JPH01307198A - Septum magnet - Google Patents

Septum magnet

Info

Publication number
JPH01307198A
JPH01307198A JP13551988A JP13551988A JPH01307198A JP H01307198 A JPH01307198 A JP H01307198A JP 13551988 A JP13551988 A JP 13551988A JP 13551988 A JP13551988 A JP 13551988A JP H01307198 A JPH01307198 A JP H01307198A
Authority
JP
Japan
Prior art keywords
septum
charged particles
magnetic field
magnet
split
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13551988A
Other languages
Japanese (ja)
Inventor
Koji Kobayashi
孝司 小林
Hiroshi Tomeoku
留奥 寛
Naoki Maki
牧 直樹
Kiyoshi Yamaguchi
潔 山口
Toshiji Tominaka
冨中 利治
Akinori Shibayama
昭則 柴山
Kazuyoshi Nishimura
和好 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Nippon Telegraph and Telephone Corp
Original Assignee
Hitachi Ltd
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Nippon Telegraph and Telephone Corp filed Critical Hitachi Ltd
Priority to JP13551988A priority Critical patent/JPH01307198A/en
Publication of JPH01307198A publication Critical patent/JPH01307198A/en
Pending legal-status Critical Current

Links

Landscapes

  • Particle Accelerators (AREA)

Abstract

PURPOSE:To reduce any irradiation damage due to a synchrotron radiation beam, by splitting a septum into upper and lower parts while making the distance between respective faces of the split septum parts larger than the height of the gap between iron cores. CONSTITUTION:Each septum coil made up of a septum 1 and a return conductor 3, and having an iron core 8 so as to cover each septum coil, is allowed to generate a bipolar magnetic field for deflecting charged particles to a beam opening 2. Hereupon the septum 1 is split into the number of parts of not less than two, so symmetrical mutually to the upper and lower parts as to remove the portion facing the opening 2 so that the distance between the split septum coils 1, 1 is formed to be made larger than a gap between iron cores 8. One portion of each septum is thus kept small in thickness with a leakage magnetic field also made small, so that the septum magnet in the title can be prevented from any irradiation damage due to a synchrotron radiation beam generated together with the charged particle beam as well as its orbital deflection.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はセプタムマグネットに係り、特にリソグラフィ
用小型蓄積リングの入射装置に好適なセプタムマグネッ
トに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a septum magnet, and more particularly to a septum magnet suitable for an injection device for a small storage ring for lithography.

〔従来の技術〕[Conventional technology]

一般に荷電粒子を加速するには多段の加速器を組み合わ
せて行う。加速器間はビームラインで連結し、荷電粒子
は入射装置であるセプタムマグネットによって前記ビー
ムラインから軌道が偏向されて次段の加速器へ入射する
。従来の装置はアイ・イー・イー・イー、トランザクシ
ョン オンニュークリア サイエンス、ボリューム エ
ヌ・ニス−32ナンバー5 1985年10月 第36
28頁から第3630頁(IEEE、 Tran−sa
ctions on Nuclear 5cience
、 vo Q 、 N S −32。
Generally, charged particles are accelerated using a combination of multi-stage accelerators. The accelerators are connected by a beam line, and the trajectory of the charged particles is deflected from the beam line by a septum magnet, which is an injection device, and the charged particles enter the next stage accelerator. Conventional equipment is IE, Transaction on Nuclear Science, Volume Nnis-32 Number 5 October 1985 No. 36
Pages 28 to 3630 (IEEE, Tran-sa
tions on Nuclear 5science
, vo Q, NS-32.

Na50ctober 1985  pp3628−3
630)に記載のような構造となっていた。以下に従来
例について第2図、及び第3図を用いて説明する。
Na50ctober 1985 pp3628-3
It had a structure as described in 630). A conventional example will be described below with reference to FIGS. 2 and 3.

