JPH02114500A - Charged particle - Google Patents
Charged particleInfo
- Publication number
- JPH02114500A JPH02114500A JP26739488A JP26739488A JPH02114500A JP H02114500 A JPH02114500 A JP H02114500A JP 26739488 A JP26739488 A JP 26739488A JP 26739488 A JP26739488 A JP 26739488A JP H02114500 A JPH02114500 A JP H02114500A
- Authority
- JP
- Japan
- Prior art keywords
- vacuum chamber
- magnetic
- magnetic field
- charged particle
- charged particles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002245 particle Substances 0.000 title claims abstract description 74
- 230000005291 magnetic effect Effects 0.000 claims abstract description 83
- 239000000463 material Substances 0.000 claims abstract description 25
- 230000035699 permeability Effects 0.000 claims abstract description 16
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 abstract description 20
- 230000000694 effects Effects 0.000 abstract description 15
- 229910052742 iron Inorganic materials 0.000 abstract description 9
- 230000005469 synchrotron radiation Effects 0.000 description 11
- 238000005452 bending Methods 0.000 description 9
- 235000012489 doughnuts Nutrition 0.000 description 7
- 239000000696 magnetic material Substances 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 230000005461 Bremsstrahlung Effects 0.000 description 1
- 230000009931 harmful effect Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 230000002747 voluntary effect Effects 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Landscapes
- Particle Accelerators (AREA)
- Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
この発明は、荷電粒子′A置に関し、特に内部を荷電粒
子が通過する真空チェンバーに関するものである。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a charged particle arrangement, and more particularly to a vacuum chamber through which charged particles pass.
[従来の技術]
第9図は、従来の荷電粒子装置の一例として、特開昭6
2−200699号公報に示された荷電粒子装置を示す
゛ト面図である。図において、(11は荷電粒子を蓄積
する蓄積リング、(2)は荷電粒子を蓄積リング(1)
にふくための入射部ビームライン、(3)は荷電粒子を
偏向して平衡軌道(4)を形成するための偏向電磁石、
(5)は荷電粒子を偏向する際に発生する放射光(シン
クロトロン放射光(SOR: 5ynchrotron
0rbijal 1(adiaLion )とも叶ば
れる)を外部に取り出してリソグラフィなどに利用する
ための放射光ビームライン、(6)は荷電粒子を集束さ
せる四F#電磁石、(7)は荷電粒子の通路である真空
ドーナッツ、(8)は放射光を放射することによる荷電
粒子のエネルギ損失を補い所定のエネルギに加速するた
めの高周波空洞、(9)は荷電粒子を入射部ビームライ
ン(2)から真空ドーナツ(7)内に入射させるために
ビームをパルス的に偏向させるセプタムマグネット、
(20)は入射部ビームライン(2)とこの入射部ビー
ムライン(2)と交差する放射光ビームライン(5a)
との交差部である。この交差部(20)付近には、カプ
トン膜(21)が取り付けられ、蓄積リング+11と入
射部ビームライン(2)のビーム上流側との真空度を独
立なものとしている。上記入射部ビームライン(2)、
真空ドーナツ(7)などの荷電粒子を通過させる真空パ
イプを真空チェンバーと総称し、通常は非磁性材料であ
るSUS製である。 (30)は荷電粒子、(40)は
放射光を示す。このように荷電粒子装置は荷電粒子の通
路を構成する真空チェンバーとこの真空チェンバーを取
り囲み荷電粒子に磁気的作用を及ぼす機器で構成されて
いる。[Prior Art] FIG. 9 shows an example of a conventional charged particle device as disclosed in Japanese Patent Application Laid-open No. 6
2-200699 is a top view showing a charged particle device disclosed in Publication No. 2-200699. In the figure, (11 is a storage ring that stores charged particles, (2) is a storage ring that stores charged particles (1), and (2) is a storage ring that stores charged particles.
(3) is a deflecting electromagnet for deflecting charged particles to form an equilibrium trajectory (4);
(5) Synchrotron radiation (SOR) is synchrotron radiation (SOR) generated when charged particles are deflected.
