JPH02174099A - Superconductive deflecting electromagnet - Google Patents

Superconductive deflecting electromagnet

Info

Publication number
JPH02174099A
JPH02174099A JP32761288A JP32761288A JPH02174099A JP H02174099 A JPH02174099 A JP H02174099A JP 32761288 A JP32761288 A JP 32761288A JP 32761288 A JP32761288 A JP 32761288A JP H02174099 A JPH02174099 A JP H02174099A
Authority
JP
Japan
Prior art keywords
magnetic field
coil
coils
magnetic
correction coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32761288A
Other languages
Japanese (ja)
Inventor
Tadatoshi Yamada
山田 忠利
Shunji Yamamoto
俊二 山本
Tetsuya Matsuda
哲也 松田
Toshie Ushijima
牛島 敏恵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP32761288A priority Critical patent/JPH02174099A/en
Priority to GB8918872A priority patent/GB2223350B/en
Priority to DE3928037A priority patent/DE3928037C2/en
Priority to US07/398,419 priority patent/US5117194A/en
Publication of JPH02174099A publication Critical patent/JPH02174099A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent magnetic field from leaking outside by providing a magnetic shielding body around main coils and multipolar compensating coils. CONSTITUTION:The title electromagnet comprises a magnetic shielding body, main coils 1, tetra-polar compensating coils 31 as well as hexa-polar compensating coils 32, each of which serves as each of multipolar compensating coils, and the like. Each of the tetrapolar compensating coils 31 and each of the hexa-polar compensating coils 32 are composed respectively of four and six banana-shaped coils, and then arranged in the main coils. The magnetic shielding body 11 is formed of a ferromagnetic body which encloses the circumference of an area occupied by the main coils 1 and the multipolar compensating coils 31, 32. This makes it possible to sufficiently reduce the leaking-out quantity of magnetic fields.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、磁界を発生さ・ぜて荷電、ビームを偏向さ
せる主コイルと、磁界をrA整して高均一磁界を作る多
極補正コイルとを備えた@Y導偏向電磁石に関するもの
である。
[Detailed Description of the Invention] [Industrial Application Field] This invention consists of a main coil that generates a magnetic field, charges it, and deflects a beam, and a multipolar correction coil that adjusts the magnetic field to rA to create a highly uniform magnetic field. The present invention relates to a @Y-guide bending electromagnet.

〔従来の技術〕[Conventional technology]

第10図は、[ジャンク他”最゛初の小型放射光源用超
電導原型マグネット” フイ・イー・イー・イートラン
スアクジョンズ オン マグネデイクス、Vot24.
42゜1230−1232貞、1988年3月(A、J
abnke他”FIR8TSUPERCONT)UCT
ING PR,0TOTYPE MAGNETS F’
OR,A (Th4’A(ITj’5YNCHROTR
ON RADIATION 5OUR,CE IN 0
PERATION□IEEE TRANSACTION
S ON MAGNETIC8)、J ’L示された従
来の超電導偏向電磁石を示ず余1皆1図であン)。図に
おいて、(1)は主コイル、(2)は補助フィル、(3
)は傾斜コイル、(4)はタライオスタットー(5)は
荷電ビム(6)を通すビームダク) 、 (7)は放射
光子゛あZ−17、次f、動作について説、明づる一主
と1−5“て、主コイル(1)が発生ずる垂直方向の磁
界(相対する主コイル(1)K鎖交する磁界)によって
荷電ビーム(5)は180度偏向される。この時、荷電
ビーム(6)は半径方向に力を受けるから、それと直光
する方向(ビーム軌道の接線方向)((放射光(7)を
発生する。
Figure 10 is [Junk et al.'s "The First Superconducting Prototype Magnet for Compact Synchrotron Radiation Source", FIE Transactions on Magnedix, Vot24.
42゜1230-1232 Sada, March 1988 (A, J
abnke et al.”FIR8TSUPERCONT)UCT
ING PR,0TOTYPE MAGNETS F'
OR, A (Th4'A(ITj'5YNCHROTR
ON RADIATION 5OUR, CE IN 0
PERATION□IEEE TRANSACTION
S ON MAGNETIC 8), J'L does not show the conventional superconducting bending electromagnet; the rest are all in one figure). In the figure, (1) is the main coil, (2) is the auxiliary fill, and (3) is the main coil.
) is the gradient coil, (4) is the taliostat, (5) is the beam duct that passes the charged beam (6), and (7) is the emitted photon. 1-5", the charged beam (5) is deflected 180 degrees by the vertical magnetic field generated by the main coil (1) (the magnetic field interlinking with the opposing main coil (1). At this time, the charged beam (5) is deflected by 180 degrees. Since the beam (6) receives a force in the radial direction, it generates synchrotron radiation (7) in the direction directly to it (the tangential direction of the beam trajectory).

