JPH02270308A - Superconducting deflection electromagnet and excitation method thereof - Google Patents

Superconducting deflection electromagnet and excitation method thereof

Info

Publication number
JPH02270308A
JPH02270308A JP7339790A JP7339790A JPH02270308A JP H02270308 A JPH02270308 A JP H02270308A JP 7339790 A JP7339790 A JP 7339790A JP 7339790 A JP7339790 A JP 7339790A JP H02270308 A JPH02270308 A JP H02270308A
Authority
JP
Japan
Prior art keywords
coil
magnetic field
correction coil
main coil
pole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7339790A
Other languages
Japanese (ja)
Inventor
Tadatoshi Yamada
山田 忠利
Shunji Yamamoto
俊二 山本
Tetsuya Matsuda
哲也 松田
Toshie Ushijima
牛島 敏恵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP7339790A priority Critical patent/JPH02270308A/en
Publication of JPH02270308A publication Critical patent/JPH02270308A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make the title electromagnet small in size by providing a multipolar correction coil inside the main coil. CONSTITUTION:In a superconducting deflection electromagnet equipped with a main coil 1, with which a charged particle beam will be deflected by generating a magnetic field and multipolar correction coils 31 and 32 with which highly uniform magnetic field is generated on the passing region of a charged beam, multipole correction coils 31 and 32 are provided. For example, in order to cancel the non-uniform magnetic field of the main coil 1, a 4-pole correction coil 31 composed of four banana-shaped coil and a 6-pole correction coil 32 composed of six banana-shaped coils are used. The above-mentioned tetrode correction coil 31 and 6-pole correction coil 32 are provided in the main coil 1. As a result, the 4-pole correction coil 31 and the 6-pole correction coil 32 can be provided on the main coil 1 without projecting to outside, and a cryostat 4 can be made small in size.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、磁界を発生させて荷電ビームを偏向させる
主コイルと、磁界を調整して高均一磁界を作る多極補正
コイルとを備えた超電導偏向電磁石に関するものである
[Detailed Description of the Invention] [Field of Industrial Application] This invention includes a main coil that generates a magnetic field to deflect a charged beam, and a multipolar correction coil that adjusts the magnetic field to create a highly uniform magnetic field. This relates to superconducting bending magnets.

また、この発明の他の発明は、主コイルおよび多極コイ
ルを備えた超電導偏向電磁石の励磁方法に関するもので
ある。
Another invention of the present invention relates to a method of exciting a superconducting bending electromagnet having a main coil and a multipolar coil.

[従来の技術] 第6図は、「ジャンク他“最初の小型放射光源用超電導
原型マグネット”、アイ・イー・イー・イー・トランス
アクションズ オン マグネデイクス、Vo  、24
.No2.1230−1232頁、1988年3月(^
[Prior art] Figure 6 shows “Junk et al., “The first prototype superconducting magnet for a compact synchrotron radiation source,” IE Transactions on Magnedix, Vo, 24.
.. No. 2, pages 1230-1232, March 1988 (^
.

Jahnke他“FIRST 5IIPERCONDU
CTING PROTOTYPEHA(:NETS F
ORA COMPACT 5YNCIIROTRON 
RADI^Tl0NSOIJRCE IN 0PERA
TION’、、IEEE TRANSACTIONS 
ONMACNETICS) Jに示された従来の超電導
偏向電磁石を示す斜視図である2図において、(1)は
主コイル、(2)は補助コイル、(3)は傾斜コイル、
(4)はクライオスタット、(5)は荷電ビーム(6)
を通すビームダクト、(7)は放射光である。
Jahnke et al. “FIRST 5 II PER CONDU
CTING PROTOTYPEHA(:NETS F
ORA COMPACT 5YNCIIROTRON
RADI^Tl0NSOIJRCE IN 0PERA
TION', IEEE TRANSACTIONS
In Figure 2, which is a perspective view showing the conventional superconducting bending electromagnet shown in ONMACNETICS) J, (1) is the main coil, (2) is the auxiliary coil, (3) is the gradient coil,
(4) is a cryostat, (5) is a charged beam (6)
The beam duct (7) that passes through is the synchrotron radiation.