0rbijal 1 (also known as adiaLion)) is taken out to the outside for use in lithography, etc. A synchrotron radiation beam line, (6) is a 4F# electromagnet that focuses charged particles, and (7) is a path for charged particles. Vacuum donut (8) is a high frequency cavity for compensating for the energy loss of charged particles due to synchrotron radiation and accelerating them to a predetermined energy; (9) is a vacuum donut ( 7) a septum magnet for pulsed deflection of the beam for injection into the interior;
(20) is the entrance beam line (2) and the synchrotron radiation beam line (5a) that intersects this entrance beam line (2).
This is the intersection with A Kapton film (21) is attached near this intersection (20) to make the degree of vacuum independent between the storage ring +11 and the beam upstream side of the entrance beam line (2). The above-mentioned entrance beam line (2),
A vacuum pipe through which charged particles such as a vacuum donut (7) pass is collectively referred to as a vacuum chamber, and is usually made of SUS, which is a non-magnetic material. (30) represents a charged particle, and (40) represents a synchrotron radiation. In this way, a charged particle device is composed of a vacuum chamber that constitutes a passage for charged particles, and a device that surrounds this vacuum chamber and exerts a magnetic effect on the charged particles.
次に動作について説明する。Next, the operation will be explained.
入射部ビームライン(2)から入射された荷電粒子+
30 )は、セプタムマグネット(9)によりパルス的
に偏向されて真空ドーナツ(7)内に入射される。Charged particles incident from the entrance beam line (2) +
30 ) is deflected in a pulsed manner by the septum magnet (9) and is incident into the vacuum donut (7).
その後荷電粒子は、過渡的な軌道(バンブ軌道とい・)
)を経た後、偏向電磁石(3)と四極電磁石(6)との
配置により定まった平衡軌道(4)に入り、この軌道に
そって長時間回転し続ける0通常人射部ビームライン(
2)と真空ドーナツ(7)とは同一平面内となる配置を
とる0例えば、入射部ビームライン(2)内の荷電粒子
(30)が水平方向に進行して入射される場合には、セ
プタムマグネット(9)によって荷電粒子(30)は水
平方向の偏向を受け、最終的に水平な平衡軌道(4)に
沿って回転する。The charged particle then moves into a transient orbit (bump orbit).
), it enters an equilibrium orbit (4) determined by the arrangement of the bending electromagnet (3) and the quadrupole electromagnet (6), and continues rotating along this orbit for a long time.
2) and the vacuum donut (7) are arranged in the same plane. The charged particles (30) are deflected horizontally by the magnet (9) and finally rotate along a horizontal equilibrium trajectory (4).
平衡軌道(4)に沿って回転する荷電粒子(30)が偏
向電磁石(3)の磁界により偏向を受ける際に、制動放
射により電磁波を軌道接線方向に水平に放射する。これ
が放射光(40)である、放射光(40)は偏向電磁石
(3)中の荷電粒子(30)の軌道上において任意の位
置から得ることができるので、通常、放射光ビームライ
ン(5)は多数設けられ、装置の利用効率を高めている
。また、入射部ビームライン(2)のビーム下流側、即
ち、蓄積リング(1)に近い;1−分と、蓄積リング+
1)の真空度とを同一のものとして、全ビームラインの
水平面に対する角度が同一になるようにしてビームライ
ン交差部(20)を設けることにより、放q=を光ビー
ムライン(5)の取付は上の;トリ約をなくしている。When the charged particles (30) rotating along the balanced orbit (4) are deflected by the magnetic field of the bending electromagnet (3), they radiate electromagnetic waves horizontally in the tangential direction of the orbit due to bremsstrahlung radiation. This is synchrotron radiation (40). Since synchrotron radiation (40) can be obtained from any position on the trajectory of charged particles (30) in bending electromagnet (3), it is usually located at synchrotron radiation beam line (5). are installed in large numbers to improve the efficiency of equipment utilization. Also, the beam downstream side of the entrance beam line (2), that is, close to the storage ring (1);
By setting the beam line intersection (20) so that the angles of all beam lines with respect to the horizontal plane are the same with the same degree of vacuum as in step 1), the radiation q= can be adjusted by installing the optical beam line (5). Above; eliminates the trivia.