高エネルギービームを小半径で曲げるには高磁界が必要
なため超電導偏向電磁石が用いられる。
Superconducting bending electromagnets are used because a high magnetic field is required to bend a high-energy beam with a small radius.

荷物ビーム(6)は有限の断面稍を持っている(通常数
IITn程度)。また1、集束用の4極電m石(図示せ
ず)の設g誤差などによって、超電導偏向宿磁石中の荷
電ビーム(6)の軌道は設計位t(通常は主コイル(1
)の中心)から数10rrmずれることもある。
The cargo beam (6) has a finite cross-sectional depth (usually on the order of several IITn). In addition, 1. Due to the setting g error of the focusing quadrupole magnet (not shown), the trajectory of the charged beam (6) in the superconducting deflection magnet is at the design position t (usually the main coil (1
) may deviate from the center by several tens of rrm.

以上の2つの理由から、超電導偏向電磁石は荷電ビーム
(6)の軌道に沿って断面が数10rrm角程度の領域
に高均一な磁界を発生する。この均一磁界によって、全
荷電ビーム(6)を180度偏向する。補助コイル(2
)や傾斜コイル(3)は主コイル(1)が作る磁界を調
整して上述の高均一磁界を作るのに用いられる。また、
傾斜コイル(3)は、高均一磁界に荷電ビーム(6)の
曲率半径方向に直線的に変化する垂直方向磁界を重畳し
て、荷電ビーム(6)の断面寸法を小さくするために使
用される。
For the above two reasons, the superconducting bending electromagnet generates a highly uniform magnetic field in a region having a cross section of about several tens of rrm square along the trajectory of the charged beam (6). This uniform magnetic field deflects the entire charged beam (6) by 180 degrees. Auxiliary coil (2
) and the gradient coil (3) are used to adjust the magnetic field created by the main coil (1) to create the highly uniform magnetic field described above. Also,
The gradient coil (3) is used to reduce the cross-sectional dimension of the charged beam (6) by superimposing a vertical magnetic field that varies linearly in the radius of curvature of the charged beam (6) on a highly uniform magnetic field. .

クライオスタット(4)は各コイルを極低温に保持する
ための低温容器である。低温容器は、低温せい性を防ぐ
ためや超電導コイルから発生する磁界を歪せないために
、通常ステンレス鋼などの非磁性金属で作られる。ビー
ムダクト(5)は荷電ビーム(6)の通過する領域を高
真空にして荷電ビーム(6)の消滅を防ぐための真空ダ
クトである。
The cryostat (4) is a low temperature container for maintaining each coil at an extremely low temperature. Cryocontainers are usually made of non-magnetic metals such as stainless steel to prevent cold sensitivity and to avoid distorting the magnetic field generated by the superconducting coils. The beam duct (5) is a vacuum duct that creates a high vacuum in the area through which the charged beam (6) passes to prevent the charged beam (6) from disappearing.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

7従来の超電導偏向電磁石は以上のように構成されてい
るので、その外部に高い漏れ磁界が生じ、超電5導偏向
電磁石の近傍に設置され荷電ビームの通る機器は荷電ビ
ームが曲げられないように厳重Kaf気シールドしなげ
ればならないという問題点があった。
7 Conventional superconducting bending electromagnets are configured as described above, so a high leakage magnetic field is generated outside of them, and equipment installed near superconducting bending magnets and through which charged beams pass must be careful not to bend the charged beams. There was a problem in that it required a strict Kaf ki shield.

