JPH05258897A - Septum electromagnet - Google Patents

Septum electromagnet

Info

Publication number
JPH05258897A
JPH05258897A JP5776692A JP5776692A JPH05258897A JP H05258897 A JPH05258897 A JP H05258897A JP 5776692 A JP5776692 A JP 5776692A JP 5776692 A JP5776692 A JP 5776692A JP H05258897 A JPH05258897 A JP H05258897A
Authority
JP
Japan
Prior art keywords
septum
electromagnet
opening
charged particle
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5776692A
Other languages
Japanese (ja)
Inventor
Kazuyoshi Saito
一義 齊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5776692A priority Critical patent/JPH05258897A/en
Publication of JPH05258897A publication Critical patent/JPH05258897A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To increase the incidence efficiency to two to three times as compared with a conventional injector using a septum electromagnet. CONSTITUTION:The thickness of a septum coil 3 constituting a septum is locally made thin at the beam outlet vicinity 5 of an electromagnet opening section 2 to make the thickness of the septum thin. A notch 7 is provided on the magnetic pole face 6 of the electromagnet opening section 2 to improve the uniformity of the magnetic field distribution near the septum, and a septum coil having the same width as the height 9 of the opening section 2 is installed at this portion. The incidence beam orbit 10 is designed slantly against the center line 11 of the electromagnet opening section 2 in the horizontal plane to reduce the divergence due to the nonuniform magnetic field distribution near the septum.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はセプタム電磁石に係り、
特に、円形加速器における荷電粒子ビームの入射用及び
出射用のセプタム電磁石に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a septum electromagnet,
In particular, the present invention relates to a septum electromagnet for injecting and emitting a charged particle beam in a circular accelerator.

【0002】[0002]

【従来の技術】従来のセプタム電磁石として、文献「分
子科学研究所、UVSORストレージリングの設計、U
VSOR−9、1982」p.65記載の入射用セプタム
電磁石(インフレクタ)、及び、文献「分子科学研究
所、入射用シンクロトロンの設計、UVSOR−7、1
981」p.86記載の出射用セプタム電磁石(デフレク
タ)が挙げられる。
2. Description of the Related Art As a conventional septum electromagnet, the document "Molecular Science Laboratory, Design of UVSOR Storage Ring, U"
VSOR-9, 1982 "p.65, septum electromagnet (inflector) for incidence, and" Research Institute for Molecular Science, Design of synchrotron for incidence, UVSOR-7, 1 ".
981 "p.86, a septum electromagnet (deflector) for emission.

【0003】従来のセプタム電磁石(図2)では、励磁
用コイル3の厚みは電磁石開口部2でビーム軌道方向に
沿って一定である。また、電磁石開口部の両磁極面6は
全面平滑であり、励磁用コイルと両磁極面との間には、
少なくともコイル絶縁層8の厚みだけ間隙がある。さら
に、ビーム軌道10は水平面内で電磁石開口部の中心線
に沿うように設計されている。
In the conventional septum electromagnet (FIG. 2), the thickness of the exciting coil 3 is constant at the electromagnet opening 2 along the beam trajectory direction. Both magnetic pole surfaces 6 of the electromagnet opening are entirely smooth, and between the exciting coil and both magnetic pole surfaces,
There is a gap of at least the thickness of the coil insulating layer 8. Further, the beam trajectory 10 is designed to lie along the centerline of the electromagnet opening in the horizontal plane.