まず荷電粒子の軌道について説明する。荷電粒子はセプ
タムマグネットの作る偏向磁場によって軌道を曲げられ
、次段の加速器に入射し、そのときの荷電粒子の軌道が
入射軌道10である。入射した荷電粒子はさらにパータ
ベータマグネット(図示せず)によって軌道に修正され
、最終的番;中心軌道11をとる。
First, the orbits of charged particles will be explained. The trajectory of the charged particle is bent by the deflection magnetic field created by the septum magnet, and the charged particle enters the next stage accelerator, and the trajectory of the charged particle at this time is the incident trajectory 10. The incident charged particle is further corrected to its orbit by a perturbator magnet (not shown), and takes the final number: center orbit 11.

次にセプタムマグネットの構造について説明する。セプ
タムマグネットはセプタム1と戻り導体3、および前記
セプタム1と戻り導体3を連結している渡り部9から成
るセプタムコイル、及び前記セプタムコイルを鉄心8が
包囲し、双極磁石を形成している。さらに前記セプタム
1を支える支持板4が前記セプタム1の外側にあり、前
記支持板4の上下には固定用のスペーサ6が置かれてい
る。また前記セプタムマグネットから漏れ磁場が発生す
ると、中心軌道11上の荷電粒子に悪影響を及ぼすので
、この漏れ磁場を遮蔽するために、磁気シールド板5が
前記セプタム1の外側に設置されている。また入射軌道
10と中心軌道11の距離が小さいことが荷電粒子の軌
道制御上から必要とされる。したがって前記セプタム1
、磁気シールド板5.および支持板4の合計の厚さが小
さいことが必要である。
Next, the structure of the septum magnet will be explained. The septum magnet includes a septum 1, a return conductor 3, a septum coil consisting of a transition portion 9 connecting the septum 1 and the return conductor 3, and an iron core 8 surrounding the septum coil to form a bipolar magnet. Further, a support plate 4 for supporting the septum 1 is provided on the outside of the septum 1, and fixing spacers 6 are placed above and below the support plate 4. Furthermore, if a leakage magnetic field is generated from the septum magnet, it will have an adverse effect on the charged particles on the center orbit 11, so a magnetic shield plate 5 is installed outside the septum 1 to shield this leakage magnetic field. Further, it is necessary for the distance between the incident trajectory 10 and the center trajectory 11 to be small from the viewpoint of controlling the trajectory of the charged particles. Therefore, the septum 1
, magnetic shield plate 5. It is also necessary that the total thickness of the support plate 4 is small.

さらに、小型加速器用のセプタムマグネットは、偏向角
を大きくとるために、ギャップ磁束密度が高くなる・励
磁コイルの起磁力を小さくおさえるためには、鉄心間の
ギャップを小さくする必要があり、セプタムマグネット
は真空ダクトの中に設置される。したがって、セプタム
マグネットは真空中で使用され、前記セプタムマグネッ
トの外周上記従来例は、荷電粒子の通過する開口部2の
側面にセプタムが配置された構造になっていた。
Furthermore, septum magnets for small accelerators have a large deflection angle, which increases the gap magnetic flux density.In order to keep the magnetomotive force of the excitation coil small, the gap between the iron cores needs to be small. is installed in a vacuum duct. Therefore, the septum magnet is used in a vacuum, and the outer circumference of the septum magnet The conventional example described above has a structure in which the septum is disposed on the side of the opening 2 through which charged particles pass.

そのために軌道をずれた一部の荷電粒子、および荷電粒
子の軌道が偏向するときに発生するシンクロトロン放射
光によってセプタム1の導体、あるいは絶縁物が損傷を
受けるという問題があった。
Therefore, there is a problem in that the conductor or insulator of the septum 1 is damaged by some of the charged particles that have deviated from their orbits and by synchrotron radiation light that is generated when the orbits of the charged particles are deflected.

本発明の目的は、セプタム部の厚さを小さく保ち、漏れ
磁場も小さくして、なおかつ前述した荷電粒子による損
傷を受けない構造を持ったセプタムマグネットを提供す
るにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a septum magnet which has a structure in which the thickness of the septum portion is kept small, the leakage magnetic field is also reduced, and the magnet is not damaged by the above-mentioned charged particles.