蓄積リング(1)を小型の装置とすることは、産業利用
]−市要なことであり、そのためには偏向電磁石(3)
中において、荷電粒子(30)を急激に曲げてやれば良
い、そのためには偏向電磁石(3)の出力磁界を強力な
ものとして荷電粒子ビームに対する向心力であるローレ
ンツ力を高めることが一般に行なわれている。It is important for industrial use to make the storage ring (1) a small device, and for this purpose a bending electromagnet (3) is required.
In order to bend the charged particles (30) sharply, it is common practice to make the output magnetic field of the bending electromagnet (3) strong to increase the Lorentz force, which is the centripetal force on the charged particle beam. There is.
ところが、偏向電磁石(3)が強力な磁界を発生すると
、偏向電磁石(3)の開開の広範囲にわたって強力な漏
れ磁界が発生する。この漏れ磁界は入射部ビームライン
(2)や蓄積リング(1)の各所へ達するものであり、
荷゛七粒子(30)はこれらの漏れ磁界の影響を受けて
、設計軌道以外のビーム軌道を通過したり、荷電粒子ビ
ームの性質そのものが悪化したりする。However, when the bending electromagnet (3) generates a strong magnetic field, a strong leakage magnetic field is generated over a wide range of opening and opening of the bending electromagnet (3). This leakage magnetic field reaches various parts of the entrance beam line (2) and storage ring (1),
The charged particle (30) is affected by these leakage magnetic fields, and may pass through a beam trajectory other than the designed trajectory, or the properties of the charged particle beam itself may deteriorate.
[発明が解決しようとする課a]
従来の荷電粒子装置は以上のように構成されており、1
;イ電粒子(30)が漏れ磁界の影響を受けて、設計軌
道以外のビーム軌道を描くために、真空ドーナツ(7)
を太くする必要があり、装置が大型になるという問題点
があった。[Issue a to be solved by the invention] The conventional charged particle device is configured as described above, and has 1
; In order for the electroparticles (30) to draw a beam trajectory other than the designed trajectory due to the influence of the leakage magnetic field, the vacuum donut (7)
There was a problem in that the device needed to be made thicker, making the device larger.
この発明は上記のような問題点を解消するためになされ
たもので、荷電粒子に磁気的作用を及ぼす機器である偏
向電磁石などの磁界発生源による漏れ磁界が他の機器へ
影響するのを防止できる荷電粒子装置を得ること、を目
的とする。This invention was made to solve the above-mentioned problems, and prevents leakage magnetic fields from magnetic field sources such as bending electromagnets, which are devices that exert a magnetic effect on charged particles, from affecting other devices. The purpose is to obtain a charged particle device that can
[課題を解決するための手段]
この発明に係る荷電[粒子装置は、荷′心粒子の通路を
構成する真空チェンバー及びこの真空チェンバーを取り
囲み荷電粒子に磁気的作用を及ぼす機器なfRえる荷電
粒子装置において、真空チェンバーの少なくとも一部を
取り囲むように、比透磁率が1を越える材料から成る磁
気シールド材を備えたことを特徴とするものである。[Means for Solving the Problems] The charged particle device according to the present invention includes a vacuum chamber that constitutes a path for charged particles, and a device that surrounds this vacuum chamber and exerts a magnetic action on the charged particles. The apparatus is characterized in that a magnetic shielding material made of a material having a relative magnetic permeability of more than 1 is provided to surround at least a portion of the vacuum chamber.
また、この発明の別の発明に係る荷電粒子装置は、上記
真空チェンバーの少なくとも一部を、比透磁率が1を越
える材料で構成したことを特徴とするものである。Further, a charged particle device according to another aspect of the present invention is characterized in that at least a portion of the vacuum chamber is made of a material having a relative magnetic permeability of more than 1.