この発明は、かかる問題点を解消するためになされたも
ので、漏れ磁界の小さい超電導偏向tijs石を得るこ
とを目的とする。
This invention was made to solve this problem, and aims to obtain a superconducting deflection tijs stone with a small leakage magnetic field.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係る超電導偏向電磁石は、主コイルおよび多
極補正コイルの周囲に前記磁界が外部に漏れるのを防止
する磁気シールド体を設けたものである。
A superconducting bending electromagnet according to the present invention is provided with a magnetic shield around a main coil and a multipolar correction coil to prevent the magnetic field from leaking to the outside.

〔作 用〕[For production]

この発明における超電導偏向M磁石は、多極補正コイル
を囲った強磁性体からなる磁気シールド体により、外部
への漏れ磁界が十分に小さくなる。
In the superconducting deflection M magnet according to the present invention, the leakage magnetic field to the outside is sufficiently reduced due to the magnetic shield made of ferromagnetic material surrounding the multipolar correction coil.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。第1
A図はこの発明の超電導偏向電磁石の平面図、第1B図
は第1A図のIB−IB線に沿う断面図を示すものであ
る。
An embodiment of the present invention will be described below with reference to the drawings. 1st
Figure A is a plan view of the superconducting bending electromagnet of the present invention, and Figure 1B is a sectional view taken along line IB-IB in Figure 1A.

図において、(工1)は磁気シールド体、(1)は、主
コイル、(31)は多極補正コイルとしての4極補正コ
イル、(32)は多極補正コイルとしての6極補正コイ
ル、(4)はクライオスタット、(12)は主な磁束を
示す磁力線である。
In the figure, (1) is a magnetic shield body, (1) is a main coil, (31) is a 4-pole correction coil as a multi-pole correction coil, (32) is a 6-pole correction coil as a multi-pole correction coil, (4) is a cryostat, and (12) is a line of magnetic force showing the main magnetic flux.

第2図は超電導偏向電磁石の外観斜視図であり、図中(
51)はビームダクトを通す窓である。ここKは、ビー
ムダクトの図は省略した。荷電ビーム(6)は電子ビー
ムまたは陽子ビームであって、ビーム偏向部からSOR
光(放射光)(7)を取り出す場合は、ビーム軌道の接
線方向KSOR光用の真空ポートが設電されるので、磁
気シールド体(11)の外周部には真空ボートを通す穴
が設げられる。ここでは、この穴は本質でないので触れ
ないことにする。
Figure 2 is an external perspective view of a superconducting bending electromagnet.
51) is a window through which the beam duct passes. Here K, the illustration of the beam duct is omitted. The charged beam (6) is an electron beam or a proton beam, and the SOR
When extracting the light (synchrotron radiation) (7), a vacuum port for the KSOR light in the tangential direction of the beam trajectory is installed, so a hole is provided on the outer periphery of the magnetic shield (11) to pass the vacuum boat through. It will be done. Since this hole is not essential, we will not touch on it here.

第3A図は主コイル(1)の斜視図、第3B図は4極補
コイル(31)の斜視図、第3C図は6極補正コイル(
32)の斜視図である。
Figure 3A is a perspective view of the main coil (1), Figure 3B is a perspective view of the 4-pole auxiliary coil (31), and Figure 3C is a 6-pole correction coil (31).
32) is a perspective view of FIG.

