JPH0736360B2 - Magnetic resonance type accelerator injection apparatus - Google Patents

Magnetic resonance type accelerator injection apparatus


Publication number
JPH0736360B2 JP13835486A JP13835486A JPH0736360B2 JP H0736360 B2 JPH0736360 B2 JP H0736360B2 JP 13835486 A JP13835486 A JP 13835486A JP 13835486 A JP13835486 A JP 13835486A JP H0736360 B2 JPH0736360 B2 JP H0736360B2
Prior art keywords
charged particle
conductor portion
magnetic resonance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
Other languages
Japanese (ja)
Other versions
JPS62296400A (en
猛 ▲高▼山
Original Assignee
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友重機械工業株式会社 filed Critical 住友重機械工業株式会社
Priority to JP13835486A priority Critical patent/JPH0736360B2/en
Publication of JPS62296400A publication Critical patent/JPS62296400A/en
Publication of JPH0736360B2 publication Critical patent/JPH0736360B2/en
Anticipated expiration legal-status Critical
Application status is Expired - Lifetime legal-status Critical



【発明の詳細な説明】 〔産業上の利用分野〕 本発明は弱集束型シンクロトロン,弱集束型蓄積リング等の周回軌道を持つ磁気共振型加速器に用いられるインフレクタ用の空芯電磁石に関する。 BACKGROUND OF THE INVENTION [FIELD OF THE INVENTION The present invention is a weak-focusing synchrotron relates air-core electromagnet for inflector for use in a magnetic resonance type accelerator with orbit such weak-focusing storage ring.

〔従来の技術〕 [Prior art]

従来の周回軌道を持つ磁気共振型加速器は入射装置として,キッカーと称される高速度で作動する電磁石あるいはパータベイタと称される電磁石と,磁場あるいは電場を直流的に発生するインフレクタとを有している。 The magnetic resonance type accelerator injection device having a conventional orbit has an electromagnet or Patabeita called electromagnet operating at kicker called high speed, and inflector for generating a magnetic field or electric field to direct current ing. インフレクタは荷電粒子を入射軌道に導くものである。 Inflector and guides the charged particles incident trajectory. キッカーあるいはパータベイタは,平衡軌道を変位させることによって,インフレクタから入射された荷電粒子が軌道をまわって再度インフレクタの位置にきても,インフレクタに当たらないようにするものである。 Kicker or Patabeita, by displacing the equilibrium orbit, in which the charged particles incident from inflector even come to a position again inflector around the track, to avoid exposure to inflector. 一般に,キッカーが平衡軌道全体を変位させるのに対して,パータベイタは2個または3個が同期して作動して平衡軌道の一部区間を変位させている。 In general, for kicker to displace the entire equilibrium orbit, Patabeita is two or three is to displace the partial section of the equilibrium orbit operated synchronously.

第5図に示すように,従来の磁気共振型加速器は荷電粒子を入射軌道に導くインフレタ11と,周回状の平衡軌道 As shown in FIG. 5, a conventional magnetic resonance accelerator and Infureta 11 for guiding the charged particles incident trajectory, circularly equilibrium orbit
12と,平衡軌道上の複数箇所に設けられ,各々が双極電磁石13とその両側に配された二組の水平集束4極電磁石 12, equilibrium provided at a plurality of positions on the track, two sets of horizontal focusing quadrupole electromagnet, each disposed on both sides of the dipole electromagnet 13
14および水平発散4極電磁石15とからなる複数個の偏向要素及び集束要素と,インフレクタ11の両側の集束要素の端部に設けられ,平衡軌道12を移動させるパータベイタ16〜18とを有している。 A plurality of deflection elements and the focusing elements consisting of 14 and horizontal divergence quadrupole electromagnet 15., provided at the end of both sides of the focusing elements of the inflector 11, and a Patabeita 16-18 to shift the equilibrium orbit 12 ing.

ここで,従来のインフレクタについて概説する。 Here it will be outlined conventional inflector.