[作用]
この発明における荷電粒子装置では、真空チェンバーを
取り囲み荷電粒子に磁気的作用を及ぼす機器による漏れ
磁界の大部分が、比透磁率がlを越える材料から成る磁
気シールド材中を通過し、磁気シールド材で取り囲まれ
た荷′Ji粒子に他の機器による漏れ磁界が作用するの
を防止する。[Function] In the charged particle device of the present invention, most of the leakage magnetic field from the equipment that surrounds the vacuum chamber and exerts a magnetic effect on the charged particles passes through the magnetic shielding material made of a material whose relative magnetic permeability exceeds 1, This prevents leakage magnetic fields from other devices from acting on the Ji particles surrounded by the magnetic shielding material.
また、真空チェンバーの少なくとも一部を、比透磁率が
1を越える材料で構成した発明においても同様であり、
真空チェンバー自体によって荷電粒子に他の機器による
漏れ磁界が作用するのを防11−する・
[実施例]
以下、この発明の一実施例による荷電粒子装置を図につ
いて説明する。The same also applies to inventions in which at least a part of the vacuum chamber is made of a material with a relative magnetic permeability of more than 1.
11- Preventing leakage magnetic fields from other devices from acting on charged particles by the vacuum chamber itself. [Embodiment] A charged particle device according to an embodiment of the present invention will be described below with reference to the drawings.
第1図はこの発明の一実施例による荷電粒子装置に係る
要部を示す斜視図である。図において、(50)は例え
ば非磁性材料であるsus製の真空チェンバ〜であり、
入射品ビームライン(2)、真空ドーナツ(7)などの
荷電粒子(30)を通過させる真空パイプを総称したも
のである。 (51)は真空チェンバー(50)の少な
くとも一部を取り囲むように配置された。比透磁率が1
を越える材料から成る磁気シールド材であり、この場合
は鉄で構成された磁気シールドパイプである0例えば真
空チェンバー (501の厚さは3+u++程度で、磁
気シールドパイプ1511(7)厚すバ5〜30Il1
m程度、真空f x ンハー(501と磁気シールドパ
イプ(51)との間隔は20〜30mra程度で構成し
ている。また、第2図はこの実施例に係る磁力線の様子
を示す説明図であり、図において、(52)は漏れ磁界
による磁力線を示す。FIG. 1 is a perspective view showing essential parts of a charged particle device according to an embodiment of the present invention. In the figure, (50) is a vacuum chamber made of SUS, which is a non-magnetic material, for example.
This is a general term for vacuum pipes through which charged particles (30) such as the incident beam line (2) and the vacuum donut (7) pass. (51) was arranged so as to surround at least a portion of the vacuum chamber (50). Relative permeability is 1
In this case, it is a magnetic shield pipe made of iron.For example, a vacuum chamber (the thickness of 501 is about 3+u++, and the magnetic shield pipe 1511 (7) is a magnetic shield pipe made of iron. 30Il1
The spacing between the vacuum fx tube (501) and the magnetically shielded pipe (51) is about 20 to 30 mra.Furthermore, FIG. 2 is an explanatory diagram showing the state of the magnetic lines of force according to this embodiment. , in the figure, (52) indicates the lines of magnetic force due to the leakage magnetic field.
この一実施例における動作を説明する。磁界の通りにく
さは、一般に磁気抵抗R(リラクタンスともいう)で表
わされる。T?は式(1)で示されるように物質の比透
磁率JL 、の逆数に比例する。The operation in this embodiment will be explained. The difficulty in passing a magnetic field is generally expressed as magnetic resistance R (also called reluctance). T? is proportional to the reciprocal of the relative magnetic permeability JL of the material, as shown in equation (1).
R” l / JLr +
++ (++非磁性材料や空気中、真空中のμ
mはμr〜lである。これに対して鉄のμmは、鉄が磁
気的に飽和していない状態ではμm > 1000と
極めて大きい、鉄の磁気抵抗Rは空気又は真空の1/1
000以下の礪めて小さな値であり、中空の鉄バイブに
外部から磁界が加わっている場合、第2図に示すように
ほとんど全ての磁力線(52)が磁気抵抗の小さな鉄の
部分を通過し、中空部の磁界強度はほぼ0となる。即ち
、中空部に配置された真空チェンバー(50)内の荷電
粒子(30)は磁界の悪影響を殆ど受けない。R”l/JLr+
++ (++ μ in non-magnetic materials, air, vacuum
m is μr~l. On the other hand, the μm of iron is extremely large, μm > 1000 when iron is not magnetically saturated, and the magnetic resistance R of iron is 1/1 that of air or vacuum.