第1A図、第1B図および第2図から明らかなように磁
気シールド体(11)が超電導偏向電磁石を囲っている
ため、IW&石の外部への磁界の漏れは小さい。第1B
図中の断面図の磁力線(12)に示しているようK、主
な磁力線(12)は磁気シールド体(11)中を通る。
As is clear from FIGS. 1A, 1B, and 2, since the magnetic shield (11) surrounds the superconducting bending electromagnet, leakage of the magnetic field to the outside of the IW & stone is small. 1st B
As shown by the lines of magnetic force (12) in the cross-sectional view in the figure, the main lines of magnetic force (12) pass through the magnetic shield (11).

また、4極補正コイル(31)は第3B図に示したよう
な4個のバナナ形にしたもので、第1B図に示したよう
に主コイル(1)の中に設置される。ここで、4極補正
コイル(31)は従来例の第10図中の傾斜コイル(3
)K対応するものであるが、発生s界の特性をより正確
に表現するためにこの名前を用いている。すなわち、4
極補正コイル(31)は主に4極磁界を発生するコイル
である。
Further, the four-pole correction coil (31) has four banana shapes as shown in FIG. 3B, and is installed inside the main coil (1) as shown in FIG. 1B. Here, the 4-pole correction coil (31) is the gradient coil (3) in the conventional example shown in FIG.
)K, but this name is used to more accurately express the properties of the generated s-field. That is, 4
The polar correction coil (31) is a coil that mainly generates a four-pole magnetic field.

荷電ビーム(6)の軌道の領域に発生する空間的に変化
する磁界(不均一磁界と呼ばれる)は主に4極畠界成分
と6極磁界成分とからなる。したがって、主コイル(1
)の不均一磁界を打ち消すためK、4極補正コイル(3
1)の他に6極磁界成分を発生する6極補正コイル(3
2)も用いるつ6極補正コイル(32)は第3C図に示
したように6個のバナナ形コイルによって構成される。
The spatially varying magnetic field (referred to as a non-uniform magnetic field) generated in the region of the orbit of the charged beam (6) mainly consists of a quadrupole Hatake field component and a sextupole magnetic field component. Therefore, the main coil (1
) to cancel the non-uniform magnetic field of K, 4-pole correction coil (3
In addition to 1), there is a 6-pole correction coil (3) that generates a 6-pole magnetic field component.
2) is also used. The six-pole correction coil (32) is composed of six banana-shaped coils as shown in FIG. 3C.

この6極補正コイル(32)も第1B図中に示したよう
に、主コイル(1)の中産設置される。この結果、4極
補正コイル(31)および6極補正コイル(32)を主
コイル(1)の外に突出することtx <設置でき、ク
ライオスタット(4)を小さくし得る。
This six-pole correction coil (32) is also installed in the middle of the main coil (1), as shown in FIG. 1B. As a result, the 4-pole correction coil (31) and the 6-pole correction coil (32) can be installed to protrude outside the main coil (1), and the cryostat (4) can be made smaller.

次に、主コイル(1)の励ifa:i、4極補正コイル
(31)の励磁電流と、発生磁界との関係を第4図およ
び第5図に示す。ここで、磁気シールド体C11)には
鉄を想定(−た。主コイル(11の作る磁束の大部分は
磁気シールド体(11)中を冊るので、励磁W流が大に
なると磁気シールド体(11)が飽和して発生磁界の増
加率が小さくなる。一方、4惨補正コイル(31)が作
る研東の多くはクライオスタット(4)の内部空間を通
るので、励磁電流と発生磁界の関係はほぼ直線的で))
る、、6極補正コイル(32)の励磁電流と発生磁界の
関係も、4極補正コイル(31)の場合と同じで、はぼ
直線的になる。
Next, the relationship between the excitation ifa:i of the main coil (1), the excitation current of the 4-pole correction coil (31), and the generated magnetic field is shown in FIGS. 4 and 5. Here, the magnetic shield C11) is assumed to be made of iron.Since most of the magnetic flux generated by the main coil (11) travels through the magnetic shield (11), when the excitation W current becomes large, the magnetic shield (11) becomes saturated, and the rate of increase in the generated magnetic field becomes small.On the other hand, since most of the radial force generated by the four-magnetic correction coil (31) passes through the internal space of the cryostat (4), the relationship between the excitation current and the generated magnetic field decreases. is almost linear))
The relationship between the excitation current and the generated magnetic field of the six-pole correction coil (32) is also the same as that of the four-pole correction coil (31), and is almost linear.