次に、動作について説明する。主として、主コイル(1
)が発生する垂直方向の磁界(相対する主コイル(1)
に鎖交する磁界)によって荷電ビーム(6)は180 
Jf偏向される。この時、荷電ビーム(6)は半径方向
に力を受けるから、それと直交する方向(荷電ビーム(
6)軌道の接線方向)に放射光(7)を発生する。高エ
ネルギービームを小半径で曲げるには高磁界が必要なた
め超電導偏向電磁石が用いられる。
Next, the operation will be explained. Mainly, the main coil (1
) is generated in a vertical magnetic field (opposing main coil (1)
The charged beam (6) is 180
Jf is deflected. At this time, the charged beam (6) receives a force in the radial direction, so the direction perpendicular to it (the charged beam (6)
6) Generate synchrotron radiation (7) in the tangential direction of the orbit. Superconducting bending electromagnets are used because a high magnetic field is required to bend a high-energy beam with a small radius.

荷電ビーム(6)は有限の断面積を持っている(通常数
−繭程度)、また、集束用の4極電磁石(図示せず)の
設置誤差などによって、超電導偏向電磁石中の荷電ビー
ム(6)の軌道は設計位置く通常は主コイル(1)の中
心)から数10輪輪ずれることもある0以上の2つの理
由から、超電導偏向電磁石は荷電ビーム(6)の軌道に
沿って断面が数10a+m角程度の領域に高均一な磁界
を発生するようになっている。この均一磁界によって、
全荷電ビーム(6を180度偏向する。補助コイル(2
)や傾斜コイル(3)は主コイル(1)が作る磁界を調
整して上述の高均一磁界を作るのに用いられる。また、
傾斜コイル(3)は、高均一磁界に荷電ビーム(6)の
曲率半径方向に直線的に変化する垂直方向磁界を重畳し
て、荷電ビーム(6)の断面寸法を小さくするために使
用される。
The charged beam (6) has a finite cross-sectional area (usually about the size of a cocoon), and due to installation errors of the focusing quadrupole electromagnet (not shown), the charged beam (6) in the superconducting bending electromagnet may ) The trajectory of the superconducting bending magnet may deviate from the designed position (usually the center of the main coil (1)) by several tens of rings.For two reasons, the superconducting bending magnet has a cross section along the trajectory of the charged beam (6). A highly uniform magnetic field is generated in an area of approximately several tens of square meters. With this uniform magnetic field,
Fully charged beam (6) is deflected 180 degrees.Auxiliary coil (2
) and the gradient coil (3) are used to adjust the magnetic field created by the main coil (1) to create the above-mentioned highly uniform magnetic field. Also,
The gradient coil (3) is used to reduce the cross-sectional dimension of the charged beam (6) by superimposing a vertical magnetic field that varies linearly in the radius of curvature of the charged beam (6) on a highly uniform magnetic field. .

クライオスタット(4)は各コイルを極低温に保持する
ための低温容器である。低温容器は、低温ぜい性を防ぐ
ためや超電導コイルから発生する磁界を歪せないために
、通常ステンレス鋼などの非磁性金属で作られる。ビー
ムダクトク5)は荷電ビーム(6)の通過する領域を高
真空にして荷電ビーム(6)の消滅を防ぐための真空ダ
クトである。
The cryostat (4) is a low temperature container for maintaining each coil at an extremely low temperature. Cryovessels are usually made of non-magnetic metals such as stainless steel to prevent cold embrittlement and to avoid distorting the magnetic field generated by the superconducting coils. The beam duct 5) is a vacuum duct for creating a high vacuum in the region through which the charged beam (6) passes to prevent the charged beam (6) from disappearing.

