WO2020184232A1 - Particle accelerator, particle beam radiation therapy device, and method for emitting charged particle beam - Google Patents
Particle accelerator, particle beam radiation therapy device, and method for emitting charged particle beam Download PDFInfo
- Publication number
- WO2020184232A1 WO2020184232A1 PCT/JP2020/008484 JP2020008484W WO2020184232A1 WO 2020184232 A1 WO2020184232 A1 WO 2020184232A1 JP 2020008484 W JP2020008484 W JP 2020008484W WO 2020184232 A1 WO2020184232 A1 WO 2020184232A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- deflector
- stage
- particle beam
- charged particle
- emission
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/10—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H13/00—Magnetic resonance accelerators; Cyclotrons
- H05H13/04—Synchrotrons
Definitions
- the present invention relates to a particle accelerator for accelerating and emitting a charged particle beam, a particle beam therapy device, and a method for emitting a charged particle beam.
- the synchrotron which is one of the particle accelerators, gives energy to the beam in the high-frequency acceleration cavity and raises the generated magnetic field of the electromagnet according to the change in beam energy, so that the beam can be applied to various energies while maintaining the orbital radius of the beam. It is a circular accelerator that can accelerate and emit energy.
- the miniaturization of the synchrotron contributes to the reduction of manufacturing cost, running cost, building cost, and the like. Therefore, miniaturization of the synchrotron is strongly demanded from the field of particle beam therapy using a high-energy charged particle beam.
- a synchrotron type accelerator and a medical device using the synchrotron have been proposed as those in which the synchrotron is used (see Patent Document 1).
- This document describes that a charged particle beam is deflected by an emission electrostatic deflector 101, and further deflected by an emission deflection electromagnet 102. It is said that the accelerator 100 can be miniaturized because the electrostatic deflector 101 and the exiting deflection electromagnet 102 do not have to be installed in the same straight line portion.
- Patent Document 2 a synchrotron and a particle beam therapy device using the synchrotron have also been proposed (see Patent Document 2).
- a plurality of deflection electromagnets and one divergent quadrupole electromagnet are arranged between the first exit deflector and the second exit deflector, and the upstream side of the first exit deflector.
- a configuration is shown in which convergent quadrupole electromagnets are arranged on the downstream side of the second exit deflector, respectively, and the quadrupole electromagnets between the exit deflectors are reduced while being deflected by the first exit deflector. It is stated that the action of the emitted beam being kicked back to the orbiting beam side by the quadrupole electromagnet can be eliminated.
- the orbiting beam and the emission beam can be sufficiently separated, and the beam can be taken out of the synchrotron with less loss.
- the curvature and deflection angle of the deflection electromagnets constituting the curved portions become large, resulting in deflection.
- the electromagnet acts as a strong convergence factor. Therefore, the emission beam bent away from the orbiting beam by the first emission device is returned in the orbital beam direction by the convergence element, and the orbiting beam and the emission beam at the position of the second emission device There was a problem that large separation was hindered.
- the first emission deflection is performed with a second emission deflector 208 having a larger deflection angle, for example, a septum electromagnet.
- a synchrotron using a configuration in which the emission beam is extracted by the third emission deflector 209 after deflecting in the opposite direction to the vessel 207 and crossing the circumferential beam, and a particle beam therapy device using the synchrotron have also been proposed ( See Patent Document 3). It is stated that this makes it possible to secure the necessary separation in the third exit deflector 209, and to reduce the size of the exit device and the synchrotron.
- a divergence quadrupole electromagnet is arranged between the first exit deflector 207 and the second exit deflector 208, or the first exit deflector 207 If the second exit deflector 208 is not arranged apart from each other, the separation of the circumferential beam and the exit beam in the second exit deflector 208 cannot be sufficiently secured, and the long straight portion must be lengthened by that amount. .. Therefore, there is a problem that the miniaturization of the synchrotron is limited.
- components such as ducts and flanges for keeping the inside of the synchrotron in a vacuum state are required between the devices, and the first exit deflector 207 and the second exit deflector 208 are arranged close to each other.
- the first exit deflector 207 and the second exit deflector 208 are arranged close to each other.
- there are restrictions such as the need for components such as vacuum ducts and vacuum flanges between devices.
