JPS58164701A - Manufacture of sintered hard alloy - Google Patents

Manufacture of sintered hard alloy

Info

Publication number
JPS58164701A
JPS58164701A JP57045787A JP4578782A JPS58164701A JP S58164701 A JPS58164701 A JP S58164701A JP 57045787 A JP57045787 A JP 57045787A JP 4578782 A JP4578782 A JP 4578782A JP S58164701 A JPS58164701 A JP S58164701A
Authority
JP
Japan
Prior art keywords
powder
binder
sintered
hard alloy
manufacture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57045787A
Other languages
Japanese (ja)
Inventor
Kakuji Hirose
広瀬 「あ」二
Masao Maruyama
丸山 正男
Tadamasa Sho
庄 忠正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP57045787A priority Critical patent/JPS58164701A/en
Publication of JPS58164701A publication Critical patent/JPS58164701A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • C22C1/051Making hard metals based on borides, carbides, nitrides, oxides or silicides; Preparation of the powder mixture used as the starting material therefor

Abstract

PURPOSE:To manufacture economically a sintered hard alloy with high molding and working efficiency by mixing carbide or nitride powder and powder of an iron group metal with microcrystalline cellulose as a binder, wet-grinding the mixture together with an org. solvent, mixing them, and carrying out proper treatments. CONSTITUTION:Powder of an iron group metal as a binding metal and 0.1- 1wt% microcrystalline cellulose as a binder are added to carbide or nitride powder as the principal component of a sintered hard alloy, and they are mixed. After adding an org. solvent, the mixture is wet-ground and mixed. The solvent is then removed, and the dried powder is press-molded to manufacture a molded body of simple shape. The molded body is preliminarily sintered, worked to a prescribed shape with a diamond tool, and sintered.

Description

【発明の詳細な説明】 本発明は超硬合金、特大型形状の超硬合金の製造法に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing cemented carbide and extra-large shaped cemented carbide.

超硬合金は1種以上の炭化物、窒化物を主成分とじGo
などの鉄族金属を結合金属とし粉末原料から製造される
もので高硬度、耐摩耗性が優れているため切削工具、ダ
イス等の耐摩工具等用−が広い。そのために各種の形状
の製品が要求されている。通常の金型でプレスする場合
は単純な形状のものしか得られないためにいった2ん単
純形状の成型体を作成し、これをSOO〜800°Cで
中間焼結してからダイヤモンド工具によって成型加工し
て所定形状にし、焼結する方法が通常である。
Cemented carbide mainly contains one or more carbides and nitrides.
It is manufactured from powder raw materials using iron group metals as a binder metal, and has high hardness and excellent wear resistance, so it is widely used in wear-resistant tools such as cutting tools and dies. For this purpose, products of various shapes are required. When pressing with a normal mold, only a simple shape can be obtained, so we first create a molded product with a simple shape, intermediate sintering at SOO~800°C, and then use a diamond tool. The usual method is to mold it into a predetermined shape and sinter it.

そして原料粉末は数μ以下の微粉でありプレス成型する
ためkはこの中に必ず潤滑性、粉末結合材となる有機バ
インダー(結合剤)を混合することが不可欠である。こ
の結合剤は上記中間焼結又は焼結前段で除去される。
Since the raw material powder is a fine powder of several microns or less and is press-molded, it is essential to mix therein an organic binder (binder) that has lubricating properties and serves as a powder binder. This binder is removed during the intermediate sintering or the pre-sintering stage.

有機結合剤としては従来、パラフィン、ポリエチレング
リコール、カンファー、ステア1リン酸等が4常用いら
れており、粉末の種類によって異るが原料粉末に対し2
〜896(重量)添加される。
Paraffin, polyethylene glycol, camphor, stear monophosphate, etc. have traditionally been used as organic binders.
~896 (by weight) is added.