[発明が解決しようとする課題] 従来の超電導偏向電磁石は以上のように構成され、主コ
イル(1)の曲率中心側に傾斜コイル(3)が配設され
、傾斜コイル(3)が主コイル(1)がら突出している
ので、クライオスタット(4)が太き)  くなり、装
置全体が大きくなるという問題点があった。
[Problems to be Solved by the Invention] A conventional superconducting bending electromagnet is configured as described above, in which a gradient coil (3) is disposed on the curvature center side of the main coil (1), and the gradient coil (3) is arranged as the main coil. Since the cryostat (1) protrudes, the cryostat (4) becomes thicker and the entire device becomes larger.

この発明は、かかる問題点を解消するためになされたも
ので、小型化が可能な超電導偏向電磁石を得ることを目
的とする。
The present invention was made to solve these problems, and an object of the present invention is to obtain a superconducting bending electromagnet that can be miniaturized.

また、この発明の他の発明は、大きな磁界においても荷
電ビームの通過領域に均一な磁界を発生させる超電導偏
向電磁石の励磁方法を得ることを目的とする。
Another object of the present invention is to obtain a method for exciting a superconducting bending electromagnet that generates a uniform magnetic field in a region through which a charged beam passes even in a large magnetic field.

[課題を解決するための手段] この発明に係る超電導偏向電磁石は、主コイルの内部に
多極補正コイルを配設したものである。
[Means for Solving the Problems] A superconducting bending electromagnet according to the present invention has a multipolar correction coil disposed inside a main coil.

また、この発明の他の発明に係る超電導偏向電磁石の励
磁方法は、磁界を発生させて荷電ビームを偏向させる主
コイルに流れる電流に対して、多極補正コイルに前記主
コイルが発生する空間的に不均一な磁界を打ち消すよう
に電流を独立に1ilJ御して流すものである。
In addition, in the method of exciting a superconducting bending electromagnet according to another aspect of the present invention, the spatial current generated by the main coil in the multipolar correction coil is A current of 1 ilJ is independently controlled to flow in order to cancel the non-uniform magnetic field.

[作 用] この発明においては、主コイルの内部に多極補正コイル
を配設したので、主コイルが多極補正コイルがら突出す
ることはない。
[Function] In this invention, since the multipolar correction coil is disposed inside the main coil, the main coil does not protrude from the multipolar correction coil.

また、この発明の他の発明においては、多極補正コイル
には主コイルが発生する空間的に不均一な磁界を打ち消
すように電流が独立に$制御して流される。
Further, in another aspect of the present invention, a current is independently controlled and passed through the multipole correction coil so as to cancel out the spatially non-uniform magnetic field generated by the main coil.

[実施例1 以下、この発明の一実施例を図について説明する。第1
A図はこの発明の超電導偏向電磁石の平面図、第1B図
は第1A図のIB−IB線に沿う断面図を示すものであ
る。
[Embodiment 1] Hereinafter, an embodiment of the present invention will be described with reference to the drawings. 1st
Figure A is a plan view of the superconducting bending electromagnet of the present invention, and Figure 1B is a sectional view taken along line IB-IB in Figure 1A.

図において、(11)は磁気シールド体、(1)は主コ
イル、(31)は多極補正コイルとしての4極補正コイ
ル、(32)は多極補正コイルとしての6極補正コイル
、(4)はクライオスタット、(12)は主な磁束を示
す磁力線である。
In the figure, (11) is a magnetic shield body, (1) is a main coil, (31) is a 4-pole correction coil as a multi-pole correction coil, (32) is a 6-pole correction coil as a multi-pole correction coil, (4 ) is the cryostat, and (12) is the line of magnetic force showing the main magnetic flux.