【0004】[0004]

【発明が解決しようとする課題】産業用・医療用の高輝
度X線源として、電子蓄積リングが有望である。その種
の加速器システム(図5)は、蓄積リング32とそれに
電子ビームを供給する前段加速器22から成る。工場や
病院に設置するためには、システムを小型化する必要が
ある。蓄積リングに入射する電子ビームのエネルギが低
くできれば、前段加速器を小型化できシステム全体の小
型化が実現できる。しかし、30MeV程度以下の低エ
ネルギ入射では多数回入射が不可能であり、1回の入射
で必要な電流を入射蓄積する必要がある。そのため、入
射効率の高い入射装置が要求される。
An electron storage ring is promising as a high-intensity X-ray source for industrial and medical purposes. Such an accelerator system (FIG. 5) consists of a storage ring 32 and a pre-stage accelerator 22 which supplies an electron beam to it. For installation in factories and hospitals, it is necessary to downsize the system. If the energy of the electron beam incident on the storage ring can be reduced, the pre-stage accelerator can be downsized and the entire system can be downsized. However, it is impossible to make a large number of injections with a low energy injection of about 30 MeV or less, and it is necessary to inject and accumulate a necessary current with one injection. Therefore, an injection device with high injection efficiency is required.

【0005】セプタム電磁石を入射装置に採用する場
合、入射効率を高めるためには、入射軌道側と蓄積リン
グ側を隔てる隔壁(以下、セプタムという)の厚みを低
減し、入射ビームをその隔壁にできるだけ近付けてリン
グ中心軌道にほぼ平行に入射しなければならない(図
4)。しかし、従来のセプタム電磁石では、励磁用コイ
ル3を十分薄くできずセプタムの厚み20(以下、セプ
タム厚という)が大きくなる。また、従来のセプタム電
磁石では、励磁用コイルと開口部両磁極面との間の間隙
の存在により、セプタム近傍の磁場分布の一様性が失わ
れる。そのため、非一様な磁場分布によるビームの発散
を避けるため、入射ビームをセプタムに近付けることが
できず、ビーム軌道は水平面内で電磁石開口部の中心線
に沿うように設計されている。
When a septum electromagnet is adopted in the injector, in order to increase the incident efficiency, the thickness of the partition wall (hereinafter referred to as a septum) separating the incident orbit side and the storage ring side is reduced so that the incident beam can be applied to the partition wall. It must be approached and incident almost parallel to the ring center orbit (Fig. 4). However, in the conventional septum electromagnet, the exciting coil 3 cannot be made sufficiently thin and the septum thickness 20 (hereinafter referred to as the septum thickness) becomes large. Further, in the conventional septum electromagnet, the uniformity of the magnetic field distribution in the vicinity of the septum is lost due to the existence of the gap between the exciting coil and the magnetic pole surfaces of the opening. Therefore, in order to avoid the divergence of the beam due to the non-uniform magnetic field distribution, the incident beam cannot be brought close to the septum, and the beam trajectory is designed along the center line of the electromagnet opening in the horizontal plane.

【0006】本発明の目的は、セプタム厚が小さく、ま
たセプタム近傍の磁場分布の一様性が良好なセプタム電
磁石を提供し、入射効率の高い入射装置を実現すること
にある。
An object of the present invention is to provide a septum electromagnet having a small septum thickness and good uniformity of magnetic field distribution in the vicinity of the septum, and to realize an injection device with high injection efficiency.

【0007】[0007]

【課題を解決するための手段】セプタム厚を小さくする
ために、セプタムを構成する励磁用コイル(以下、セプ
タムコイルという)の厚みを電磁石開口部のビーム出口
付近5で局所的に薄くした(図1)。
In order to reduce the septum thickness, the thickness of an exciting coil (hereinafter referred to as a septum coil) that constitutes the septum is locally thinned near a beam exit 5 of an electromagnet opening (see FIG. 1).

【0008】また、セプタム近傍の磁場分布の一様性を
改善するため、電磁石開口部の磁極面に切欠き7を設
け、その部分に開口部の高さ9と同じ幅のセプタムコイ
ル3を設置した(図1)。
Further, in order to improve the uniformity of the magnetic field distribution in the vicinity of the septum, a notch 7 is provided in the magnetic pole surface of the electromagnet opening, and a septum coil 3 having the same width as the height 9 of the opening is provided at that portion. (Fig. 1).