000 or less, and when a magnetic field is applied from the outside to a hollow iron vibrator, almost all the lines of magnetic force (52) pass through the iron part with small magnetic resistance, as shown in Figure 2. , the magnetic field strength in the hollow part is almost zero. That is, the charged particles (30) in the vacuum chamber (50) arranged in the hollow part are hardly affected by the negative influence of the magnetic field.
なお、上記実施例では磁気シールドパイプ(51)を設
けたものを示したが、第3図に示すように、磁気シール
ドパイプ(51)を分割して構成した分割シールドパイ
プ(51alで構成してもよい、この場合には上記実施
例の効果に加えて分割磁気シールドパイプ(51a)が
真空チェンバー(50)に極めて取り付けやすくなる効
果がある。In the above embodiment, a magnetically shielded pipe (51) is provided, but as shown in FIG. In this case, in addition to the effects of the above embodiment, there is an effect that the divided magnetic shield pipe (51a) can be attached to the vacuum chamber (50) extremely easily.
また、第4図に示すように、分割磁気シールドパイプ(
51a)を真空チェンバー(50)の外周に接するくら
い近づけて設置しても良く、この場合には極めてわずか
のスペースを利用して上記実施例と同様の効果を奏する
ことができる。In addition, as shown in Figure 4, a split magnetic shield pipe (
51a) may be installed so close as to touch the outer periphery of the vacuum chamber (50), and in this case, the same effect as the above embodiment can be achieved using an extremely small space.
また、真空チェンバー(50)の一方側からの漏れ磁界
が問題になる場合には、第5図、第6図に各々示すよう
に、真空チェンバー(50)の外側の磁界の発生源側の
みに分割磁気シールドパイプ(51a)の一部、例えば
半周分を設置してもよい。又、真空チェンバー(50)
の外側の磁界の発生源側のみに磁気シールド板(51b
l を設置しても上記実施例と同様の効果を奏する。こ
の磁気シールド板(51b+は真空チェンバー(50)
に接していても、@気シールド板(51b)に真空チェ
ンバー(50)が埋め込まれていても、また真空チェン
バー(50)とある程度の間隔を開けて設置されていて
もよい。これは入射部ビームライン(2)が他の蓄積リ
ングの近くを通過するような場合における入射部ビーム
ライン(2)においては、この実施例のような磁気シー
ルド板(F+Ib)を蓄積リング側に設ければ良い。In addition, if the leakage magnetic field from one side of the vacuum chamber (50) becomes a problem, as shown in Figs. 5 and 6, it is necessary to A part of the divided magnetic shield pipe (51a), for example, a half circumference may be installed. Also, vacuum chamber (50)
A magnetic shield plate (51b) is installed only on the outside of the magnetic field source side.
Even if 1 is installed, the same effect as in the above embodiment can be obtained. This magnetic shield plate (51b+ is a vacuum chamber (50)
The vacuum chamber (50) may be in contact with the air shield plate (51b), the vacuum chamber (50) may be embedded in the air shield plate (51b), or the vacuum chamber (50) may be installed at a certain distance from the vacuum chamber (50). This is because in the case where the entrance beam line (2) passes close to another storage ring, the magnetic shield plate (F+Ib) as in this embodiment is placed on the storage ring side. Just set it up.
また、第7図に示すように、真空チェンバー(50)の
外周上に磁気シールドテープ(51cl を巻回しても
上記と同様の効果を奏する。この場合には上記効果に加
えて、真空チェンバー(50)が複雑な形状をしている
時でも磁気シールド材を形成することが容易となり、任
意形状の真空チェンバー(50)に適用できる効果もあ
る。Furthermore, as shown in FIG. 7, the same effect as above can be obtained by winding a magnetic shielding tape (51cl) around the outer periphery of the vacuum chamber (50). In this case, in addition to the above effect, the vacuum chamber (50) Even when the vacuum chamber (50) has a complicated shape, it becomes easy to form a magnetic shielding material, and there is also the effect that it can be applied to a vacuum chamber (50) of any shape.