第6図も参照して,インフレクタ11はビーム通路11aが形成された強磁性体(例えばフェライト)製のリターンヨーク11bを備えている。 See also FIG. 6, the inflector 11 includes a return yoke 11b made of ferromagnetic material beam path 11a is formed (e.g., ferrite). ビーム通路11aには図示のようにビーム通路11aに沿ってリータンコイル11cが配置され,一方,ビーム通路11aの開口部はセプタムコイル11d The beam path 11a is disposed Lee Tan coil 11c along the beam path 11a, as shown, while the opening of the beam path 11a is a septum coil 11d
によって覆れている。 It is covered by. この磁気インフレクタ11は第6図に示すようにセプタムコイル側を内側として配置されている。 The magnetic inflector 11 is disposed a septum coil side as shown in FIG. 6 as the inner.

リターンコイル11c及びセプタムコイル11dに電流を流して,磁気インフレクタを励磁すると,実線矢印で示すように磁力線,即ち,磁場が形成される。 By applying a current to the return coil 11c and septum coil 11d, when exciting the magnetic inflector, magnetic lines as shown by the solid line arrow, i.e., a magnetic field is formed. つまり,上述のリターンヨーク11b及びセプタムコイル11dによって磁束の漏れが生ずることなく,ビーム通路11aに磁場が形成される。 In other words, without leakage of the magnetic flux generated by the return yoke 11b and septum coil 11d described above, the magnetic field in the beam path 11a is formed. なお,入射ビームと周回ビームとの間隙は小さいからセプタムコイルは極力薄く形成され,しかも強磁場を発生させるため,セプタムコイルはパルス励磁される。 Incidentally, the gap between the incident beam and the looping beam septum coil is as thin as possible formed from small, yet to generate a strong magnetic field, septum coil is pulsed energized.

そして,上述の磁場によって,ビーム通路11aを通過する荷電粒子が入射軌道に導かれる。 Then, by the magnetic field of the above, the charged particles passing through the beam path 11a is directed to the incident raceway.

〔発明が解決しようとする問題点〕 [Problems to be Solved by the Invention]

ところで,従来,磁気インフレクタは第5図に示すように外部磁場の存在しない直線部に配置される。 Meanwhile, conventionally, magnetic inflector are arranged in a linear portion in the absence of an external magnetic field as shown in Figure 5. ところが,蓄積リング等を小型化して,直線部のない円型蓄積リングとした場合,磁気インフレクタを磁場(主磁場) However, when the size of the storage ring and the like, when the circular storage ring without straight section, a magnetic inflector field (main magnetic field)
中に配置しなければならない。 It must be placed in. しかしながら,従来の磁気インフレクタを磁場中に配置した場合,主磁場を乱してしまい,入射装置がうまく動作しないという問題がある。 However, if you place a conventional magnetic inflector in a magnetic field, will perturb the main magnetic field, there is a problem that injection device does not work.

本発明の目的は小型の円型蓄積リング等の磁気共振型加速器に用いられる入射装置を提供することにある。 An object of the present invention is to provide an injection apparatus for use in a magnetic resonance type accelerator such as a small circular storage ring.

〔問題点を解決するための手段〕 [Means for Solving the Problems]

本発明による入射装置は,所定の方向に延びる荷電粒子通路が形成された絶縁性の支持体と,該支持体内に配置され,前記所定の方向に延びる第1の導体部と,第1の導体部の周りで,支持体に装置され,前記所定の方向に延びる第2の導体部とを備え,第1及び第2の導体部間に前記荷電粒子通路が位置し,第1の導体部と第2の導体部とには互いに逆向きの方向に電流が流され,上記の荷電粒子通路に磁場を形成する空芯電磁石(インフレクタ)を有し,この空芯電磁石をパルス励磁して上記の荷電粒子通路を通過する荷電粒子を入射軌道に導くようにしたことを特徴としている。 Injection device according to the invention, a support of the charged particle path is formed an insulating extending in a predetermined direction, are arranged in the support body, a first conductor portion extending in the predetermined direction, the first conductor around the parts, are devices to support, and a second conductor portion extending in the predetermined direction, the charged particle passage located between the first and second conductor portions, a first conductor portion the second conductor unit current flows in the direction opposite to each other, having an air core electromagnets (inflector) forming a magnetic field to the charged particle path of the above the air-core electromagnet and pulsed excitation It is characterized in the charged particles passing through the charged particle path that was guided to the injection orbit.