【0009】さらに、入射ビーム10が水平面内で電磁
石開口部の中心線11に対して斜めに通過するように、
セプタム電磁石を設置した(図1)。
Further, so that the incident beam 10 passes obliquely to the center line 11 of the electromagnet opening in the horizontal plane,
A septum magnet was installed (Fig. 1).

【0010】[0010]

【作用】セプタム20は真空隔壁18,磁気シールド2
1,セプタムコイル3,コイル絶縁層8から成る(図
4)。セプタムコイルを薄くすることでセプタム厚を小
さくできるが、電流密度増大による発熱や電磁力に対す
る強度が問題となる。そこで、セプタムコイルを電磁石
開口部のビーム出口付近でのみ薄くすることで上記問題
を回避できる。
The septum 20 is the vacuum partition 18 and the magnetic shield 2.
1, a septum coil 3, and a coil insulating layer 8 (FIG. 4). Although the septum thickness can be reduced by making the septum coil thin, the strength against heat generation and electromagnetic force due to the increase in current density becomes a problem. Therefore, the above problem can be avoided by thinning the septum coil only near the beam outlet of the electromagnet opening.

【0011】電磁石開口部の高さ9とセプタムコイルの
幅34が異なる(図2)と、セプタムコイル近傍の磁場
分布の一様性が失われる。そこで、電磁石開口部の磁極
面に切欠きを設けてコイル絶縁層の厚みを吸収すること
で、開口部の高さと同じ幅のセプタムコイルが設置でき
る。
If the height 9 of the opening of the electromagnet and the width 34 of the septum coil are different (FIG. 2), the uniformity of the magnetic field distribution in the vicinity of the septum coil is lost. Therefore, by providing a notch in the magnetic pole surface of the electromagnet opening to absorb the thickness of the coil insulating layer, a septum coil having the same width as the height of the opening can be installed.

【0012】入射ビーム軌道を水平面内で電磁石開口部
の中心線に対して斜めに設計することで、入射ビームが
セプタム近傍を通過する距離を短くし、セプタム近傍の
非一様な磁場分布によるビームの発散を低減できる。
By designing the incident beam trajectory obliquely with respect to the center line of the electromagnet opening in the horizontal plane, the distance that the incident beam passes near the septum is shortened, and the beam due to the non-uniform magnetic field distribution near the septum is shortened. Can be reduced.

【0013】[0013]

【実施例】図1は、本発明によるセプタム電磁石の一実
施例を示す断面図である。セプタム電磁石は、磁性体の
C型鉄心部1とその開口部2に設置された励磁用コイル
3,4から成る。なお、図1は励磁用コイルが1ターン
の場合を示す。励磁用コイルを流れる電流により、電磁
石開口部に一様磁場が発生する。電磁石開口部を通過す
る荷電粒子ビームは、その一様磁場により偏向を受け
る。
1 is a sectional view showing an embodiment of a septum electromagnet according to the present invention. The septum electromagnet is composed of a C-shaped iron core 1 made of a magnetic material and exciting coils 3 and 4 installed in an opening 2 thereof. Note that FIG. 1 shows the case where the exciting coil has one turn. A uniform magnetic field is generated in the electromagnet opening by the current flowing through the exciting coil. The charged particle beam passing through the electromagnet aperture is deflected by its uniform magnetic field.