今、荷電ビーム(6)の情、道領域の磁界を常ic均一
化するためには、主コイル(1)が発生する不均一磁界
を4極補正コイル(31)の発生磁界お」−び6極補正
コイル(32)の発生磁界で常に打ち消J必要がある。
Now, regarding the charged beam (6), in order to make the magnetic field in the path region uniform, it is necessary to combine the non-uniform magnetic field generated by the main coil (1) with the magnetic field generated by the quadrupole correction coil (31). It is necessary to always cancel J with the magnetic field generated by the 6-pole correction coil (32).

前述のように、主コイル(1)の発生磁界は飽和特性を
有L、4極補正コイル(31)や6極補正コイル(32
)は飽和特性を有していないので、常に均−磁界を発生
させながら磁界の強さff増して行くため圧は主コイル
(1)の励磁電流波形と4極補正コイル(31)の励磁
電流波形、6極袖正コイル(32)の励′f11電流を
変える必要がある。主コイル(1)の電流に対して、不
均一磁界を打ち消すことがでざる4極補正コイル(31
)の′@流およびG極補正コイル(32)の1a流を予
め実験(てよって求めておき、こり〕関係を常に満足す
るよりに各コイル(1) 、 (31)、 (32)の
電流を変化させれば、常に均一磁界を発生させることが
できる。
As mentioned above, the magnetic field generated by the main coil (1) has saturation characteristics, and the 4-pole correction coil (31) and the 6-pole correction coil (32)
) does not have saturation characteristics, so the magnetic field strength ff increases while always generating a uniform magnetic field, so the pressure is the same as the excitation current waveform of the main coil (1) and the excitation current of the 4-pole correction coil (31). It is necessary to change the waveform and the excitation f11 current of the six-pole sleeve positive coil (32). The 4-pole correction coil (31
) and the 1a current of the G-pole correction coil (32) by experiment (determined in advance), the current of each coil (1), (31), (32) is By changing , a uniform magnetic field can be generated at all times.

なお、上記実施例ではクライオスタット(4)の全体を
磁気シールド体(11)で囲ったものを示したが、磁気
シールド体(11)の1部を取り除いてもよい6第6図
にこの実施例を示す。主コイル(1)の曲げ中心(荷電
ビーム(6)の曲げ中心にほぼ等しい)側の半円筒形の
磁気シールド体を取り除いである。
In addition, in the above embodiment, the entire cryostat (4) is surrounded by a magnetic shield (11), but a part of the magnetic shield (11) may be removed6. This embodiment is shown in FIG. shows. The semi-cylindrical magnetic shield on the side of the bending center of the main coil (1) (approximately equal to the bending center of the charged beam (6)) is removed.

この部分は磁束を通す断面積が小さくて磁気シールドに
はあまり寄与しない。磁束は主として、上述の曲げ中心
は反対側(外周側)の磁気シールド体(11)を通る。
This part has a small cross-sectional area through which magnetic flux passes, and does not contribute much to magnetic shielding. The magnetic flux mainly passes through the magnetic shield (11) on the opposite side (outer circumferential side) from the above-mentioned bending center.

第7A図および第7B図は第6図の変形例であり、曲げ
中心側の磁気シールド体(11)の取り除く量を第6図
の場合より多くしたものである。クライオスタット(4
)が磁気シールド体(11)からはみ出している。この
ようKm成しても磁力!(12”1は磁気シールド体(
11)の外周側を通るので、磁気シールド効果はあまり
損なわれることはない。
FIGS. 7A and 7B are modifications of FIG. 6, in which the amount of the magnetic shield (11) on the bending center side is removed more than in the case of FIG. 6. Cryostat (4
) protrudes from the magnetic shield (11). Even if Km is formed like this, it is magnetic! (12”1 is a magnetic shield (
11), the magnetic shielding effect is not significantly impaired.

