JPS62296400A - Incident apparatus of magnetic resonance type accelerator - Google Patents

Incident apparatus of magnetic resonance type accelerator

Info

Publication number
JPS62296400A
JPS62296400A JP13835486A JP13835486A JPS62296400A JP S62296400 A JPS62296400 A JP S62296400A JP 13835486 A JP13835486 A JP 13835486A JP 13835486 A JP13835486 A JP 13835486A JP S62296400 A JPS62296400 A JP S62296400A
Authority
JP
Japan
Prior art keywords
conductor portion
charged particle
magnetic field
coil
magnetic resonance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13835486A
Other languages
Japanese (ja)
Other versions
JPH0736360B2 (en
Inventor
高山 猛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP13835486A priority Critical patent/JPH0736360B2/en
Publication of JPS62296400A publication Critical patent/JPS62296400A/en
Publication of JPH0736360B2 publication Critical patent/JPH0736360B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Particle Accelerators (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 3発明の詳細な説明 〔産業上の利用分野〕 本発明は弱集束型シンクロトロン、弱集束型蓄積リング
等の周回軌道を持つ磁気共振型加速器に用いられるイン
フレクタ用の空芯電磁石に関する。
[Detailed Description of the Invention] 3. Detailed Description of the Invention [Field of Industrial Application] The present invention is for inflectors used in magnetic resonant accelerators with orbits such as weakly focused synchrotrons and weakly focused storage rings. Regarding air core electromagnets.

〔従来の技術〕[Conventional technology]

従来の周回軌道を持つ磁気共振型加速器は入射装置とし
て、キツカーと称される高速度で作動する電磁石あるい
はパータベイタと称される電磁石と、磁場あるいは電場
を直流的に発生するインフレクタとを有している。イン
フレクタは荷電粒子を入射軌道に導くものである。キツ
カーあるいはパータベイタは、平衡軌道を変位させるこ
とによって、インフレクタから入射さ扛た荷電粒子が軌
道をまわって再度インフレクタの位置にきても、インフ
レクタに当たらないようにするものである。一般に、キ
ツカーが平衡軌道全体を変位させるのに対して、パータ
ベイタは2個または6個が同期して作動して平衡軌道の
一部区間を変位させている。
Conventional magnetic resonance accelerators with orbits have as injection devices an electromagnet called a kicker that operates at high speed or an electromagnet called a perturbator, and an inflector that generates a magnetic field or an electric field in direct current. ing. An inflector guides charged particles into an incident trajectory. A kitker or a perturbator displaces the equilibrium orbit so that even if a charged particle incident on the inflator is thrown around the orbit and returns to the inflator position, it will not hit the inflator. In general, a kitker displaces the entire equilibrium trajectory, whereas two or six perturbators operate synchronously to displace a partial section of the equilibrium trajectory.

第5図に示すように、従来の磁気共振型加速器は荷電粒
子を入射軌道に導くインフレタ11と2周回状の平衡軌
道12と、平衡軌道上の複数箇所に設けられ、各々が双
極電磁石13とその両側に配された二組の水平集束4極
電磁石14および水平発散4極電磁石15とからなる複
数個の偏向要素及び集束要素と、インフレクとを有して
いる。
As shown in FIG. 5, the conventional magnetic resonance accelerator is equipped with an inflator 11 that guides charged particles to an incident trajectory, a two-turn equilibrium trajectory 12, and multiple locations on the equilibrium trajectory, each with a dipole electromagnet 13. It has a plurality of deflecting elements and focusing elements each consisting of two sets of horizontal focusing quadrupole electromagnets 14 and horizontal diverging quadrupole electromagnets 15 arranged on both sides thereof, and an inflex.

ここで、従来のインフレクタについて概説する。Here, conventional inflectors will be outlined.