【0014】励磁用コイルは、曲率半径外側のセプタム
コイル3と曲率半径内側のリターンコイル4より成る。
ビームの入射効率向上のため、セプタムコイルをビーム
出口付近5で局所的に薄くしている。本実施例では、セ
プタムコイルの外周側を直線的に削り込み、テーパ状に
薄くしている。これにより、セプタムコイルの電流密度
増加による発熱や電磁力による変形を抑えつつ0.5mm
程度まで薄くできる。また、電磁石開口部の両磁極面6
に切欠き7を設けてコイル絶縁層8の厚みを吸収し、開
口部の高さ9と同じ幅のセプタムコイルを設置してい
る。これにより、セプタムコイル近傍の磁場変化を0.
1% 程度に低減でき、ビームをセプタムコイルに近付
けてリングに入射できる。本実施例では、切欠きをセプ
タムコイルの位置のみに設けたが、リターンコイル近傍
の磁場変化を低減する必要があるときは、リターンコイ
ルの位置にも切欠きを設ける。
The exciting coil comprises a septum coil 3 having an outer radius of curvature and a return coil 4 having an inner radius of curvature.
In order to improve the beam incidence efficiency, the septum coil is locally thinned near the beam exit 5. In this embodiment, the outer peripheral side of the septum coil is linearly cut to be thin in a taper shape. As a result, heat generation due to an increase in the current density of the septum coil and deformation due to electromagnetic force can be suppressed while maintaining a 0.5 mm
It can be made as thin as possible. Further, both magnetic pole faces 6 of the electromagnet opening are
A notch 7 is provided in the to absorb the thickness of the coil insulating layer 8 and a septum coil having the same width as the height 9 of the opening is installed. As a result, the change in the magnetic field near the septum coil is reduced to zero.
It can be reduced to about 1%, and the beam can be brought closer to the septum coil and incident on the ring. In this embodiment, the notch is provided only at the position of the septum coil, but when it is necessary to reduce the change in the magnetic field near the return coil, the notch is also provided at the position of the return coil.

【0015】さらに、入射ビーム軌道10を水平面内で
電磁石開口部の中心線11に対して斜めに設計してい
る。すなわち、電磁石開口部の中心線よりリターンコイ
ル側の位置12からビームを入射し、セプタムコイルに
近接した位置13から出射している。本実施例では、電
磁石開口部の中心線の曲率半径を入射ビーム軌道の曲率
半径より大きくし、それを実現している。これにより、
入射ビームがセプタム近傍を通過する距離を短くし、セ
プタム近傍の非一様な磁場分布によるビームの発散を低
減できる。
Further, the incident beam trajectory 10 is designed to be oblique to the center line 11 of the electromagnet opening in the horizontal plane. That is, the beam enters from the position 12 on the return coil side of the center line of the electromagnet opening and exits from the position 13 close to the septum coil. In the present embodiment, the radius of curvature of the center line of the electromagnet opening is made larger than the radius of curvature of the incident beam orbit to realize it. This allows
It is possible to shorten the distance that the incident beam passes near the septum and reduce the divergence of the beam due to the non-uniform magnetic field distribution near the septum.

【0016】図3は、本発明によるセプタム電磁石を用
いた荷電粒子ビーム入射装置の一実施例を示す平面図で
ある。荷電粒子ビーム入射装置は、セプタム電磁石14
と、そのセプタム電磁石を内部に設置した真空容器15
よりなる。真空容器は、蓄積リング側ビームダクト16
とセプタム電磁石を設置した真空室17から成り、両者
は真空隔壁18で遮られている。入射ビームは、セプタ
ム電磁石で偏向され、真空隔壁に設けられた入射窓19
からリングに入射される。セプタム電磁石は、入射ビー
ムが水平面内でその開口部中心線に対して斜めに通過す
るように真空容器に設置されている。またセプタム電磁
石は、セプタム厚を小さくするためビーム出口付近で真
空隔壁に密着している。
FIG. 3 is a plan view showing an embodiment of a charged particle beam injector using a septum electromagnet according to the present invention. The charged particle beam injector is a septum magnet 14
And the vacuum container 15 with the septum electromagnet installed inside.
Consists of. The vacuum container is the beam duct 16 on the storage ring side.
And a vacuum chamber 17 in which a septum electromagnet is installed, and both are blocked by a vacuum partition wall 18. The incident beam is deflected by a septum electromagnet, and an incident window 19 provided on the vacuum partition wall is used.
Is incident on the ring from. The septum electromagnet is installed in the vacuum container so that the incident beam passes obliquely to the center line of the opening in the horizontal plane. The septum electromagnet is in close contact with the vacuum partition near the beam outlet in order to reduce the septum thickness.