上記目的は、セプタムを開口部に面する部分を除くよう
に、上下対称に少なくとも2つ以上に分割し、この分割
したセプタムコイル間距離を鉄心間のギャップより大き
くすることにより達成される。
The above object is achieved by vertically symmetrically dividing the septum into at least two parts, excluding the portion facing the opening, and by making the distance between the divided septum coils larger than the gap between the iron cores.

〔作用〕[Effect]

前述したようにセプタムコイルを分割配置することによ
り、荷電粒子、および荷電粒子の軌道偏向に伴い発生す
るシンクロトロン放射光の照射による損傷を防ぐことが
できる。
By separately arranging the septum coil as described above, it is possible to prevent damage caused by charged particles and irradiation of synchrotron radiation light that occurs due to orbital deflection of charged particles.

また、第1図に示すようにセプタム断面の高さhと漏れ
磁束密度の関係について第4図を用いて説明する。磁束
密度の正の向きはセプタムマグネット開口部に生ずる偏
向磁場の向きとする。また横軸はセプタム断面の上下の
中心をとり、原点を磁気シールド面の端面にとって、中
心軌道側への漏れ磁束密度分布を示す。前記セプタム断
面の高さhがある高さhoより小さいと磁束密度の向き
は負になり、一方りがhOより大きいと磁束密度の向き
は正になるので、h=hoとすると漏れ磁束密度の絶対
値が極・めで小さくなる。なお、セプタム断面の高さh
の前記セプタム部の幅Wとの比h/Wを変化させたとき
の、中心軌道側での漏れ磁束密度の変化を第6図に示す
。これから、h/Wが5〜8のとき漏れ磁束密度は極め
て小さくなる。したがって、上記目的は前述したような
手段で達成できる。
Further, as shown in FIG. 1, the relationship between the height h of the septum cross section and the leakage magnetic flux density will be explained using FIG. 4. The positive direction of the magnetic flux density is the direction of the deflection magnetic field generated at the septum magnet opening. The horizontal axis indicates the vertical center of the septum cross section, and the origin is the end face of the magnetic shield surface, and indicates the leakage magnetic flux density distribution toward the center orbit. If the height h of the septum cross section is smaller than a certain height ho, the direction of the magnetic flux density will be negative, while if one is larger than hO, the direction of the magnetic flux density will be positive, so if h = ho, the leakage magnetic flux density will be The absolute value becomes smaller at the extremes. In addition, the height h of the septum cross section
FIG. 6 shows the change in leakage magnetic flux density on the center orbit side when the ratio h/W to the width W of the septum portion is changed. From this, when h/W is 5 to 8, the leakage magnetic flux density becomes extremely small. Therefore, the above object can be achieved by the means described above.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図により説明する。該図
の如く、セプタムコイルはセプタム1、および戻り導体
3から成っている。そして、セプタムコイルを覆うよう
に鉄心8が存在し、ビーム開口部2に荷電粒子を偏向さ
せるための双極磁場を発生させている。また、入射する
加速器の中心軌道へ前記双極磁場が漏れないように、前
記セプタム1の側面に磁気シールド板5が設けられてい
る。
An embodiment of the present invention will be described below with reference to FIG. As shown in the figure, the septum coil consists of a septum 1 and a return conductor 3. An iron core 8 is present so as to cover the septum coil, and generates a dipole magnetic field for deflecting charged particles at the beam aperture 2. Further, a magnetic shield plate 5 is provided on the side surface of the septum 1 so that the dipole magnetic field does not leak into the center orbit of the accelerator.

本実施例ではセプタム1は上下対称に少なくとも2つ以
上に分割され、この分割されたセプタム1間の相対する
該セプタム1間の距離を鉄心8間のギャップより大きく
する。すると幾何学的配置から荷電粒子自体、あるいは
、軌道偏向に伴うシンクロトロン放射光の照射確率は極
めて小さくなる。
In this embodiment, the septum 1 is vertically symmetrically divided into at least two parts, and the distance between the septa 1 facing each other is made larger than the gap between the iron cores 8. Then, due to the geometrical arrangement, the probability of being irradiated by the charged particle itself or synchrotron radiation due to orbital deflection becomes extremely small.