第6図も参照して、インフレクタ11はビーム通路11
aが形成された強磁性体(例えばフェライト)製のリタ
ーンヨーク11bを備えている。ビーム通路11aKH
図示のようにビーム通路11aに沿ってリターコイル1
1cが配置され、一方、ビーム通路11aの開口部はセ
プタムコイル11aによって覆れている。こ圓 の磁気インフレクタ11は第計フ示すようにセプタムコ
イル側を内側として配置されている。
Referring also to FIG. 6, the inflector 11 is
A return yoke 11b made of a ferromagnetic material (for example, ferrite) is provided. Beam passage 11aKH
The retard coil 1 is placed along the beam path 11a as shown in the figure.
1c is arranged, while the opening of the beam passage 11a is covered by a septum coil 11a. The round magnetic inflector 11 is arranged with the septum coil side facing inside as shown in the figure.

リターンコイル110及びセプタムコイル11dに電流
を流して、磁気インフレクタを励磁すると、実線矢印で
示すように磁力線、即ち。
When a current is applied to the return coil 110 and the septum coil 11d to excite the magnetic inflector, lines of magnetic force are formed as shown by solid arrows.

磁場が形成される。つまシ、上述のリターンヨーク1i
b及びセプタムコイル′11dによって磁束の漏れが生
ずることなく、ビーム通路11aに磁場が形成される。
A magnetic field is formed. Tsumashi, return yoke 1i mentioned above
A magnetic field is formed in the beam path 11a by the septum coil '11d' and the septum coil '11d, without causing leakage of magnetic flux.

なお、入射ビームと周回ビームとの間隙は小さいからセ
プタムコイルは極力薄く形成され、しかも強磁場を発生
させるため、セプタムコイルはパルス励磁される。
Since the gap between the incident beam and the circulating beam is small, the septum coil is formed as thin as possible, and the septum coil is pulse-excited to generate a strong magnetic field.

そして、上述の磁場によって、ビーム通路11aを通過
する荷電粒子が入射軌道に導かれる。
Then, the charged particles passing through the beam path 11a are guided to the incident trajectory by the above-mentioned magnetic field.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで、従来、磁気インフレクタは第5図に示すよう
に外部磁場の存在しない直線部に配置される。ところが
、蓄積リング等を小型化して、直線部のない円型蓄積リ
ングとした場合。
By the way, conventionally, a magnetic inflector is placed in a straight section where no external magnetic field exists, as shown in FIG. However, if the storage ring etc. is downsized and made into a circular storage ring without a straight part.

磁気インフレクタを磁場(主磁場)中に配置しなければ
ならない。しかしながら、従来の磁気インフレクタを磁
場中に配置した場合、主磁場を乱してしまい、入射装置
がうまく動作しないという問題がある。
The magnetic inflector must be placed in the magnetic field (main magnetic field). However, when a conventional magnetic inflector is placed in a magnetic field, there is a problem in that it disturbs the main magnetic field and the injection device does not operate properly.

本発明の目的は小型の円型蓄積リング等の磁気共振型加
速器に用いられる入射装置を提供することにある。
An object of the present invention is to provide an injection device for use in a magnetic resonance type accelerator such as a small circular storage ring.

〔問題点を解決するための手段〕[Means for solving problems]

本発明による入射装置は、所定の方向に延びる荷電粒子
通路が形成された絶縁性の支持体と。
The injection device according to the present invention includes an insulating support body in which a charged particle path extending in a predetermined direction is formed.

該支持体内に配置され、前記所定の方向に延びる第1の
導体部と、第1の導体部の周りで、支持体に装置され、
前記所定の方向に延びる第2の導体部とを備え、第1及
び第2の導体部間に前記荷電粒子通路が位置し、第1の
導体部と第2の導体部とには互いに逆向きの方向に電流
が流され、上記の荷電粒子通路に磁場を形成する空芯電
磁石(インフレクタ)を有し、この空芯電磁石をパルス
励磁して上記の荷電粒子通路を通過する荷電粒子を入射
軌道に導くようにし之ことを特徴としている。
a first conductor portion disposed within the support body and extending in the predetermined direction; and a first conductor portion arranged around the first conductor portion on the support body;
a second conductor portion extending in the predetermined direction, the charged particle passage is located between the first and second conductor portions, and the first conductor portion and the second conductor portion are arranged in opposite directions. It has an air-core electromagnet (inflector) that allows a current to flow in the direction of the above-mentioned charged particle path and forms a magnetic field in the above-mentioned charged particle path, and pulse-excites this air-core electromagnet to inject charged particles passing through the above-mentioned charged particle path. It is characterized by the fact that it guides you into orbit.