第8図はこの発明の他の発明の一実施例による荷電粒子
装置に係る真空チェンバーを示す斜視図である。この真
空チェンバー(50a)は荷電粒子(30)を高真空に
保持する真空チェンバー自体の少なくとも一部を、比透
磁率が1を越える材料で構成したものである。この場合
にも上記と同様の効果を奏し、更に、装置の構成部品が
少なくでき、装置が安価にできる荷電粒子装置を得るこ
とができる効果がある。FIG. 8 is a perspective view showing a vacuum chamber of a charged particle device according to another embodiment of the present invention. This vacuum chamber (50a) maintains the charged particles (30) in a high vacuum, and at least a portion of the vacuum chamber itself is made of a material having a relative magnetic permeability of more than 1. In this case as well, the same effects as described above are achieved, and furthermore, there is an effect that the number of component parts of the device can be reduced, and a charged particle device that can be manufactured at low cost can be obtained.
なお、蓄積リングにおける真空チェンバー(50)につ
いて説明したが、シンクロトロンにおける荷電粒子の通
路を構成する真空チェンバーに応用してもよい。Although the vacuum chamber (50) in the storage ring has been described, the present invention may also be applied to a vacuum chamber that constitutes a path for charged particles in a synchrotron.
また、比透磁率が1を越える材料は鉄に限るものではな
く、他の材料でも良い。Further, the material having a relative magnetic permeability exceeding 1 is not limited to iron, and other materials may be used.
[発明の効果コ
以上のように、この発明によれば、荷電粒子の通路を構
成する真空チェンバー及びこの真空チェンバーを取り囲
み荷電粒子に磁気的作用を及ぼす機器を備える荷電粒子
装置において4真空チエンバーの少なくとも一部を取り
囲むように、比透磁率が1を越える材料から成る磁気シ
ールド材を備えたことにより、荷電粒子に磁気的作用を
及ぼす機器である偏向電磁石などの磁界発生源による漏
れ磁界が他の機器へ影響するにを防止できる荷電粒子装
置を得ることができる効果がある。[Effects of the Invention] As described above, according to the present invention, in a charged particle device comprising a vacuum chamber forming a passage for charged particles and a device surrounding the vacuum chamber and exerting a magnetic action on the charged particles, there are four vacuum chambers. By providing a magnetic shielding material made of a material with a relative magnetic permeability exceeding 1 so as to surround at least a portion of the part, leakage magnetic fields from magnetic field sources such as bending electromagnets, which are devices that exert a magnetic effect on charged particles, are provided. This has the effect of making it possible to obtain a charged particle device that can prevent harmful effects on equipment.
また、この発明の別の発明によれば、上記真空チェンバ
ーの少なくとも一部を、比透磁率が1を越える材料で構
成したことにより、上記効果に加え、装置の構成部品が
少なくでき、装置が安価にできる荷電粒子装置を(がる
ことができる効果がある。According to another aspect of the present invention, at least a portion of the vacuum chamber is made of a material with a relative magnetic permeability of more than 1, so that in addition to the above effects, the number of component parts of the device can be reduced, and the device can be This has the effect of making it possible to create charged particle devices at low cost.