第2図は超電導偏向電磁石の外観斜視図であり、図中(
51)はビームダクトを通す窓である。ここには、ビー
ムダクトの図は省略した。荷電ビーム(6)は電子ビー
ムまたは陽子ビームであって、ビーム偏向部からSOR
光(放射光)())を取り出す場合は、ビーム軌道の接
線方向にSOR光用の真空ボートが設置されるので、磁
気シールド化(11)の外周部には真空ボートを通す穴
が設けられる。ここでは、この穴は木質でないので触れ
ないことにする。
Figure 2 is an external perspective view of a superconducting bending electromagnet.
51) is a window through which the beam duct passes. The illustration of the beam duct is omitted here. The charged beam (6) is an electron beam or a proton beam, and the SOR
When extracting light (synchronous light) ()), a vacuum boat for SOR light is installed in the tangential direction of the beam trajectory, so a hole is provided on the outer periphery of the magnetic shielding (11) to pass the vacuum boat through. . Since this hole is not made of wood, we will not touch it here.

第3A図は主コイル(1)の斜視図、第3B図は4極補
正コイル(31)の斜視図、第3C図は6極補正コイル
(32)の斜視図である。4極補正コイル(31)は4
個のバナナ形にしたもので、第1B図に示したように主
コイル(1)の中に設置される。ここで、4極補正コイ
ル(31)に従来例の第6図中の傾斜コイル(3)に対
応するものであるが、発生磁界の特性をより正確に表現
するためにこの名前を用いている。すなわち、4極補正
コイル(31)は主に4極磁界を発生するコイルである
FIG. 3A is a perspective view of the main coil (1), FIG. 3B is a perspective view of the 4-pole correction coil (31), and FIG. 3C is a perspective view of the 6-pole correction coil (32). The 4-pole correction coil (31) is 4
It has a banana shape and is installed inside the main coil (1) as shown in Figure 1B. Here, the quadrupole correction coil (31) corresponds to the gradient coil (3) in Fig. 6 of the conventional example, but this name is used to more accurately express the characteristics of the generated magnetic field. . That is, the quadrupole correction coil (31) is a coil that mainly generates a quadrupole magnetic field.

荷電ビーム(6)の軌道の領域に主コイル(1)により
発生する空間的に変化する磁界(不均一磁界と呼ばれる
)は主に4極磁界成分と6極磁界成分とからなる。した
がって、主コイル(1)の不均一磁界を打ち消すために
、4極補正コイル(31)の他に6極i界成分を発生す
る6極補正コイル(32)も用いる。6極補正コイル(
32)は6個のバナナ形コイルによって構成される。こ
の6極補正コイル(32)も第1B図中に示したように
、主コイル(1)の中に設置される。この結果、4極補
正コイル(31)および6極補正コイル(32)を主コ
イル(1)の外に突出することなく設置でき、クライオ
スタット(4〉を小さくし得る。
The spatially varying magnetic field (referred to as inhomogeneous magnetic field) generated by the main coil (1) in the region of the trajectory of the charged beam (6) mainly consists of a 4-pole magnetic field component and a 6-pole magnetic field component. Therefore, in order to cancel the non-uniform magnetic field of the main coil (1), in addition to the four-pole correction coil (31), a six-pole correction coil (32) that generates a six-pole i-field component is also used. 6-pole correction coil (
32) is composed of six banana-shaped coils. This six-pole correction coil (32) is also installed within the main coil (1), as shown in FIG. 1B. As a result, the 4-pole correction coil (31) and the 6-pole correction coil (32) can be installed without protruding outside the main coil (1), and the cryostat (4>) can be made smaller.