- the present invention is a particle accelerator having a plurality of deflecting electromagnets that deflect a charged particle beam in a direction along an orbital orbit and orbiting and accelerating the charged particle beam to emit the charged particle beam in a direction away from the orbit.
- a front-stage ejecting deflector that deflects the charged particle beam
- a middle-stage emitting deflector that deflects the charged particle beam deflected in the separating direction toward the orbit
- a charged particle beam deflected in the approaching direction is a particle accelerator having a plurality of deflecting electromagnets that deflect a charged particle beam in a direction along an orbital orbit and orbiting and accelerating the charged particle beam to emit the charged particle beam in a direction away from the orbit.
- a rear-stage emission deflector for further deflecting is provided, and at least one deflection electromagnet is provided between the middle-stage emission deflector and the rear-stage emission deflector, and the front-stage emission deflector and the middle-stage emission deflector are contained in one vacuum vessel. It is characterized by a particle accelerator, a particle beam therapy device, and a method of emitting a charged particle beam housed in.
- the plan view which shows the schematic structure of the particle beam therapy apparatus. Enlarged plan view of the front-stage emission deflector and the middle-stage emission deflector. Enlarged plan view from the front-stage emission deflector to the rear-stage emission deflector. An enlarged plan view of the periphery of the middle-stage emission deflector showing the blocking structure of the emission beam.
- FIG. 1 is a plan view showing a schematic configuration of the particle beam therapy device 1.
- the particle beam therapy device 1 emits from an injector 10 that incidents a charged particle beam, a particle accelerator 20 (synchrotron) that accelerates a charged particle beam incident from the incidenter 10 through an incident beam line 11, and a particle accelerator 20.
- a beam monitor 30a that monitors a charged particle beam on the emission beam line 30, an irradiation device 31 for irradiating a target site of a patient in a treatment room with a charged particle beam emitted from the emission beam line 30, an accelerator 10, and an injector 10.
- It has an accelerator control device 40 that controls the particle accelerator 20 and an irradiation control device 41 that controls the irradiation device 31.
- the injector 10 is configured by arranging an ion source (not shown) and a linear accelerator (not shown) in this order.
- the ion source in the injector 10 generates ions by colliding high-speed electrons with a neutral gas, and accelerates the ions to a state in which the particle accelerator 20 can accelerate them with a linear accelerator.
- Examples of ions and particles to be ionized include hydrogen, helium, carbon, nitrogen, oxygen, neon, silicon, and argon.
- the linear accelerator in the injector 10 accelerates the charged particles supplied from the ion source to a predetermined energy and supplies the charged particles to the particle accelerator 20.
- the linear accelerator for example, an RFQ linac or a drift tube linac that accelerates and focuses charged particles by a high-frequency quadrupole electric field is used.
- the linear accelerator accelerates the charged particles to, for example, an energy of several MeV per nucleon.
- the injector 10 emits a charged particle beam that has been taken out and accelerated in this way, and is incident on the particle accelerator 20 through the incident beam line 11.
- the particle accelerator 20 includes an incident device 23 for incident a charged particle beam, which is accelerated by the injector 10 and then transported by the incident beam line 11, into the particle accelerator 20, and a charged particle electromagnet orbiting in the particle accelerator 20.
- a high-frequency accelerator cavity 24 that accelerates the particle to high energy
- a quadrupole electromagnet 22 that converges the charged particle beam
- a deflecting electromagnet 21 that deflects the charged particle beam in the orbital direction (direction along the orbital orbit), and correction of chromatic aberration.
- the accelerator control device 40 provided in the particle accelerator 20. That is, under the control of the accelerator control device 40, the particle accelerator 20 deflects the charged particle beam received by the incident device 23 by the deflecting electromagnet 21 and converges it by the quadrupole electromagnet 22 to orbit the orbit.
- the high-frequency acceleration cavity 24 accelerates to high energy
- the quadrupole electromagnet 25 corrects chromatic aberration and slow extraction by resonance
- the high-frequency electric field device 26 excites the orbiting charged particle beam for slow extraction, resulting in a pre-stage emission deflector. 27, the emission is performed by the middle-stage exit deflector 28 and the rear-stage exit deflector 29.