一方、磁気シールド体(11)の重量は比較的軽減され
る。
On the other hand, the weight of the magnetic shield (11) is relatively reduced.

第8図は第6図に示した磁気シールド体(11)の他の
変形例であるa磁気シールド体(11)の上下の板の形
をほぼ半円状圧したものである。磁気シールド体(tl
で囲まれているクライオスタット(4)の形状も半円柱
状になっている。形状を単純化して製作を容易圧してい
る。
FIG. 8 shows another modification of the magnetic shield (11) shown in FIG. 6, in which the upper and lower plates of the magnetic shield (11) a are pressed into approximately semicircular shapes. Magnetic shield body (tl
The shape of the cryostat (4) surrounded by is also semi-cylindrical. The shape is simplified and manufacturing is easy.

第9図は磁気シールド体(11)の他の実施例であり、
第2回圧対応している。半円柱の磁気シルト体(11)
の外半周(lla)と平面(1113)がダ差する付近
は磁気シールド体(11)の他の部分に比べてコイル(
1)、(31”l、(32)から離れている(第1A図
参照)から、第9図に示L7たようにこの部分を切り取
って平板を代りに設置すると、磁気シールド体(11)
が少1−1小さくなる。第6図、第7図、第8図圧水し
た磁気シールド体(11)に対しても上述と同じことを
適用できる。
FIG. 9 shows another embodiment of the magnetic shield (11),
Compatible with the second pressure. Semi-cylindrical magnetic silt body (11)
The area where the outer half circumference (lla) of the coil (lla) and the plane (1113) cross is different from other parts of the magnetic shield (11).
1), (31"l, and (32)) (see Figure 1A), so if this part is cut out and a flat plate is installed in its place as shown in Figure 9, the magnetic shield (11)
becomes smaller by 1-1. The same thing as described above can also be applied to the magnetic shielding body (11) that has been subjected to pressure water in FIGS. 6, 7, and 8.

上記実施例では磁気シールド(11)をクライオスタッ
ト(4)の外部に設置1−だが、磁気シールド(11)
を極低温部に設!して、クライオスタット中に入れても
本発明を適用できる。
In the above embodiment, the magnetic shield (11) is installed outside the cryostat (4) 1-, but the magnetic shield (11)
is installed in the cryogenic section! The present invention can also be applied even if the device is placed in a cryostat.

また、多極補正コイルとして4極補正コイル(31)、
6極補正コイルについて説明したが、勿論この極数((
限定されるもので&J、なく、例えば8極補正コイル、
12極補正コイルにも適用できるのは勿論である。
In addition, a 4-pole correction coil (31) as a multi-pole correction coil,
We have explained the 6-pole correction coil, but of course this number of poles ((
&J, not limited to, for example, 8-pole correction coil,
Of course, it can also be applied to a 12-pole correction coil.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、この発明の超tIJ偏向電磁石は
、主コイル、多極補正コイルの周囲に磁気シールド体を
設けたので、外部に対する漏れ磁界乞・小さく抑えるこ
とができるという効果がある。
As explained above, the ultra-tIJ bending electromagnet of the present invention has a magnetic shielding body around the main coil and the multipolar correction coil, so that it has the effect of suppressing the leakage magnetic field to the outside.