【0017】図4は、入射点近傍の詳細図である。セプ
タム20は、真空隔壁18,磁気シールド21,セプタ
ムコイル3,コイル絶縁層8から成る。真空隔壁はその
強度維持のため0.5mm 程度までは薄くできる。磁気シ
ールドは、セプタム電磁石からリング側への漏れ磁場を
低減する。高透磁率の磁性体(例えばパーマロイ)の使
用により、0.5mm 程度までは薄くできる。セプタムコ
イルは、前述のように、0.5mm 程度まで薄くできるの
で、セプタム厚20はコイル絶縁層を含めても2mm以下
にできる。
FIG. 4 is a detailed view of the vicinity of the incident point. The septum 20 includes a vacuum partition 18, a magnetic shield 21, a septum coil 3, and a coil insulating layer 8. The vacuum partition can be thinned to about 0.5 mm to maintain its strength. The magnetic shield reduces the leakage magnetic field from the septum electromagnet to the ring side. By using a magnetic material having a high magnetic permeability (for example, permalloy), the thickness can be reduced to about 0.5 mm. Since the septum coil can be thinned to about 0.5 mm as described above, the septum thickness 20 can be set to 2 mm or less including the coil insulating layer.

【0018】図5は、セプタム電磁石を荷電粒子ビーム
の入射装置とした円形加速器の説明図である。前段加速
器22からの荷電粒子ビームは、ビーム輸送系23を通
り、入射装置24で磁場偏向されリングに入射される。
リングに配置されたバンプ電磁石25は、入射時にリン
グ側の平衡軌道を制御し、入射ビームをリングに蓄積す
る。なお、前段加速器には、例えば、線形加速器,マイ
クロトロン,シンクロトロンが使用される。また、リン
グにはビームを偏向及び収束するための二極電磁石26
及び四極電磁石27,ビームにエネルギを供給するため
の高周波加速空洞28がそれぞれ配置されている。
FIG. 5 is an illustration of a circular accelerator in which a septum magnet is used as a charged particle beam injector. The charged particle beam from the pre-accelerator 22 passes through the beam transport system 23, is deflected by the incident device 24, and is incident on the ring.
The bump electromagnet 25 arranged on the ring controls the equilibrium orbit on the ring side at the time of incidence and accumulates the incident beam on the ring. As the pre-stage accelerator, for example, a linear accelerator, a microtron, or a synchrotron is used. Further, the ring has a dipole electromagnet 26 for deflecting and converging the beam.
A quadrupole electromagnet 27 and a high-frequency acceleration cavity 28 for supplying energy to the beam are arranged.

【0019】以上、本発明によるセプタム電磁石を入射
装置に用いた場合について述べてきたが、出射装置に用
いた場合についても同様である。
The case where the septum electromagnet according to the present invention is used for the entrance device has been described above, but the same applies to the case where the septum electromagnet is used for the exit device.

【0020】図6は、セプタム電磁石を荷電粒子ビーム
の出射装置とした円形加速器の説明図である。リング内
で高周波加速空洞28により所定のエネルギまで加速さ
れた荷電粒子ビームは、出射装置29で磁場偏向されビ
ーム輸送系30へと取り出される。リングに配置された
キッカー電磁石31は、出射時にリングの平衡軌道を制
御し、蓄積ビームをセプタム電磁石の開口部内へと蹴り
込む。ビーム輸送系30は、例えば、図5の円形加速器
32に接続し、本円形加速器33は図5の前段加速器2
2(シンクロトロン)になっている。
FIG. 6 is an explanatory view of a circular accelerator using a septum electromagnet as a charged particle beam emitting device. The charged particle beam accelerated to a predetermined energy by the high frequency acceleration cavity 28 in the ring is subjected to magnetic field deflection by the extraction device 29 and is taken out to the beam transport system 30. The kicker electromagnet 31 arranged on the ring controls the equilibrium trajectory of the ring at the time of emission and kicks the accumulated beam into the opening of the septum electromagnet. The beam transport system 30 is connected to, for example, the circular accelerator 32 of FIG. 5, and the circular accelerator 33 is the former accelerator 2 of FIG.
It is 2 (synchrotron).