〔実施例〕 〔Example〕

以下本発明について実施例によって説明する。 Examples The present invention will be explained below.

まず,第1図(a)及び(b)を参照して,本発明に適用されるインフレクタの構造について説明する。 First, referring to FIG. 1 (a) and (b), a description is given of the structure of inflector applied to the present invention.

弓形状に成形され,絶縁性の角管部材(以下コイル支持部材という)2の一壁面には径方向外方に延び,しかも軸方向に延びる貫通部が形成されている。 Formed into arcuate, extend radially outward in one wall surface of the insulating square tube member (hereinafter referred to as the coil supporting member) 2, moreover penetrating portion extending in the axial direction is formed. コイル支持部材2の内部には軸方向に延びるコイル(以下内部コイルという)1が支持部材2の内壁面に当接されて配置されている。 The interior of the coil supporting member 2 is arranged first coil (hereinafter referred to as inner coil) extending in the axial direction abuts against the inner wall surface of the support member 2. 一方,貫通部が形成された壁面を除いて,他の壁面には磁気シールドコイル3が装着されている。 On the other hand, with the exception of the wall penetration portion is formed, a magnetic shield coil 3 is attached to the other wall. また,上述の貫通部を塞ぐようにして,一壁面にはセプタムコイル4が装着され,貫通部は荷電粒子通路5となる。 Also, so as to close the through portion of the above, the one wall surface is wearing septum coil 4, through portion becomes charged particle passage 5.

第2図(a)及び(b)も参照して,円型蓄積リングは内部に空洞部6が形成された円型の鉄心部7を備えている。 Figure 2 (a) and (b) be referred to, circular storage ring is provided with a core portion 7 of the circular cavities 6 formed therein. 空洞部6には荷電粒子の周回軌道が形成されるリング形状の真空ダクト8が図示のように配設されており, The cavity 6 vacuum duct 8 ring-shaped orbit of the charged particles are formed are arranged as shown in the figure,
この真空ダクト8の径方向外側において,空洞部6内にはリング状の主コイル9が一対,所定の間隔をおいて互いに対向して配置されている。 Radially outside the vacuum duct 8, the cavity 6 is disposed the main coil 9 a ring-shaped pair, facing each other with a predetermined distance. インフレクタ10は第2図(a)に示すように真空ダクト8の近傍に配設され,蓄積リング外部からの入射ビームを入射軌道に導く。 Inflector 10 is disposed in the vicinity of the vacuum duct 8 as shown in FIG. 2 (a), directing an incident beam from the storage ring outside the injection orbit.

第3図に示すように,磁気シールドコイル3及びセプタムコイル4は,例えば,電源の(+)側に接続され,一方内部コイル1は(−)側に接続される。 As shown in FIG. 3, the magnetic shield coil 3 and the septum coil 4 is connected to, for example, (+) side of the power supply, whereas the internal coil 1 - is connected to the side (). 即ち,磁気シールドコイル3及びセプタムコイル4と内部コイル1とは互いに逆方向に電流が流される。 That is, current flows in opposite directions to the magnetic shield coil 3 and the septum coil 4 and the inner coil 1. この電流にはパルス状の大電流が用いられる。 Pulsed large current is used for this current. 即ち,インフレクタはパルス励磁される。 In other words, inflation Kuta is pulsed excitation. このようにインフレクタはパルス励磁されるので(高い電流密度で電流が流されるので),荷電粒子通路5に強い磁場が発生する。 Thus inflector (since the current at high current density flows) since it is pulsed energized, a strong magnetic field is generated in the charged particle passage 5. なお,荷電粒子通路5 In addition, the charged particle passage 5
の磁場は磁気シールドコイル3及びセプタムコイル4によってしゃへいされるから外部に漏れることはない。 Of the magnetic field does not leak outside from being shielded by the magnetic shield coil 3 and a septum coil 4. また,インフレクタはビーム入射時間(例えば1μsec) Further, the inflector beam incident time (e.g., 1 .mu.sec)
において磁場(荷電粒子通路5の磁場)が一定となるようにパルス励磁される。 Field (magnetic field of the charged particle passage 5) is pulsed energized to be constant at.