〔実施例〕〔Example〕

以下本発明について実施例によって説明する。 The present invention will be explained below with reference to Examples.

まず、第1図(a)及び(b)を参照して2本発明に適
用されるインフレクタの構造について説明する。
First, the structure of two inflectors applied to the present invention will be explained with reference to FIGS. 1(a) and 1(b).

弓形状に成形され、絶縁性の角管部材(以下コイル支持
部材という)2の一壁面には径方向外方に延び、しかも
軸方向に延びる貫通部が形成されている。コイル支持部
材2の内部には軸方向に延びるコイル(以下内部コイル
という)1が支持部材2の内壁面に当接されて配置され
ている。一方1貫通部が形成された壁面を除いて、他の
壁面には磁気シールドコイル3が装着されている。また
、上述の貫通部を塞ぐようにして、−壁面にはセプタム
コイル4が装着され。
A penetrating portion extending outward in the radial direction and further extending in the axial direction is formed in one wall surface of an insulating rectangular tube member (hereinafter referred to as a coil support member) 2 formed into an arch shape. Inside the coil support member 2, a coil 1 (hereinafter referred to as an internal coil) extending in the axial direction is disposed in contact with an inner wall surface of the support member 2. On the other hand, magnetic shielding coils 3 are attached to the other wall surfaces except for the wall surface in which the first penetration portion is formed. Further, a septum coil 4 is attached to the wall surface so as to close the above-mentioned penetration part.

貫通部は荷電粒子通路5となる。The penetrating portion becomes a charged particle passage 5.

第2図(a)及び(b)も参照して9円型蓄積リングは
内部に空洞部6が形成された円型の鉄心部7を備えてい
る。空洞部乙には荷電粒子の周回軌道が形成されるリン
グ形状の真空ダクト8が図示のように配設されており、
この真空ダクト8の径方向外側において、空洞部6内に
はリングiof′i第2図(b)に示すように真空ダク
ト8の近傍に配設され、蓄積リング外部からの入射ビー
ムを入射軌道に導く。
Referring also to FIGS. 2(a) and 2(b), the nine-circular storage ring includes a circular iron core 7 with a cavity 6 formed therein. A ring-shaped vacuum duct 8 in which a orbit of charged particles is formed is arranged in the cavity B as shown in the figure.
On the outside in the radial direction of this vacuum duct 8, a ring iof'i is arranged in the cavity 6 near the vacuum duct 8 as shown in FIG. lead to.

第3図に示すように、磁気シールドコイル3及びセプタ
ムコイル4は1例えば、電源の←)側に接続され、一方
円部コイル1は(→側に接続される。即ち、@気シール
ドコイル6及びセプタムコイル4と内部コイル1とは互
いに逆方向に電流が流される。この電流にはパルス状の
大電流が用いられる。即ち、インフレクタはパルス励磁
される。このようにインフレクタはパルス励磁されるの
で(高い電流密度で電流が流されるので)、荷電粒子通
路5に強い磁場が発生する。なお、荷電粒子通路5の磁
場は磁気シールドコイル6及びセプタムコイル4によっ
てしゃへいされるから外部に漏れることはない。また。
As shown in FIG. 3, the magnetic shielding coil 3 and the septum coil 4 are connected to the ← side of the power supply, for example, while the circular coil 1 is connected to the (→ side of the power supply. A current is passed through the septum coil 4 and the internal coil 1 in opposite directions.A pulse-like large current is used for this current.In other words, the inflator is pulse-excited.In this way, the inflator is pulse-excited. (because the current is passed at a high current density), a strong magnetic field is generated in the charged particle path 5.The magnetic field in the charged particle path 5 is shielded by the magnetic shielding coil 6 and the septum coil 4, so it is not exposed to the outside. It won't leak. Again.

ようにパルス励磁される。It is pulse excited like this.