【図面の簡単な説明】 第1A図はこの発明の一実施例による超N導偏向電磁石
を示す平面図、第1B図は第1A図のIB−IB線に沿
う断面図、第2図は第1A図、第1B図の斜視図、第3
A図、第3B図および第3C図は第1B図のそれぞれの
コイルの斜視図、第4図はこの発明の主コイルの電流と
発生磁界との関係を示すグラフ、第5図はこの発明の4
極補正コイルのM流と発生S界との関係を示すグラフ、
第6図ないし第9図はこの発明の別の実施例のそれぞれ
の磁気シールド体を示す斜視図および断面図、第10図
は従来の超電導偏向tli石の一例を示す斜視図である
。 図において、(1)は主コイル、(31)は4極補正コ
イル、(32)は6極補正コイル、(4)はクライオス
タット、(11)は磁気シールド体である。 なお、図中、同一符号は同一 または相当部分を示す。
[BRIEF DESCRIPTION OF THE DRAWINGS] Fig. 1A is a plan view showing a super N-conducting bending electromagnet according to an embodiment of the present invention, Fig. 1B is a sectional view taken along the line IB-IB in Fig. 1A, and Fig. 2 is a Figure 1A, perspective view of Figure 1B, 3rd
Figures A, 3B, and 3C are perspective views of the respective coils in Figure 1B, Figure 4 is a graph showing the relationship between the current in the main coil of this invention and the generated magnetic field, and Figure 5 is a graph showing the relationship between the current in the main coil of this invention and the generated magnetic field. 4
A graph showing the relationship between the M flow of the polar correction coil and the generated S field,
6 to 9 are perspective views and sectional views showing respective magnetic shielding bodies according to other embodiments of the present invention, and FIG. 10 is a perspective view showing an example of a conventional superconducting deflection crystal. In the figure, (1) is a main coil, (31) is a 4-pole correction coil, (32) is a 6-pole correction coil, (4) is a cryostat, and (11) is a magnetic shielding body. In addition, the same symbols in the figures indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] 磁界を発生させて荷電ビームを偏向させる主コイルと、
前記磁界を調整して高均一磁界を作る多極補正コイルと
を備えた超電導偏向電磁石において、前記主コイルおよ
び前記多極補正コイルの周囲に前記磁界が外部に漏れる
のを防止する磁気シールド体を設けたことを特徴とする
超電導偏向電磁石。
a main coil that generates a magnetic field to deflect the charged beam;
A superconducting bending electromagnet equipped with a multipolar correction coil that adjusts the magnetic field to create a highly uniform magnetic field, wherein a magnetic shielding body is provided around the main coil and the multipolar correction coil to prevent the magnetic field from leaking to the outside. A superconducting bending electromagnet characterized by the following:
JP32761288A 1988-08-26 1988-12-27 Superconductive deflecting electromagnet Pending JPH02174099A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP32761288A JPH02174099A (en) 1988-12-27 1988-12-27 Superconductive deflecting electromagnet
GB8918872A GB2223350B (en) 1988-08-26 1989-08-18 Device for accelerating and storing charged particles
DE3928037A DE3928037C2 (en) 1988-08-26 1989-08-24 Device for accelerating and storing charged particles
US07/398,419 US5117194A (en) 1988-08-26 1989-08-25 Device for accelerating and storing charged particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32761288A JPH02174099A (en) 1988-12-27 1988-12-27 Superconductive deflecting electromagnet

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP7339790A Division JPH02270308A (en) 1990-03-26 1990-03-26 Superconducting deflection electromagnet and excitation method thereof

Publications (1)

Publication Number Publication Date
JPH02174099A true JPH02174099A (en) 1990-07-05

Family

ID=18200999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32761288A Pending JPH02174099A (en) 1988-08-26 1988-12-27 Superconductive deflecting electromagnet

Country Status (1)