次に、主コイル(1)の励磁電流、4極補正コイル(3
1)の励磁電流と、それぞれの発生磁界との関係を第4
図および第5図に示す。ここで、磁気シールド体(11
)には鉄を想定した。主コイル(1)の作る磁束の大部
分は磁気シールド体(11)中を通るので、励磁電流が
大になると磁気シールド化(11)が飽和して発生磁界
の増加率が小さくなる。一方、4極補正コイル(31)
が作る磁束の多くはクライオスタット(4)の内部空間
を通るので、励磁電流と発生磁界の関係はほぼ直線的で
ある。6極補正コイル(32)の励磁電流と発生磁界の
関係も、4極補正コイル(31)の場合と同じで、はぼ
直線的になる。
Next, the exciting current of the main coil (1), the 4-pole correction coil (3
The relationship between the excitation current in 1) and the respective generated magnetic fields is expressed as the fourth
As shown in FIG. Here, the magnetic shield body (11
) was assumed to be iron. Most of the magnetic flux generated by the main coil (1) passes through the magnetic shield (11), so when the excitation current becomes large, the magnetic shield (11) becomes saturated and the rate of increase in the generated magnetic field decreases. On the other hand, the 4-pole correction coil (31)
Since most of the magnetic flux generated by the cryostat (4) passes through the internal space of the cryostat (4), the relationship between the excitation current and the generated magnetic field is almost linear. The relationship between the excitation current and the generated magnetic field of the 6-pole correction coil (32) is also the same as that of the 4-pole correction coil (31), and is approximately linear.

今、荷電ビーム(6)の軌道領域の磁界を常に均一化す
るためには、主コイル(1)が発生する不均一磁界を4
極補正コイル(31)の発生磁界および6極補正コイル
(32)の発生磁界で常に打ち消す必要がある。前述の
ように、主コイル(1)の発生磁界は飽和特性を有し、
4極補正コイル(31)や6極補正コイル(32)は飽
和特性を有していないので、常に均一磁界を発生させな
がら磁界の強さを増して行くためには、主コイル(1)
の励磁電流波形に対応して4極補正コイル(31)の励
磁電流波形、6極補正コイル(32)の励磁電流波形を
変える必要がある。したがって、主コイル(1)の電流
に対して、ネ均−磁界を打ち消すことができる4極補正
コイル(31)の電流および6極補正コイル(32)の
電流を予め実験によって求めておき、この関係を常に満
足するように各コイル(1)、(31)、(32)の電
流を変化させれば、常に均一磁界を発生させることがで
きる。
Now, in order to always equalize the magnetic field in the orbital region of the charged beam (6), the non-uniform magnetic field generated by the main coil (1) must be
It is necessary to always cancel the magnetic field generated by the pole correction coil (31) and the magnetic field generated by the 6-pole correction coil (32). As mentioned above, the magnetic field generated by the main coil (1) has saturation characteristics,
Since the 4-pole correction coil (31) and the 6-pole correction coil (32) do not have saturation characteristics, in order to increase the strength of the magnetic field while constantly generating a uniform magnetic field, the main coil (1)
It is necessary to change the excitation current waveform of the 4-pole correction coil (31) and the excitation current waveform of the 6-pole correction coil (32) in accordance with the excitation current waveform of. Therefore, with respect to the current of the main coil (1), the current of the 4-pole correction coil (31) and the current of the 6-pole correction coil (32) that can cancel the negative magnetic field are determined in advance by experiment. By changing the current in each coil (1), (31), and (32) so that the relationship is always satisfied, a uniform magnetic field can always be generated.

なお、上記実施例では多極補正コイルとして4極補正コ
イル(31)、6極補正コイル(32)について説明し
たが、勿論この極数に限定されるものではなく、例えば
8極補正コイル、12極補正コイルにも適用できるのは
勿論である。
In addition, in the above embodiment, a 4-pole correction coil (31) and a 6-pole correction coil (32) were explained as multi-pole correction coils, but of course the number of poles is not limited to these, and for example, an 8-pole correction coil, a 12-pole correction coil, etc. Of course, it can also be applied to a polar correction coil.

[発明の効果] 以上説明したように、この発明の超電導偏向電磁石によ
れば、主コイルの内部に多極補正コイルを配設したので
、多極補正コイルが主コイルから突出することはなくな
り、装置を小型化することができるという効果がある。
[Effects of the Invention] As explained above, according to the superconducting bending electromagnet of the present invention, since the multipolar correction coil is disposed inside the main coil, the multipolar correction coil does not protrude from the main coil. This has the effect that the device can be made smaller.