【0021】[0021]

【発明の効果】本発明によれば、セプタムコイルをその
発熱や変形を抑えつつ0.5mm 程度まで薄くでき、真空
隔壁と磁気シールドとコイル絶縁層の厚みを加えても2
mm以下にセプタム厚を低減できる。
According to the present invention, the septum coil can be made as thin as about 0.5 mm while suppressing its heat generation and deformation, and even if the thickness of the vacuum partition, the magnetic shield and the coil insulating layer is added,
The septum thickness can be reduced to mm or less.

【0022】また、セプタム近傍の磁場変化を0.1%
程度に低減でき、ビームをセプタムに近付けてリングに
入射できる。
The magnetic field change near the septum is 0.1%.
It can be reduced to a small degree and the beam can be brought closer to the septum and incident on the ring.

【0023】さらに、入射ビームがセプタム近傍を通過
する距離を短くでき、セプタム近傍の非一様な磁場分布
によるビームの発散を低減できる。例えば、セプタムコ
イルの設置誤差で磁場変化が1%程度存在する場合で
も、ビームの発散を入射効率に影響しない程度にまで容
易に低減できる。
Further, the distance that the incident beam passes near the septum can be shortened, and the divergence of the beam due to the non-uniform magnetic field distribution near the septum can be reduced. For example, even if the magnetic field changes by about 1% due to the installation error of the septum coil, the divergence of the beam can be easily reduced to such an extent that the incidence efficiency is not affected.

【0024】従来のセプタム電磁石では、セプタム厚が
4mm程度になり、またセプタム近傍2mmには磁場変化が
数%程度存在する。したがって、実効的なセプタム厚は
6mm程度になる。入射ビームとして電子蓄積リング前段
加速器用の通常の線形加速器からのビームを考えると、
本発明によるセプタム電磁石により、入射効率を従来の
2〜3倍に高めることができる。
In the conventional septum electromagnet, the septum thickness is about 4 mm, and a magnetic field change of about several% exists in the vicinity of 2 mm of the septum. Therefore, the effective septum thickness is about 6 mm. Considering a beam from an ordinary linear accelerator for the electron storage ring pre-accelerator as the incident beam,
With the septum electromagnet according to the present invention, the incidence efficiency can be increased to 2-3 times that of the conventional case.

【0025】本発明により、電子蓄積リングの低エネル
ギ入射方式に要求される高効率入射装置として、セプタ
ム電磁石が採用できる。従来、円形加速器への低エネル
ギ電子ビームの入射装置としては、セプタム厚を薄くし
やすい静電偏向型が採用されてきた。しかし、静電偏向
型の入射装置は磁場偏向型に比較して大型化し、蓄積リ
ングの小型化のためには磁場偏向型の方が有利である。
ビームエネルギを15MeV、蓄積リングへの入射角度
を45度とした場合、静電偏向型の装置長1.5mに対し
て、セプタム電磁石を用いた磁場偏向型では装置長が
0.5m に納まる。
According to the present invention, a septum electromagnet can be adopted as a high-efficiency injection device required for a low energy injection method of an electron storage ring. Conventionally, as a device for injecting a low-energy electron beam into a circular accelerator, an electrostatic deflection type device that can easily reduce the septum thickness has been adopted. However, the electrostatic deflection type injection device is larger in size than the magnetic field deflection type, and the magnetic field deflection type is more advantageous for downsizing the storage ring.
When the beam energy is 15 MeV and the incident angle to the storage ring is 45 degrees, the device length of the electrostatic deflection type is 1.5 m, while the device length of the magnetic field deflection type using a septum electromagnet is 0.5 m.