上述のパルス励磁によって発生する磁場の一例を第4図に示す(インフレクタの中心軸を原点とし,径方向をx The central axis of (inflector showing an example of the magnetic field generated by the pulse excitation discussed above in FIG. 4 as the origin, the radial x
軸(横軸)とし,縦軸を径方向に垂直な磁束密度(Bz) Axis and (horizontal axis), the vertical magnetic flux density vertical axis in the radial direction (Bz)
とした)。 And was). 第4図に示すように,インフレクタ内には蓄積リングの主磁場と逆極性の双極磁場が発生する。 As shown in Figure 4, it is in the inflector dipole magnetic field of the main magnetic field polarity opposite storage ring occurs. なお,インフレクタ内には必要に応じて双極磁場に四極磁場,あるいは多極場を重畳させれば,ビームに作用する集束力あるいは収差が補正できる。 Incidentally, if superimposed quadrupole field or Takyokujo, bipolar magnetic field as required in the inflector, is focusing power or aberration acting on the beam can be corrected.

このように,本発明に用いられるインフレクタは強磁性体のリターンヨークを用いていないから,即ち,絶縁性のコイル支持部材を用いているから,インフレクタを磁場中に配置することができる。 Thus, inflector used in the present invention because no reference to the return yoke of ferromagnetic material, i.e., since using the electrical insulation of the coil support member, may be disposed inflector in a magnetic field.

〔発明の効果〕 〔Effect of the invention〕

以上説明したように本発明によれば,主磁場を乱すことがないから,円型の磁気共振型加速器に用いることができる。 According to the present invention described above, since there is no disturbing the main magnetic field can be used for magnetic resonance type accelerator circular. また,荷電粒子通路に形成される磁場が外部に漏れることもない。 Further, magnetic field formed in the charged particle passage nor leaking outside.

さらにパルス励磁を行っているから比較的高い磁場を発生でき,高いエネルギーのビームを入射することができる。 Further it can generate a relatively high magnetic field because doing pulse excitation can be incident high energy beam.


第1図(a)及び(b)は本発明に用いられる空芯電磁石(インフレクタ)を概略的に示す図,第2図(a)及び(b)は円型蓄積リングを概略的に示す図,第3図は空芯電磁石への給電を示す図,第4図はインフレクタによる磁場分布を示す図,第5図は従来の磁気共振型加速器を概略的に示す図,第6図は従来のインフレクタの構造を示す図である。 Figure 1 (a) and (b) is a diagram showing schematically the air-core electromagnet (inflector) used in the present invention, FIG. 2 (a) and (b) shows schematically a circular storage ring Figure, Figure 3 shows the power supply to the air-core electromagnet figures, FIG. Fig. 4 showing a magnetic field distribution according to the inflector, Figure 5 shows a conventional magnetic resonance accelerator schematically drawing, Figure 6 is it is a diagram showing a structure of a conventional inflector. 1……内部コイル,2……コイル支持部材,3……磁気シールドコイル,4……セプタムコイル,5……荷電粒子通路,6 1 ...... internal coil, 2 ...... coil supporting member, 3 ...... magnetic shield coil, 4 ...... septum coil, 5 ...... charged particle passage 6
……空洞部,7……鉄心部,8……真空ダクト,9……主コイル,10……インフレクタ,11……インフレクタ,12……平衡軌道,13……双極電磁石,14……水平集束4極電磁石,1 ...... cavity, 7 ...... core portion, 8 ...... vacuum duct 9 ...... main coil, 10 ...... inflector, 11 ...... inflector, 12 ...... equilibrium orbit, 13 ...... dipole electromagnet, 14 ...... horizontal focus quadrupole electromagnet, 1
5……水平発散4極電磁石,16〜18……パータベイタ。 5 ...... horizontal divergence quadrupole electromagnet, 16-18 ...... Patabeita.