この結合剤の効果はプレス成型時のスベリの防止、金型
の壁面との摩擦低減、成型体の密度均一化等のその効果
は大きいが逆に成型加工時の工具の目すまり、加工能率
の低下等シで悪影響を及ぼす。
The effect of this binder is to prevent slippage during press molding, reduce friction with the wall surface of the mold, and equalize the density of the molded product, but it also has the effect of preventing tool blindness during molding and reducing machining efficiency. This will have an adverse effect, such as a decrease in

特に、大型形状の製品の場合、結合剤除去のため大型脱
バインダー炉を新たに設置することは経済的に不利であ
り、上記結合剤が入ったま\で成型せざるを得ない。こ
の時、従来の有機結合剤では成型加工時クラックが入っ
たりして加工効果が甚だしく低下する問題があった。こ
れは例えばパラフィンワックスの場合は、成型加工時の
発熱によって軟化、溶着液化して刃物目詰を生じての切
れ味を悪くシ、更にそのために更に発熱するためと思わ
れる。
Particularly in the case of large-sized products, it is economically disadvantageous to newly install a large debinding furnace to remove the binder, and the product must be molded with the binder still inside. At this time, conventional organic binders have the problem of causing cracks during molding, which significantly reduces the processing effect. This seems to be because paraffin wax, for example, is softened by the heat generated during the molding process and becomes a welding liquid, clogging the blade and making it harder to cut, which in turn generates more heat.

この問題を解決すべ(種々検討した結果、有機結合剤と
して微結晶セルリースを用いることはよって上記の問題
が解消するだけでなく驚くべき効果があることがわかっ
た。即ち微結晶セルロースを超硬合金原料粉末に対し0
.1〜1.0重量%添加し、アルコール、アセトン等の
有機溶剤と共にボールミル等で湿式粉砕混合し通常の方
法で有機溶剤を除去した粉末をプレス成型し、その成型
体を所定形状に成型後焼結すると)、とによって、成型
体1:□     − の加工が結合剤が入ったまM、ll・アも効率よくする
ことがわかった。微結晶セルロースは化学式(C6Ht
o 05 )n  の鎖状に結合した繊維素であり、熱
分解によって (C611005)n −* COg+agO+CxH
y+−−−の如くなり、液状では存在しないため、成型
加工においても刃物に目づまりを起さないためと思われ
る。本願発明の目的は上記成型加工の効率化であるが、
以外にも次のような効果も達せられた。
To solve this problem (after various studies, it was found that using microcrystalline cellulose as an organic binder not only solves the above problems but also has a surprising effect. 0 for raw material powder
.. 1 to 1.0% by weight is added, wet-pulverized and mixed with an organic solvent such as alcohol or acetone in a ball mill, etc., the organic solvent is removed by a normal method, the powder is press-molded, and the molded body is molded into a predetermined shape and then baked. It was found that molded body 1: □ − can be processed efficiently even when the binder is present, depending on the results. Microcrystalline cellulose has the chemical formula (C6Ht
o 05 ) n is a chain-linked cellulose, and by thermal decomposition (C611005) n −* COg + agO + CxH
This is thought to be because it does not exist in liquid form and does not clog the cutter during molding. Although the purpose of the present invention is to improve the efficiency of the above-mentioned molding process,
In addition, the following effects were also achieved.

その1つは、添加量が従来の%−Vxo  の微量にも
か翫わらず潤滑性が良くプレス成型性が良いこと、又湿
式混合時、溶媒の水、アルコール、アセトン等に対する
溶解度が小さいため、粉末間に均質に分散させることが
可能であり、工程中の吸湿による酸化トラブルも少くな
った。
One of these is that it has good lubricity and good press moldability despite the small amount of %-Vxo added, and also because it has low solubility in solvents such as water, alcohol, acetone, etc. during wet mixing. , it is possible to homogeneously disperse it between powders, and there are fewer oxidation problems due to moisture absorption during the process.

更にまた、上記微結晶セルロースの熱分解を利用して合
金中のカーボンコントシールも可能となった。そして大
−1長尺製品、複雑形状品において脱バインダ一工程を
省略して成型加工が可能になったメリットは大きい。
Furthermore, carbon contour sealing in the alloy has become possible by utilizing the thermal decomposition of the microcrystalline cellulose. There is a great advantage in that it is now possible to mold long products and products with complex shapes by omitting one step of removing the binder.

、:1″ 次に実施例によって説明する。, :1″ Next, an example will be explained.

実施例                      
1wcss%−Co15重量%組成の粉末に対し2徹結
晶セルロース(数100μ)’!:、0.4%添加し、
これをアトライターにてアセトン湿式粉砕混合した。
Example
2% crystalline cellulose (several 100μ) for a powder with a composition of 1wcss%-Co15% by weight! :, 0.4% added,
This was wet-pulverized and mixed with acetone using an attritor.