また、セプタム断面の高さhを前述したhoにすること
により、漏れ磁場が小さくなる。
Further, by setting the height h of the septum cross section to the above-mentioned ho, the leakage magnetic field is reduced.

本実施例によれば荷電粒子、あるいはシンクロトロン放
射光の照射によるセプタムの損傷を防ぎ。
According to this embodiment, damage to the septum due to irradiation with charged particles or synchrotron radiation light is prevented.

損傷に伴う真空の悪化を防ぐことが可能である。It is possible to prevent deterioration of the vacuum due to damage.

また、漏れ磁場を小さくできる。さらに本実施例では前
記戻り導体3が前記セプタム1と同様に分割した構造に
なっているので、巻線作業が容易であるという効果があ
る。
In addition, the leakage magnetic field can be reduced. Furthermore, in this embodiment, since the return conductor 3 has a divided structure similar to the septum 1, there is an effect that the winding work is easy.

また他の実施例では第5図に示すように戻り導体3を一
体化構造にしてもよい。本実施例によれば前記実施例同
様にセプタム1の荷電粒子、およびシンクロトロン放射
による照射損傷を防ぐ事ができ、なおかつ漏れ磁場が小
さくできる。さらに本実施例では戻り導体3が一体化構
造であるので、戻り導体の構造が簡単で支持が容易にな
る効果がある。
In other embodiments, the return conductor 3 may have an integrated structure as shown in FIG. According to this embodiment, as in the previous embodiment, damage to the septum 1 caused by charged particles and synchrotron radiation can be prevented, and the leakage magnetic field can be reduced. Furthermore, in this embodiment, since the return conductor 3 has an integrated structure, the return conductor has a simple structure and is easy to support.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、荷電粒子、あるいは該荷
電粒子に伴い発生するシンクロトロン放射光のセプタム
部への照射損傷を軽減でき、なおかつ漏れ磁場を小さく
できる効果がある。
As described above, according to the present invention, it is possible to reduce irradiation damage to the septum by charged particles or synchrotron radiation light generated by the charged particles, and also to reduce the leakage magnetic field.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のセプタムマグネットの一実施例の横断
面図、第2図は従来のセプタムマグネットを一部破断し
て示す平面図、第3図は従来のセプタムマグネットの横
断面図、第4図は漏れ磁束密度分布図、第5図は本発明
の他の実施例の横断面図、第6図は漏れ磁場とセプタム
形状の関係を示す特性図である。 1・・・セプタム、2・・・ビーム開口部、3・・・戻
り導体、4・・・支持板、5・・・磁気シールド板、8
・・・鉄心、9・・・渡り部、10・・・入射軌道、1
1・・・中心軌道。 高1四 も2図 毛3図 菓4図 入〉鶴  1
FIG. 1 is a cross-sectional view of an embodiment of the septum magnet of the present invention, FIG. 2 is a partially cutaway plan view of a conventional septum magnet, and FIG. 3 is a cross-sectional view of a conventional septum magnet. FIG. 4 is a leakage flux density distribution diagram, FIG. 5 is a cross-sectional view of another embodiment of the present invention, and FIG. 6 is a characteristic diagram showing the relationship between the leakage magnetic field and septum shape. DESCRIPTION OF SYMBOLS 1... Septum, 2... Beam opening, 3... Return conductor, 4... Support plate, 5... Magnetic shield plate, 8
... Iron core, 9 ... Transition part, 10 ... Incident trajectory, 1
1... Central orbit. High school 14th year, 2 drawings, 3 drawings, 4 drawings of sweets〉Tsuru 1

Claims (1)