また、この発明の他の発明の超電導偏向電磁石の励磁方
法によれば、主コイルに流れる電流に対して、多極補正
コイルに主コイルが発生する空間的に不均一な磁界を打
ち消すように電流を独立に制御して流すようにしたので
、大きな磁界においても荷電ビームの通過領域に均一な
磁界を発生することができるという効果もある。
Further, according to the method of exciting a superconducting bending electromagnet according to another aspect of the present invention, a current flows in the multipole correction coil so as to cancel out a spatially non-uniform magnetic field generated by the main coil with respect to the current flowing in the main coil. Since the charges are controlled independently, a uniform magnetic field can be generated in the region through which the charged beam passes even in a large magnetic field.

【図面の簡単な説明】[Brief explanation of drawings]

第1A図はこの発明の一実施例による超電導偏向電磁石
を示す平面図、第1B図は第1A図のIB−IB線に沿
う断面図、第2図は第1A図。 第1B図の斜視図、第3A図、第3B図および第3C図
は第1B図のそれぞれのコイルの斜視図、第4図はこの
発明の主コイルの電流と発生磁界との関係を示すグラフ
、第5図はこの発明の4極補正コイルの電流と発生磁界
との関係を示すグラフ、第6図は従来の超電導偏向電磁
石の一例を示す斜視図である。 図において、(1)は主コイル、(4)はクライオスタ
ット、(6)は荷電ビーム、(31)は4極補正コイル
、(32)は6極補正コイルである。 なお、図中、同一符号は同一、または相当部分を示す。 代  理  人     曾  我  道  照第1B
図 第2図 第4図 主コイノU電力に 4堪ρ補′正コイル電流 く Cつ 滌 味
FIG. 1A is a plan view showing a superconducting bending electromagnet according to an embodiment of the present invention, FIG. 1B is a sectional view taken along line IB-IB in FIG. 1A, and FIG. 2 is FIG. 1A. FIG. 1B is a perspective view, FIGS. 3A, 3B, and 3C are perspective views of each coil in FIG. 1B, and FIG. 4 is a graph showing the relationship between the current of the main coil and the generated magnetic field of the present invention. , FIG. 5 is a graph showing the relationship between the current and the generated magnetic field of the four-pole correction coil of the present invention, and FIG. 6 is a perspective view showing an example of a conventional superconducting bending electromagnet. In the figure, (1) is a main coil, (4) is a cryostat, (6) is a charged beam, (31) is a 4-pole correction coil, and (32) is a 6-pole correction coil. In addition, in the figures, the same reference numerals indicate the same or equivalent parts. Agent Teru Sogado 1B
Figure 2 Figure 4 Main Koino U power plus 4 ρ correction coil current

Claims (2)

【特許請求の範囲】[Claims] (1)磁界を発生させて荷電ビームを偏向させる主コイ
ルと、前記磁界を調整して前記荷電ビームの通過領域に
高均一磁界を発生させる多極補正コイルとを備えた超電
導偏向電磁石において、前記主コイルの内部に前記多極
補正コイルを配設したことを特徴とする超電導偏向電磁
石。
(1) A superconducting bending electromagnet comprising a main coil that generates a magnetic field to deflect a charged beam, and a multipolar correction coil that adjusts the magnetic field to generate a highly uniform magnetic field in a region through which the charged beam passes, A superconducting bending electromagnet, characterized in that the multipole correction coil is disposed inside a main coil.
(2)磁界を発生させて荷電ビームを偏向させる主コイ
ルに流れる電流に対して、多極補正コイルに前記主コイ
ルが発生する空間的に不均一な磁界を打ち消すように電
流を独立に制御して流すことを特徴とする超電導偏向電
磁石の励磁方法。
(2) With respect to the current flowing through the main coil that generates a magnetic field and deflects the charged beam, the current is independently controlled in the multipolar correction coil so as to cancel out the spatially non-uniform magnetic field generated by the main coil. A method for exciting a superconducting bending electromagnet, which is characterized by flowing a current through it.
JP7339790A 1990-03-26 1990-03-26 Superconducting deflection electromagnet and excitation method thereof Pending JPH02270308A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7339790A JPH02270308A (en) 1990-03-26 1990-03-26 Superconducting deflection electromagnet and excitation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7339790A JPH02270308A (en) 1990-03-26 1990-03-26 Superconducting deflection electromagnet and excitation method thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP32761288A Division JPH02174099A (en) 1988-08-26 1988-12-27 Superconductive deflecting electromagnet