上述のパルス励磁によって発生する磁場の一例を第4図
に示す(インフレクタの中心軸を原点とし、径方向をX
軸(横軸)とし、縦軸を径方向に垂直な磁束密度(BZ
)とした)。第4図に示すように、インフレクタ内には
蓄積リングの主磁場と逆極性の双極磁場が発生する。な
お、インフレクタ内には必要に応じて双極磁場に四極磁
場、あるいは多極場を重畳させれば、ビームに作用する
集束力あるいは収差が補正できる。
An example of the magnetic field generated by the above-mentioned pulse excitation is shown in Figure 4 (with the central axis of the inflector as the origin and the radial direction as
axis (horizontal axis), and the vertical axis is the magnetic flux density perpendicular to the radial direction (BZ
). As shown in FIG. 4, a dipole magnetic field having a polarity opposite to that of the main magnetic field of the storage ring is generated within the inflector. Note that, if necessary, a quadrupole magnetic field or a multipole field is superimposed on the dipole magnetic field in the inflector, so that the focusing force or aberration acting on the beam can be corrected.

このように1本発明に用いられるインフレクタは強磁性
体のリターンヨークを用いていないから、即ち、絶縁性
のコイル支持部材を用いているから、インフレクタを磁
場中に配置することができる。
As described above, since the inflector used in the present invention does not use a ferromagnetic return yoke, that is, uses an insulating coil support member, the inflector can be placed in a magnetic field.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、主磁場を乱すこと
がないから2円型の磁気共振型加速器に用いることがで
きる。また、荷電粒子通路に形成される磁場が外部に漏
れることもない。
As explained above, according to the present invention, the main magnetic field is not disturbed, so it can be used in a two-circular magnetic resonance type accelerator. Further, the magnetic field formed in the charged particle path does not leak to the outside.

さらにパルス励磁を行っているから比較的高い磁場を発
生でき、高いエネルギーのビームを入射することができ
る。
Furthermore, since pulse excitation is performed, a relatively high magnetic field can be generated, and a high-energy beam can be incident.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(IIL)及び(b)は本発明に用いられる空芯
電磁石(インフレクタ)を概略的に示す図、第2図(a
)及び(b)は円型蓄積リングを概略的に示す図。 第3図は空芯電磁石への給電を示す図、第4図はインフ
レクタによる磁場分布を示す図、第5図は従来の磁気共
振型加速器を概略的に示す図。 第6図は従来のインフレクタの構造を示す図である。 1・・・内部コイル、2・・・コイル支持部材、6・・
・磁気シールドコイル、4・・・セプタムコイル。 5・・・荷電粒子通路、6・・・空洞部、7・・・鉄心
部。 8・・・真空ダクト、9・・・主コイル、10・・・イ
ンフレクタ、11・・・インフレクタ、12・・・平衡
軌道。 13・・・双極電磁石、14・・・水平集束4極電磁石
。 15・・・水平発散4極電磁石、16〜18・・・パー
タベイタ。 第2図 第3図 第4図 第6図 第5図
Figures 1 (IIL) and (b) are diagrams schematically showing an air-core electromagnet (inflector) used in the present invention, and Figure 2 (a
) and (b) are diagrams schematically showing a circular storage ring. FIG. 3 is a diagram showing power supply to an air-core electromagnet, FIG. 4 is a diagram showing a magnetic field distribution due to an inflector, and FIG. 5 is a diagram schematically showing a conventional magnetic resonance type accelerator. FIG. 6 is a diagram showing the structure of a conventional inflector. 1... Internal coil, 2... Coil support member, 6...
・Magnetic shield coil, 4... septum coil. 5... Charged particle passageway, 6... Cavity part, 7... Iron core part. 8... Vacuum duct, 9... Main coil, 10... Inflector, 11... Inflector, 12... Balance track. 13...Dipole electromagnet, 14...Horizontal focusing quadrupole electromagnet. 15... Horizontal divergent quadrupole electromagnet, 16-18... Perturbator. Figure 2 Figure 3 Figure 4 Figure 6 Figure 5

Claims (1)