第1図はこの発明の一実施例による荷電粒子装置に係る
要部を示す斜視図、第2図はこの実施例に係る磁力線の
様子を示す説明図、第3図〜第8図は各々この発明の他
の実施例に係る荷電粒子装置の要部を示す斜視図、第9
図は従来の荷電粒子装置を示すf面図である。
(30)・・・荷電粒子、(50) 、 (50a)
・・・真空チェンバー (51)・・・磁気シールド
パイプ、(51a) ・・・分割磁気シールドパイプ
、(51b) ・・・磁気シールド仮、(51e)
・・・磁気シールドデーブ。
なお、図中、同一符号は同一、又は、相当部分を示す。
代 理 人 人 岩 増 雄第2図
Jυ
第5図
箪9図
手
続
補
正
書(自発)
2、発明の名称
荷電粒子装置
36補正をする者
事件との関係 特許出願人
住 所 東京都千代田区丸の内二丁目2番3号名
称 (601)三菱電機株式会社代表者志岐守哉
4、代理人
住 所 東京都千代田区丸の内二丁目2番3号三
菱電機株式会社内
氏名 (7375)弁理士大岩増雄
(連絡先03(213)3421特許部)5、補正の対
象
明細書の特許請求の範囲および発明の詳細な説明の欄並
びに図面
6、補正の内容
(1)明細書の特許請求の範囲を別紙のとおりに訂正す
る。
(2)明細書第6頁第11行〜第12行の「この真空チ
ェンバーを取り囲み」を削除する。
(3)同第11頁第20行〜第12頁第1行の「この真
空チェンバーを取り囲み」を削除する。
(4)図面の第1図を別紙のとおりに訂正する。
7、添付書類の目録
(1)訂正後の特許請求の範囲を記載した書面 1通
(2)図面(第1図) 1通特許請求の
範囲
(1)荷電粒子の通路を構成する真空チェンバー及び上
記荷電粒子に磁気的作用を及ぼす機器を備える荷電粒子
装置において、上記真空チェンバーの少なくとも一部を
取り囲むように、比透磁率が1を越える材料から成る磁
気シールド材を備えたことを特徴とする荷電粒子装置。
(2)荷電粒子の通路を構成する真空チェンバー及び上
記荷電粒子に磁気的作用を及ぼす機器を備える荷電粒子
装置において、上記真空チェンバーの少なくとも一部を
、比透磁率が1を越える材料で構成したことを特徴とす
る荷電粒子装置。
以上FIG. 1 is a perspective view showing the main parts of a charged particle device according to an embodiment of the present invention, FIG. 2 is an explanatory diagram showing the state of magnetic lines of force according to this embodiment, and FIGS. FIG. 9 is a perspective view showing essential parts of a charged particle device according to another embodiment of the invention;
The figure is an f-plane view showing a conventional charged particle device. (30)...Charged particle, (50), (50a)
...Vacuum chamber (51) ...Magnetic shield pipe, (51a) ...Divided magnetic shield pipe, (51b) ...Temporary magnetic shield, (51e)
...magnetic shield dave. In addition, in the figures, the same reference numerals indicate the same or equivalent parts. Agent: Masuo Iwa Figure 2 Jυ Figure 5, Figure 9 Procedural amendment (voluntary) 2. Name of the invention Relationship to the charged particle device 36 amendment case Patent applicant address Marunouchi, Chiyoda-ku, Tokyo 2-2-3 Name (601) Mitsubishi Electric Corporation Representative Moriya Shiki 4, Agent Address Mitsubishi Electric Corporation 2-2-3 Marunouchi, Chiyoda-ku, Tokyo Name (7375) Masuo Oiwa, Patent Attorney (Contact information: 03 (213) 3421 Patent Department) 5. Scope of claims and detailed description of the invention in the specification to be amended, as well as drawings 6. Contents of the amendment (1) The scope of claims of the specification is attached as an attachment. Correct as shown below. (2) Delete "surrounding this vacuum chamber" from lines 11 to 12 on page 6 of the specification. (3) Delete "surround this vacuum chamber" from page 11, line 20 to page 12, line 1. (4) Figure 1 of the drawings shall be corrected as shown in the attached sheet. 7. List of attached documents (1) Document stating the scope of the claims after the correction 1 copy (2) Drawing (Figure 1) 1 copy Claims (1) Vacuum chamber constituting a passage for charged particles and The charged particle device comprising a device that exerts a magnetic effect on the charged particles is characterized in that a magnetic shielding material made of a material having a relative magnetic permeability of more than 1 is provided so as to surround at least a portion of the vacuum chamber. Charged particle device. (2) In a charged particle device comprising a vacuum chamber constituting a passage for charged particles and a device that exerts a magnetic effect on the charged particles, at least a portion of the vacuum chamber is constructed of a material with a relative magnetic permeability exceeding 1. A charged particle device characterized by: that's all
Claims (2)
の真空チェンバーを取り囲み上記荷電粒子に磁気的作用
を及ぼす機器を備える荷電粒子装置において、上記真空
チェンバーの少なくとも一部を取り囲むように、比透磁
率が1を越える材料から成る磁気シールド材を備えたこ
とを特徴とする荷電粒子装置。(1) In a charged particle device comprising a vacuum chamber constituting a passage for charged particles and a device surrounding the vacuum chamber and exerting a magnetic effect on the charged particles, the relative magnetic permeability 1. A charged particle device comprising a magnetic shielding material made of a material in which .