【0026】以上、本発明によるセプタム電磁石を入射
装置に用いた場合、特に電子蓄積リングにおいてその効
果を述べたが、他の荷電粒子円形加速器でも同様な効果
がある。さらに、出射装置に用いた場合にも、ビームの
出射効率の向上とキッカー電磁石の負担軽減の効果があ
る。
In the above, when the septum electromagnet according to the present invention is used in the injector, the effect is described especially in the electron storage ring, but other charged particle circular accelerators have the same effect. Further, even when used in the emitting device, there are effects of improving the beam emitting efficiency and reducing the load on the kicker electromagnet.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明によるセプタム電磁石の一実施例の構造
を示す断面図。
FIG. 1 is a sectional view showing the structure of an embodiment of a septum electromagnet according to the present invention.

【図2】従来のセプタム電磁石の構造を示す断面図。FIG. 2 is a sectional view showing the structure of a conventional septum electromagnet.

【図3】本発明によるセプタム電磁石を用いた荷電粒子
ビーム入射/出射装置の一実施例を示す平面図。
FIG. 3 is a plan view showing an embodiment of a charged particle beam entrance / exit device using a septum electromagnet according to the present invention.

【図4】入射点/出射点近傍の説明図。FIG. 4 is an explanatory diagram of the vicinity of an incident point / an emission point.

【図5】セプタム電磁石を荷電粒子ビームの入射装置と
した円形加速器の説明図。
FIG. 5 is an explanatory diagram of a circular accelerator in which a septum magnet is used as a charged particle beam injector.

【図6】セプタム電磁石を荷電粒子ビームの出射装置と
した円形加速器の説明図。
FIG. 6 is an explanatory view of a circular accelerator in which a septum electromagnet is used as a charged particle beam emitting device.

【符号の説明】[Explanation of symbols]

3…セプタムコイル、5…ビーム出口/入口付近のセプ
タムコイル、10…入射/出射ビーム軌道、11…電磁
石開口部の中心線、14…セプタム電磁石。
3 ... Septum coil, 5 ... Septum coil near beam exit / entrance, 10 ... Incoming / exiting beam trajectories, 11 ... Center line of electromagnet opening, 14 ... Septum electromagnet.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】磁性体の鉄心部と、その開口部に少なくと
も1ターンの励磁用コイルとを有し、前記開口部を通過
する荷電粒子ビームを磁場で偏向するセプタム電磁石に
おいて、前記励磁用コイルの厚みを前記開口部の出入口
付近で、少なくとも1箇所局所的に薄くしたことを特徴
とするセプタム電磁石。
1. A septum electromagnet having an iron core portion of a magnetic body and an exciting coil of at least one turn in its opening, wherein a charged particle beam passing through the opening is deflected by a magnetic field. Is locally thinned at least at one location near the entrance of the opening.
【請求項2】磁性体の鉄心部と、その開口部に少なくと
も1ターンの励磁用コイルとを有し、前記開口部を通過
する荷電粒子ビームを磁場で偏向するセプタム電磁石に
おいて、前記開口部の内部にその高さと同じ幅の励磁用
コイルを設置するために、前記開口部の磁極面に切欠き
を設けたことを特徴とするセプタム電磁石。
2. A septum electromagnet having an iron core of a magnetic material and an exciting coil of at least one turn in its opening, wherein a charged particle beam passing through said opening is deflected by a magnetic field. A septum electromagnet, characterized in that a notch is provided in a magnetic pole surface of the opening in order to install an exciting coil having the same width as the height therein.
【請求項3】磁性体鉄心部の開口部を通過する荷電粒子
ビームを、磁場で偏向するセプタム電磁石と、そのセプ
タム電磁石を内部に設置した真空容器より成る荷電粒子
ビーム偏向装置において、前記荷電粒子ビームが水平面
内で前記開口部の中心線に対して斜めに通過するよう
に、前記セプタム電磁石を前記真空容器に設置したこと
を特徴とする荷電粒子ビーム偏向装置。
3. A charged particle beam deflector comprising a septum electromagnet for deflecting a charged particle beam passing through an opening of a magnetic iron core part by a magnetic field, and a vacuum container in which the septum electromagnet is installed. The charged particle beam deflection apparatus, wherein the septum electromagnet is installed in the vacuum container so that the beam passes obliquely with respect to the center line of the opening in a horizontal plane.
【請求項4】請求項1,2または3に記載の前記セプタ
ム電磁石を用いた前記荷電粒子ビームの偏向装置を、前
記荷電粒子ビームの入射装置あるいは出射装置とした円
形加速器。
4. A circular accelerator, wherein the charged particle beam deflecting device using the septum electromagnet according to claim 1, 2, or 3 is used as the charged particle beam incident device or emission device.
JP5776692A 1992-03-16 1992-03-16 Septum electromagnet Pending JPH05258897A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5776692A JPH05258897A (en) 1992-03-16 1992-03-16 Septum electromagnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5776692A JPH05258897A (en) 1992-03-16 1992-03-16 Septum electromagnet