【特許請求の範囲】[Claims] 1、周回軌道を持つ磁気共振型加速器に荷電粒子を入射
する入射装置において、所定方向に延びる荷電粒子通路
が形成された絶縁性の支持体と、該支持体内に配置され
、前記所定の方向に延びる第1の導体部と、該第1の導
体部の周りで、前記支持体に装置され、前記所定の方向
に延びる第2の導体部とを備え、前記第1及び第2の導
体部間に前記荷電粒子通路が位置し、前記第1の導体部
と前記第2の導体部とには互いに逆向きの方向に電流が
流され、前記荷電粒子通路に磁場を形成する空芯電磁石
を有し、該空芯電磁石をパルス励磁して、前記荷電粒子
通路を通過する荷電粒子を入射軌道に導くようにしたこ
とを特徴とする磁気共振型加速器の入射装置。
1. In an injection device for injecting charged particles into a magnetic resonance type accelerator having a circular orbit, an insulating support body in which a charged particle path extending in a predetermined direction is formed, and an insulating support body disposed within the support body, a first conductor portion that extends; and a second conductor portion that is attached to the support body around the first conductor portion and extends in the predetermined direction; The charged particle path is located in the first conductor portion and the second conductor portion, current is passed in opposite directions to each other, and an air-core electromagnet is provided for forming a magnetic field in the charged particle path. An injection device for a magnetic resonance accelerator, characterized in that the air-core electromagnet is pulse-excited to guide charged particles passing through the charged particle path to an injection trajectory.
JP13835486A 1986-06-16 1986-06-16 Injection device of magnetic resonance type accelerator Expired - Lifetime JPH0736360B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13835486A JPH0736360B2 (en) 1986-06-16 1986-06-16 Injection device of magnetic resonance type accelerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13835486A JPH0736360B2 (en) 1986-06-16 1986-06-16 Injection device of magnetic resonance type accelerator

Publications (2)

Publication Number Publication Date
JPS62296400A true JPS62296400A (en) 1987-12-23
JPH0736360B2 JPH0736360B2 (en) 1995-04-19

Family

ID=15219972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13835486A Expired - Lifetime JPH0736360B2 (en) 1986-06-16 1986-06-16 Injection device of magnetic resonance type accelerator

Country Status (1)

Country Link
JP (1) JPH0736360B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016106372A (en) * 2013-05-31 2016-06-16 メビオン・メディカル・システムズ・インコーポレーテッド Active return system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016106372A (en) * 2013-05-31 2016-06-16 メビオン・メディカル・システムズ・インコーポレーテッド Active return system
JP2019106389A (en) * 2013-05-31 2019-06-27 メビオン・メディカル・システムズ・インコーポレーテッド Active return system

Also Published As

Publication number Publication date
JPH0736360B2 (en) 1995-04-19

Similar Documents

Publication Publication Date Title
US4710722A (en) Apparatus generating a magnetic field for a particle accelerator
JP2667832B2 (en) Deflection magnet
US4740758A (en) Apparatus for generating a magnetic field in a volume having bodies influencing the field pattern
US4680565A (en) Magnetic field device for a system for the acceleration and/or storage of electrically charged particles
US5101169A (en) Synchrotron radiation apparatus
JPH0752680B2 (en) Magnetic field generating electromagnet device for particle accelerator
JPH06501334A (en) synchrotron radiation source
JP2007207706A (en) Electromagnetic wave generator
JPS62296400A (en) Incident apparatus of magnetic resonance type accelerator
US5486802A (en) Spherical magnet structure and use thereof in synchrotron radiation source
JPS60138903A (en) Magnet unit
JP3948511B2 (en) Magnetic field generator that combines electromagnet and permanent magnet in the vertical direction
JP2813386B2 (en) Electromagnet of charged particle device
JPS6222400A (en) Cooler for ion beam by electron beam
JPS6226800A (en) Charged particle apparatus
RU2339192C1 (en) Betatron electromagnet
JP2004241347A (en) Circular accelerator
JPS63221597A (en) Deflecting magnet with return yoke
JPH05258897A (en) Septum electromagnet
JP2565889B2 (en) Electromagnet for charged particle device
JPS63308897A (en) Pulse electromagnet for storage ring
JPS63289800A (en) Incoming/outgoing device
Mazarakis et al. Low emittance immersed and non-immersed foilless diodes for high current electron linacs
JPS6226799A (en) Charged particle apparatus
JPH0397208A (en) Deflecting electromagnet for charged particle equipment

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term