【特許請求の範囲】 1、入射する荷電粒子の通過するビーム開口部を有し、
該ビーム開口部に偏向磁場を発生せしめるセプタム、お
よび戻り導体から成るセプタムコイルと、該セプタムコ
イルを覆う鉄心と、荷電粒子が入射する加速器側のセプ
タム側面に配置された磁気シールド板とを備えたセプタ
ムマグネットにおいて、前記セプタムを上下に分割する
と共に、該分割セプタム面間距離を鉄心ギャップの高さ
より大きくしたことを特徴とするセプタムマグネツト。 2、特許請求の範囲第1項記載のものにおいて、前記セ
プタム断面の高さをセプタム部の幅の5倍から8倍にし
たことを特徴とするセプタムマグネツト。
[Claims] 1. Having a beam aperture through which incident charged particles pass;
A septum that generates a deflection magnetic field at the beam aperture, a septum coil consisting of a return conductor, an iron core that covers the septum coil, and a magnetic shield plate placed on the side of the septum on the accelerator side where charged particles are incident. A septum magnet, characterized in that the septum is divided into upper and lower parts, and the distance between the faces of the divided septum is larger than the height of the core gap. 2. The septum magnet according to claim 1, wherein the height of the septum cross section is 5 to 8 times the width of the septum portion.
JP13551988A 1988-06-03 1988-06-03 Septum magnet Pending JPH01307198A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13551988A JPH01307198A (en) 1988-06-03 1988-06-03 Septum magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13551988A JPH01307198A (en) 1988-06-03 1988-06-03 Septum magnet

Publications (1)

Publication Number Publication Date
JPH01307198A true JPH01307198A (en) 1989-12-12

Family

ID=15153666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13551988A Pending JPH01307198A (en) 1988-06-03 1988-06-03 Septum magnet

Country Status (1)

Country Link
JP (1) JPH01307198A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0337999A (en) * 1989-07-04 1991-02-19 Mitsubishi Electric Corp Septum type electromagnet
JP5112571B1 (en) * 2012-02-13 2013-01-09 三菱電機株式会社 Septum electromagnet and particle beam therapy system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0337999A (en) * 1989-07-04 1991-02-19 Mitsubishi Electric Corp Septum type electromagnet
JP5112571B1 (en) * 2012-02-13 2013-01-09 三菱電機株式会社 Septum electromagnet and particle beam therapy system
CN103370991A (en) * 2012-02-13 2013-10-23 三菱电机株式会社 Septum electromagnet and particle beam therapy device

Similar Documents

Publication Publication Date Title
JP2667832B2 (en) Deflection magnet
US5117212A (en) Electromagnet for charged-particle apparatus
EP0228154B1 (en) Magnetic field generating device for nmr-ct
US4710722A (en) Apparatus generating a magnetic field for a particle accelerator
JPS62259400A (en) Vacuum chamber for accelerator
JPH04273409A (en) Superconducting magnet device; particle accelerator using said superconducting magnet device
JP4276340B2 (en) Cyclotron electromagnet design method and cyclotron system
GB2079035A (en) Deflection system for charged-particle beam
JPH01307198A (en) Septum magnet
US3681599A (en) Sector-type charged particle energy analyzer
US3388359A (en) Particle beam focussing magnet with a septum wall
JP2501380B2 (en) Bending electromagnet for accelerator
US3393385A (en) Quadrupole magnet with reduced field distortion
JPS585952A (en) Charged-particle focusing deflecting device
JP2945158B2 (en) Deflection magnet for charged particle devices
JPH055800A (en) Deflecting electro-magnet
JPH04345738A (en) Deflecting electromagnet
JP2556112B2 (en) Charged particle device
Tatchyn A field-cancellation algorithm for constructing economical planar permanent magnet (PM) multipoles with large high-quality field apertures
JPH04345800A (en) Deflecting electromagnet
JPS62200699A (en) Charged particle device
Green A superconducting spectrometer magnet system for the detection of heavy isotopes
JPH02270308A (en) Superconducting deflection electromagnet and excitation method thereof
JPS58148000A (en) Neutral particle indicent device
Stiord LinearAcceleratorCenter TESTS OF PLANAR PERMANENT MAGNET MULTIPOLE FOCUSING ELEMENTS