の真空チェンバーを取り囲み上記荷電粒子に磁気的作用
を及ぼす機器を備える荷電粒子装置において、上記真空
チェンバーの少なくとも一部を、比透磁率が1を越える
材料で構成したことを特徴とする荷電粒子装置。(2) In a charged particle device comprising a vacuum chamber constituting a passage for charged particles and a device surrounding the vacuum chamber and exerting a magnetic effect on the charged particles, at least a portion of the vacuum chamber has a relative magnetic permeability of 1. A charged particle device characterized by being constructed of materials that exceed
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63267394A JP2556112B2 (en) | 1988-10-24 | 1988-10-24 | Charged particle device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63267394A JP2556112B2 (en) | 1988-10-24 | 1988-10-24 | Charged particle device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02114500A true JPH02114500A (en) | 1990-04-26 |
JP2556112B2 JP2556112B2 (en) | 1996-11-20 |
Family
ID=17444237
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63267394A Expired - Fee Related JP2556112B2 (en) | 1988-10-24 | 1988-10-24 | Charged particle device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2556112B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010005065A (en) * | 2008-06-26 | 2010-01-14 | Universal Entertainment Corp | Game medium and game system |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6226800A (en) * | 1985-07-26 | 1987-02-04 | 三菱電機株式会社 | Charged particle apparatus |
JPS6417400A (en) * | 1987-07-10 | 1989-01-20 | Hitachi Ltd | Accelerator |
-
1988
- 1988-10-24 JP JP63267394A patent/JP2556112B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6226800A (en) * | 1985-07-26 | 1987-02-04 | 三菱電機株式会社 | Charged particle apparatus |
JPS6417400A (en) * | 1987-07-10 | 1989-01-20 | Hitachi Ltd | Accelerator |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010005065A (en) * | 2008-06-26 | 2010-01-14 | Universal Entertainment Corp | Game medium and game system |
Also Published As
Publication number | Publication date |
---|---|
JP2556112B2 (en) | 1996-11-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2667832B2 (en) | Deflection magnet | |
EP0832497B1 (en) | System and method for producing superimposed static and time-varying magnetic fields | |
US10332718B1 (en) | Compact deflecting magnet | |
KR100282600B1 (en) | Composite Concentric-Gap Magnetic Lenses and Deflectors with Conical Pole Pieces | |
JPH02114500A (en) | Charged particle | |
US6608317B1 (en) | Charged-particle-beam (CPB)-optical systems with improved shielding against stray magnetic fields, and CPB microlithography apparatus comprising same | |
JP2002033262A (en) | Method for magnetically shielding charged particle beam exposure system | |
JP3399117B2 (en) | Ion implanter | |
JPH0515305U (en) | Iron core structure of laminated bending magnet | |
JPH02177300A (en) | Charged particle device | |
JP2005032505A (en) | Magnetic shield structure and exposure device | |
JP2813386B2 (en) | Electromagnet of charged particle device | |
JP3652927B2 (en) | Insertion light source with radiation resistance | |
JP2004335253A (en) | Electromagnet for fixed field alternating gradient accelerator | |
JPH0395844A (en) | Charged particle beam device | |
JP4374400B6 (en) | Magnetic ion beam scanner | |
JP2022084397A (en) | ECR ion source | |
JPH02270308A (en) | Superconducting deflection electromagnet and excitation method thereof | |
JPS6226800A (en) | Charged particle apparatus | |
JPS62200698A (en) | Charged particle device | |
JPH01307198A (en) | Septum magnet | |
JPS62296400A (en) | Incident apparatus of magnetic resonance type accelerator | |
JPH0367500A (en) | Radiation light generation device | |
JPS62200699A (en) | Charged particle device | |
JPH02195700A (en) | Charged particle beam apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |