜0.25重量%と多く、しかもバラ
ツキ幅が大きい傾向にある。このことから本発明
の原料粉末用成形助剤は、残留カーボンが少なく
品質管理上安定していることが確認できた。 実施例 4 60wt%Al2O3−40wt%ZrO2(3mol%Y2O3含有)
の混合粉末中に、実施例1で用いたグリセリン縮
合体にオレフインオキシド又は脂肪酸を下記の組
合わせで反応させた本発明の成形助剤a、b、c
を実施例1と同様にして、それぞれ3.5wt%添加
し、この本発明の成形助剤を添加したそれぞれの
混合粉末を、酸素ガス流入中1550℃、2時間保持
の焼結条件の他は実施例1と同様にして、圧粉体
及び焼結体を得た。 a グリセリンの縮合体にエチレンオキシドを反
応させて得られた化合物、 b グリセリン縮合体にプロピレンオキシドを反
応させて得られた化合物、 c グリセリン縮合体にオレイン酸を反応させて
得られた化合物、 こうして得た圧粉体及び焼結体を実施例1と同
様にして調べた所、圧粉体は、それぞれ共極めて
良好であり、焼結体は、それぞれ共巣孔の殆んど
ない緻密なものであつた。
[Table] As a result of Table 4, the carbon content of the molding aid for raw material powder of the present invention increased by 0.02 to 0.05% by weight, whereas the carbon content of the comparative molding aid using paraffin increased by 0.15 to 0.05% by weight. The amount is as high as 0.25% by weight, and the variation tends to be large. From this, it was confirmed that the molding aid for raw material powder of the present invention has little residual carbon and is stable in terms of quality control. Example 4 60wt % Al2O3-40wt % ZrO2 (contains 3mol % Y2O3 )
The molding aids a, b, and c of the present invention are prepared by reacting the glycerin condensate used in Example 1 with olefin oxide or fatty acid in the mixed powder of
were added in the same manner as in Example 1, and the mixed powders containing the forming aid of the present invention were sintered at 1550°C for 2 hours while oxygen gas was flowing in. A green compact and a sintered body were obtained in the same manner as in Example 1. a Compound obtained by reacting a glycerin condensate with ethylene oxide, b Compound obtained by reacting a glycerin condensate with propylene oxide, c Compound obtained by reacting a glycerin condensate with oleic acid, thus obtained. The compacted powder and sintered compacts were examined in the same manner as in Example 1, and both compacted compacts were found to be in extremely good condition, and the sintered compacts were dense with almost no coexisting pores. It was hot.

Claims (1)

【特許請求の範囲】 1 グリセリンの縮合体にオレフインオキシドお
よび/または脂肪酸を反応させて得られる化合物
から成ることを特徴とする粉末冶金の原料粉末用
成形助剤。 2 上記オレフインオキシドがエチレンオキシド
および/またはプロピレンオキシドから成ること
を特徴とする特許請求の範囲第1項記載の粉末冶
金の原料粉末用成形助剤。 3 上記脂肪酸が炭素数8以上を有する高級脂肪
酸から成ることを特徴とする特許請求の範囲第1
項又は第2項記載の粉末冶金の原料粉末用成形助
剤。
[Scope of Claims] 1. A forming aid for raw material powder for powder metallurgy, characterized by comprising a compound obtained by reacting a glycerin condensate with olefin oxide and/or fatty acid. 2. A forming aid for powder metallurgy raw material powder according to claim 1, wherein the olefin oxide comprises ethylene oxide and/or propylene oxide. 3. Claim 1, wherein the fatty acid is a higher fatty acid having 8 or more carbon atoms.
A forming aid for raw material powder for powder metallurgy according to item 1 or 2.
JP56121723A 1981-08-03 1981-08-03 Molding auxiliary for raw powder for powder metallurgy Granted JPS5822304A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56121723A JPS5822304A (en) 1981-08-03 1981-08-03 Molding auxiliary for raw powder for powder metallurgy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56121723A JPS5822304A (en) 1981-08-03 1981-08-03 Molding auxiliary for raw powder for powder metallurgy

Publications (2)

Publication Number Publication Date
JPS5822304A JPS5822304A (en) 1983-02-09
JPH0211642B2 true JPH0211642B2 (en) 1990-03-15

Family

ID=14818282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56121723A Granted JPS5822304A (en) 1981-08-03 1981-08-03 Molding auxiliary for raw powder for powder metallurgy

Country Status (1)

Country Link
JP (1) JPS5822304A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60184602A (en) * 1984-03-01 1985-09-20 Sumitomo Special Metals Co Ltd Method for molding alloy powder for permanent magnet
JPS60184603A (en) * 1984-03-01 1985-09-20 Sumitomo Special Metals Co Ltd Method for molding alloy powder for permanent magnet
JPH0798962B2 (en) * 1992-07-20 1995-10-25 住友特殊金属株式会社 Forming method of alloy powder for rare earth / iron / boron permanent magnet
SG11201700428UA (en) 2016-02-05 2017-09-28 Guangdong Oppo Mobile Telecommunications Corp Ltd Charge method, adapter and mobile terminal

Also Published As

Publication number Publication date
JPS5822304A (en) 1983-02-09

Similar Documents

Publication Publication Date Title
US5429792A (en) Metal powder compositions containing binding agents for elevated temperature compaction
KR0168901B1 (en) Iron-based powder compositions containing novel binder lubricants
JP2904932B2 (en) Improved iron-based powder composition including a lubricant to enhance green compact strength
US4320204A (en) Sintered high density boron carbide
US4604259A (en) Process for making copper-rich metal shapes by powder metallurgy
EP1395383A1 (en) High density stainless steel products and method for the preparation thereof
WO2005102566A1 (en) Method for making compacted products and iron-based powder comprising lubricant
JP4300110B2 (en) Powder lubricant for powder metallurgy
EP1513638B1 (en) Metal powder composition including a bonding lubricant and a bonding lubricant comprising glyceryl stearate.
JP3386078B2 (en) Method of manufacturing sinterable metal stamped part made of metal powder
JPH0211642B2 (en)
JPH05209248A (en) High hardness and wear-resistant material
JP3792714B2 (en) Sintered products with improved density
JP2003509582A (en) Amide wax lubricants for warm forming of iron-based powder compositions
US6485677B1 (en) Method for making sintered products and a metal powder composition therefor
WO2002045889A2 (en) Improvement of flow characteristics of metal feedstock for injection molding
JPH1046201A (en) Additive for powder metallurgy and production of sintered compact
JP4493880B2 (en) Manufacturing method of composite material
KR20040077451A (en) Improved Powder Metallurgy Lubricant Compositions and Methods for Using the Same
JPS55115944A (en) Draw ironing can forming carbide tool
KR100977652B1 (en) Metal powder composition including a bonding lubricant and a bonding lubricant comprising glyceryl stearate
JP2001081525A (en) Cermet and non-oxide ceramics
CN116117145A (en) TiB (titanium-boron) 2 Modified Mo 2 FeB 2 Method for producing a base composite material
JPS58164701A (en) Manufacture of sintered hard alloy
GB966776A (en) Refractory compacts and their manufacture