Publications (1)

Publication Number Publication Date
JPH02270308A true JPH02270308A (en) 1990-11-05

Family

ID=13517026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7339790A Pending JPH02270308A (en) 1990-03-26 1990-03-26 Superconducting deflection electromagnet and excitation method thereof

Country Status (1)

Country Link
JP (1) JPH02270308A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998019317A1 (en) * 1996-10-30 1998-05-07 Hitachi Medical Corporation Superconducting magnetic device
JP2009301992A (en) * 2008-06-17 2009-12-24 Toshiba Corp Superconducting coil device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61125109A (en) * 1984-11-22 1986-06-12 Hitachi Ltd Superconductive magnetic device
JPS61263205A (en) * 1985-05-17 1986-11-21 Hitachi Ltd High energy particle deflecting magnet
JPS6343306A (en) * 1986-08-09 1988-02-24 Fuji Electric Co Ltd Air-core type uniform magnetic field generating equipment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61125109A (en) * 1984-11-22 1986-06-12 Hitachi Ltd Superconductive magnetic device
JPS61263205A (en) * 1985-05-17 1986-11-21 Hitachi Ltd High energy particle deflecting magnet
JPS6343306A (en) * 1986-08-09 1988-02-24 Fuji Electric Co Ltd Air-core type uniform magnetic field generating equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998019317A1 (en) * 1996-10-30 1998-05-07 Hitachi Medical Corporation Superconducting magnetic device
JP2009301992A (en) * 2008-06-17 2009-12-24 Toshiba Corp Superconducting coil device

Similar Documents

Publication Publication Date Title
US5117212A (en) Electromagnet for charged-particle apparatus
JP2667832B2 (en) Deflection magnet
KR100442990B1 (en) Systems and Methods for Generating Nested Static and Time-Varying Magnetic Fields
EP0473097A2 (en) System for irradiating a surface with atomic and molecular ions using two dimensional magnetic scanning
RU2222122C2 (en) Beam control electromagnet (alternatives) and method for beam control and use
JPH0752680B2 (en) Magnetic field generating electromagnet device for particle accelerator
US10290463B2 (en) Compact deflecting magnet
EP1964146B1 (en) Multi-beam klystron apparatus
JPH02270308A (en) Superconducting deflection electromagnet and excitation method thereof
JPH02174099A (en) Superconductive deflecting electromagnet
Scheitrum et al. A triple pole piece magnetic field reversal element for generation of high rotational energy beams
EP1180783A3 (en) Magnet for generating a magnetic field in an ion source
JP2813386B2 (en) Electromagnet of charged particle device
JP3306877B2 (en) Mass spectrometer
JP3133155B2 (en) Electron beam accelerator and bending magnet used for the accelerator
JP4294158B2 (en) Charged particle accelerator
JP7249906B2 (en) Superconducting coil and superconducting magnet device
JP3007544B2 (en) Bending magnet
Bassalat et al. High Field Hybrid Permanent Magnet Wiggler Optimized for Tunable Synchrotron Radiation Spectrum
Cobb et al. Tests of planar permanent magnet multipole focusing elements
JP4374400B6 (en) Magnetic ion beam scanner
Green A superconducting spectrometer magnet system for the detection of heavy isotopes
Tatchyn A field-cancellation algorithm for constructing economical planar permanent magnet (PM) multipoles with large high-quality field apertures
Stiord LinearAcceleratorCenter TESTS OF PLANAR PERMANENT MAGNET MULTIPOLE FOCUSING ELEMENTS
Marks Power supplies and accelerators