これを真空乾燥器によりアセトンを除去乾燥を行い、冷
間静水圧プレス(CIP )にて直径20G1131φ
、長さ200(mの寸法の成型体を得た。これを施盤に
てダイヤモンド工具によって180紘φX190(mの
寸法に成型加工し、2時間水素中で焼結した。上記成型
加工は何んら問題なく約1時間で終了した。
This was dried to remove acetone in a vacuum dryer, and then cold isostatically pressed (CIP) to a diameter of 20G1131φ.
A molded body with a length of 200 m (m) was obtained. This was molded using a diamond tool on a lathe to a size of 180 hiro φ x 190 m (m), and sintered in hydrogen for 2 hours. It was completed in about an hour without any problems.

同様の原料でパラフィンワックス5%添加した場合は2
0分で施削不能となり成型体も一部にキレツが入った。
If 5% paraffin wax is added to the same raw material, 2
Machining became impossible in 0 minutes, and some cracks appeared in the molded body.

5−5-

Claims (1)

【特許請求の範囲】[Claims] 超硬合金の製造法において、炭化物、窒化物粉末、鉄族
金属粉末に結合剤としてα1重量%以上1重量%の微結
晶上ル四−スを混合し有機溶剤と共に湿式粉砕混合を行
い、しかるのち有機溶剤のみを除去乾燥した粉末をプレ
ス成型し、成型体の加工により所定形状として焼結する
ことを特徴とする超硬合金の製造法。
In the manufacturing method of cemented carbide, carbide, nitride powder, and iron group metal powder are mixed with α1% or more and 1% by weight of microcrystalline steel as a binder, wet-pulverized and mixed with an organic solvent, and then A method for manufacturing cemented carbide, which comprises press-molding a powder that has been dried by removing only an organic solvent, and sintering the molded body into a predetermined shape.
JP57045787A 1982-03-23 1982-03-23 Manufacture of sintered hard alloy Pending JPS58164701A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57045787A JPS58164701A (en) 1982-03-23 1982-03-23 Manufacture of sintered hard alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57045787A JPS58164701A (en) 1982-03-23 1982-03-23 Manufacture of sintered hard alloy

Publications (1)

Publication Number Publication Date
JPS58164701A true JPS58164701A (en) 1983-09-29

Family

ID=12728986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57045787A Pending JPS58164701A (en) 1982-03-23 1982-03-23 Manufacture of sintered hard alloy

Country Status (1)

Country Link
JP (1) JPS58164701A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005070596A1 (en) * 2004-01-14 2005-08-04 React-Nti, Llc Powder metal mixture including fragmented cellulose fibers

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005070596A1 (en) * 2004-01-14 2005-08-04 React-Nti, Llc Powder metal mixture including fragmented cellulose fibers

Similar Documents

Publication Publication Date Title
CN101435047B (en) Ceramet containing Ni-Cr binder and preparation thereof
US4388085A (en) Abrasion resistant articles based on silicon nitride
EP0035777B1 (en) Abrasion resistant silicon nitride based articles
DE2923729C2 (en)
JP2523452B2 (en) High strength cubic boron nitride sintered body
US2270607A (en) Ceramic cutting tool
US4497228A (en) Method of machining cast iron
US4880600A (en) Method of making and using a titanium diboride comprising body
US4859124A (en) Method of cutting using a titanium diboride body
JPS58164701A (en) Manufacture of sintered hard alloy
US2124020A (en) Metal alloy
JP3318887B2 (en) Fine-grained cemented carbide and method for producing the same
JPS62127448A (en) Electrode material for electric discharge machining and its production
JP3146803B2 (en) Method for producing cubic boron nitride based ultra-high pressure sintered material with excellent wear resistance
DE3719966C2 (en)
JPH01122971A (en) Cubic boron nitride sintered product
US4885030A (en) Titanium diboride composite body
SU429121A1 (en)
JP2569588B2 (en) Tungsten carbide based cemented carbide with excellent wear resistance and toughness
DE60025430T2 (en) Ceramic cutting tool based on densely sintered nanocomposite alumina
JP2797048B2 (en) Melt erosion resistant material
JPH08319532A (en) Sintered hard alloy for punching tool
JPS6056781B2 (en) Cermets for cutting tools and hot working tools
US1937185A (en) Method of making hard alloys for cutting tools
JPH04280903A (en) Manufacture of cemented carbide powder for injection molding and cemented carbide sintered product