Claims (1)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】周回軌道を持つ磁気共振型加速器に荷電粒子を入射する入射装置において,所定方向に延びる荷電粒子通路が形成された絶縁性の支持体と,該支持体内に配置され,前記所定の方向に延びる第1の導体部と,該第1の導体部の周りで,前記支持体に装置され,前記所定の方向に延びる第2の導体部とを備え,前記第1及び第2の導体部間に前記荷電粒子通路が位置し,前記第1 1. A injection device entering the charged particle in a magnetic resonance type accelerator with closed orbit, the insulation supports the charged particle path is formed extending in a predetermined direction, are arranged in the supporting body, the predetermined a first conductor portion extending in the direction of, around the conductor portion of the first, is apparatus to the support, and a second conductor portion extending in the predetermined direction, the first and second It said charged particle passage located between the conductor portions, the first
    の導体部と前記第2の導体部とには互いに逆向きの方向に電流が流され,前記荷電粒子通路に磁場を形成する空芯電磁石を有し,該空芯電磁石をパルス励磁して,前記荷電粒子通路を通過する荷電粒子を入射軌道に導くようにしたことを特徴とする磁気共振型加速器の入射装置。 Of the said second conductor portion and the conductor portion current flows in opposite directions to each other, having an air core electromagnet to form a magnetic field to the charged particle path, the spatial core electromagnet pulsed excitation, magnetic resonance type accelerator incidence device being characterized in that to guide the charged particle passing through the charged particle passage injection orbit.
JP13835486A 1986-06-16 1986-06-16 Magnetic resonance type accelerator injection apparatus Expired - Lifetime JPH0736360B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13835486A JPH0736360B2 (en) 1986-06-16 1986-06-16 Magnetic resonance type accelerator injection apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13835486A JPH0736360B2 (en) 1986-06-16 1986-06-16 Magnetic resonance type accelerator injection apparatus

Publications (2)

Publication Number Publication Date
JPS62296400A JPS62296400A (en) 1987-12-23
JPH0736360B2 true JPH0736360B2 (en) 1995-04-19



Family Applications (1)

Application Number Title Priority Date Filing Date
JP13835486A Expired - Lifetime JPH0736360B2 (en) 1986-06-16 1986-06-16 Magnetic resonance type accelerator injection apparatus

Country Status (1)

Country Link
JP (1) JPH0736360B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8791656B1 (en) * 2013-05-31 2014-07-29 Mevion Medical Systems, Inc. Active return system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party

Also Published As

Publication number Publication date
JPS62296400A (en) 1987-12-23

Similar Documents

Publication Publication Date Title
US3360647A (en) Electron accelerator with specific deflecting magnet structure and x-ray target
Khiari et al. Acceleration of polarized protons to 22 GeV/c and the measurement of spin-spin effects in p↑+ p↑→ p+p
US3128405A (en) Extractor for high energy charged particles
Halbach Application of permanent magnets in accelerators and electron storage rings
US6365894B2 (en) Electromagnet and magnetic field generating apparatus
US8836332B2 (en) Method and apparatus for shielding a linear accelerator and a magnetic resonance imaging device from each other
JP5395118B2 (en) Objective lens for electron microscope system and electron microscope system
JP3609407B2 (en) Short plasma accelerator of length with a closed electron drift
Greene et al. Linear accelerators for radiation therapy
JP2011523169A (en) Charged particle beam extraction method and apparatus for use with a charged particle cancer treatment system
JP4733742B2 (en) Particle radiotherapy apparatus including magnetic resonance imaging means
JP4008030B2 (en) How to extract charged particles from an isochronous cyclotron and apparatus for applying this method
US7432516B2 (en) Rapid cycling medical synchrotron and beam delivery system
US4769623A (en) Magnetic device with curved superconducting coil windings
US4130759A (en) Method and apparatus incorporating no moving parts, for producing and selectively directing x-rays to different points on an object
EP0276123B1 (en) Magnetic field generating assembly
EP0832497B1 (en) System and method for producing superimposed static and time-varying magnetic fields
EP0473097A2 (en) System for irradiating a surface with atomic and molecular ions using two dimensional magnetic scanning
US5818058A (en) Particle beam irradiation apparatus
JP4772212B2 (en) X-ray generator
Palmer et al. Muon collider design
US5117212A (en) Electromagnet for charged-particle apparatus
EP0306966A2 (en) Bending magnet
US7129807B2 (en) Undulator and method of operation thereof
KR910010099B1 (en) Electron cyclotron resonance ion source

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term