Publications (1)

Publication Number Publication Date
JPH05258897A true JPH05258897A (en) 1993-10-08

Family

ID=13065001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5776692A Pending JPH05258897A (en) 1992-03-16 1992-03-16 Septum electromagnet

Country Status (1)

Country Link
JP (1) JPH05258897A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2004077457A1 (en) * 2003-02-27 2006-06-08 株式会社Neomax Permanent magnet and magnetic field generator for particle beam accelerator
JP5112571B1 (en) * 2012-02-13 2013-01-09 三菱電機株式会社 Septum electromagnet and particle beam therapy system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2004077457A1 (en) * 2003-02-27 2006-06-08 株式会社Neomax Permanent magnet and magnetic field generator for particle beam accelerator
JP4697961B2 (en) * 2003-02-27 2011-06-08 日立金属株式会社 Permanent magnet and magnetic field generator for particle beam accelerator
JP5112571B1 (en) * 2012-02-13 2013-01-09 三菱電機株式会社 Septum electromagnet and particle beam therapy system

Similar Documents

Publication Publication Date Title
JP3100634B2 (en) Small isoclonal cyclotron
US5117212A (en) Electromagnet for charged-particle apparatus
JP5914130B2 (en) Synchrotron and particle beam therapy system
JP4240109B2 (en) Ion implanter
JP2008097975A (en) Ion implantation device
US4200844A (en) Racetrack microtron beam extraction system
JP2005235697A (en) Charged particle beam transport apparatus and linear accelerator system provided with the same
TWI625144B (en) Heavy particle beam therapy system
JPH05258897A (en) Septum electromagnet
GB1583400A (en) Racetrack microtron beam extraction system
JP2020064753A (en) Accelerator, and accelerator system and particle beam medical treatment system using the same
CN116724670A (en) Superconducting coil device, superconducting accelerator, and particle beam therapy system
JPH07191169A (en) Ion deflecting magnet and method for ion deflecting
US10850132B2 (en) Particle therapy system
JP4296001B2 (en) Circular accelerator
US4314218A (en) Magnetic system for rearranging or regrouping charged particles within a pulsed beam
JP2813386B2 (en) Electromagnet of charged particle device
US4737726A (en) Charged particle beam storage and circulation apparatus
Shiltsev et al. Electron beam distortions in beam-beam compensation setup
US20230209696A1 (en) Particle accelerator and particle beam therapy apparatus
WO2020184232A1 (en) Particle accelerator, particle beam radiation therapy device, and method for emitting charged particle beam
US20230268096A1 (en) Systems, devices, and methods for multi-directional dipole magnets and compact beam systems
US20240008165A1 (en) Electromagnet and charged particle accelerator
JPH07123080B2 (en) Charged particle accelerator / accumulator
JPH0448600A (en) Synchrotron radiation apparatus