Country Link
JP (1) JPH02174099A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000046999A (en) * 1998-07-31 2000-02-18 Rikagaku Kenkyusho Uniform magnetic field generator
JP2008525968A (en) * 2004-12-22 2008-07-17 フォックス・チェイス・キャンサー・センター Laser accelerated proton therapy device and its superconducting electromagnet system
JP2009527100A (en) * 2006-02-15 2009-07-23 バリアン・セミコンダクター・エクイップメント・アソシエイツ・インコーポレイテッド Electromagnet with active field confinement
JP5112571B1 (en) * 2012-02-13 2013-01-09 三菱電機株式会社 Septum electromagnet and particle beam therapy system
WO2022209300A1 (en) * 2021-04-01 2022-10-06 株式会社日立製作所 Electromagnet device, control method for electromagnet device, and particle beam therapy device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63224198A (en) * 1987-03-11 1988-09-19 日本電信電話株式会社 Deflecting electromagnet with correction coil
JPS63226900A (en) * 1987-03-16 1988-09-21 Nippon Telegr & Teleph Corp <Ntt> Deflecting electromagnet

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63224198A (en) * 1987-03-11 1988-09-19 日本電信電話株式会社 Deflecting electromagnet with correction coil
JPS63226900A (en) * 1987-03-16 1988-09-21 Nippon Telegr & Teleph Corp <Ntt> Deflecting electromagnet

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000046999A (en) * 1998-07-31 2000-02-18 Rikagaku Kenkyusho Uniform magnetic field generator
JP2008525968A (en) * 2004-12-22 2008-07-17 フォックス・チェイス・キャンサー・センター Laser accelerated proton therapy device and its superconducting electromagnet system
JP2009527100A (en) * 2006-02-15 2009-07-23 バリアン・セミコンダクター・エクイップメント・アソシエイツ・インコーポレイテッド Electromagnet with active field confinement
KR101324953B1 (en) * 2006-02-15 2013-11-04 베리안 세미콘덕터 이큅먼트 어소시에이츠, 인크. Electromagnet with active field containment
JP5112571B1 (en) * 2012-02-13 2013-01-09 三菱電機株式会社 Septum electromagnet and particle beam therapy system
WO2013121503A1 (en) * 2012-02-13 2013-08-22 三菱電機株式会社 Septum electromagnet and particle beam therapy device
US8884256B2 (en) 2012-02-13 2014-11-11 Mitsubishi Electric Corporation Septum magnet and particle beam therapy system
WO2022209300A1 (en) * 2021-04-01 2022-10-06 株式会社日立製作所 Electromagnet device, control method for electromagnet device, and particle beam therapy device

Similar Documents

Publication Publication Date Title
US5117212A (en) Electromagnet for charged-particle apparatus
JP2667832B2 (en) Deflection magnet
KR100442990B1 (en) Systems and Methods for Generating Nested Static and Time-Varying Magnetic Fields
US4740758A (en) Apparatus for generating a magnetic field in a volume having bodies influencing the field pattern
US4769623A (en) Magnetic device with curved superconducting coil windings
US4680565A (en) Magnetic field device for a system for the acceleration and/or storage of electrically charged particles
US4734653A (en) Magnetic field apparatus for a particle accelerator having a supplemental winding with a hollow groove structure
JPH06132119A (en) Superconductive magnet
JPH0746640B2 (en) Synchrotron
JPH04273409A (en) Superconducting magnet device; particle accelerator using said superconducting magnet device
JPS62186500A (en) Charged beam device
JPH02174099A (en) Superconductive deflecting electromagnet
EP0941019B1 (en) Hybrid wiggler
JP2021158210A (en) Multipolar electromagnet and accelerator using the same
Kraus The overview and history of permanent magnet devices in accelerator technology
JP2813386B2 (en) Electromagnet of charged particle device
JPH02270308A (en) Superconducting deflection electromagnet and excitation method thereof
KR930000388B1 (en) Magnetic shunt deflection yokes
JP7249906B2 (en) Superconducting coil and superconducting magnet device
US3324433A (en) Electron lens system excited by at least one permanent magnet
JP2520914B2 (en) Charged particle device
JP2945158B2 (en) Deflection magnet for charged particle devices
JP6460922B2 (en) Superconducting deflection electromagnet for beam and beam deflection apparatus using the same
JP2557106B2 (en) Charged particle deflection electromagnet device
JPS63224230A (en) X-ray exposure device