- the accelerator control device 40 and the irradiation control device 41 are provided with emission prevention function units 40a and 41a, respectively.
- the emission prevention function units 40a and 41a have a function of issuing a command to lower the generated magnetic field to the middle stage emission deflector 28 to block the charged particle beam and immediately prevent the emission.
- the accelerator control device 40 and the irradiation control device 41 are controlled and operated by a program stored in the storage medium.
- the high-frequency acceleration cavity 24 accelerates a charged particle beam that orbits the orbit of the particle accelerator 20 by an electric field generated between the acceleration gaps (not shown) provided inside.
- the charged particle beam passing between the acceleration gaps (from right to left shown in FIG. 1) is accelerated by applying a high-frequency electric field in a phase in which a positive energy gain can be obtained, and the energy increases with each orbit. I will do it.
- the phase of the electric field generated between the acceleration gaps is reversed to slow down the charged particle beam and suppress the generation of radiation.
- the front-stage emission deflector 27 is composed of an electrostatic deflector.
- the middle-stage emission deflector 28 and the rear-stage emission deflector 29 are composed of a septum electromagnet.
- the charged particle beam is accelerated to a predetermined energy, for example, an energy of several hundred MeV per nucleon.
- the deflection electromagnet 21, the quadrupole electromagnet 22, the hexapole electromagnet 25, and the high-frequency electric field device 26 respond to the energy of the charged particle beam accelerated or decelerated in synchronization with the acceleration or deceleration in the high-frequency acceleration cavity 24.
- the magnetic field strength is controlled by the accelerator control device 40 so that the charged particle beam draws an orbit along the orbital orbit of the particle accelerator 20.
- the charged particle beam accelerated to a predetermined energy on the orbit is deflected by the front-stage exit deflector 27, the middle-stage exit deflector 28, and the rear-stage exit deflector 29, and is emitted from the particle accelerator 20 as an emission beam. It is taken out to the exit beam line 30.
- FIG. 2 is an enlarged plan view showing a schematic configuration around the front-stage exit deflector 27 and the middle-stage exit deflector 28.
- FIG. 2 schematically shows an orbital beam orbit 50, which is an orbital orbit of the orbiting charged particle beam 6, and an emitted beam orbit 51 of the emitted beam.
- the front-stage exit deflector 27 and the middle-stage exit deflector 28 are provided in the same (one) vacuum container 27c.
- the vacuum vessel 27c is provided with vacuum flanges 28a at the front and rear ends in the orbital direction of the charged particle beam.
- the vacuum flange 28a on the upstream side is connected to the vacuum flange (not shown) of the hexapole electromagnet 25 (see FIG. 1).
- the vacuum flange 28a on the downstream side (the emission side of the charged particle beam) is connected to the vacuum flange 21a of the deflection electromagnet 21.
- the front-stage emission deflector 27 has a structure in which a thin septum electrode 27a and a high-voltage electrode 27b are installed in a vacuum vessel 27c.
- the thin septum electrode 27a is arranged around the inside of the orbiting charged particle beam 6 with reference to the orbiting direction of the orbiting charged particle beam 6 along the orbital direction of the orbiting charged particle beam 6. It is formed and arranged in a thin plate shape having a curved shape in a direction away from the orbiting charged particle beam 6 as it advances in the traveling direction (from the incident side to the exit side) of 6.
- the high-pressure electrode 27b is formed in a curved plate shape having approximately the same size and area as the thin septum electrode 27a and thicker than the septum electrode 27a, substantially parallel to the thin septum electrode 27a, and orbiting a charged particle beam than the thin septum electrode 27a. It is located on the side far from 6.
- the high-voltage electrode 27b is a wide surface of the septum electrode 27a and is arranged so as to face the surface on the side far from the orbiting charged particle beam 6.
- the shape of the high-voltage electrode 27b may be, for example, a plate having a surface of the high-voltage electrode 27b facing the septum electrode 27a having substantially the same area and size as the septum electrode 27a and thicker than the septum electrode 27a.
- the high-voltage electrode 27b is a septum electrode so that the separation distance (electrode gap width 91) between the high-voltage electrode 27b and the septum electrode 27a is substantially constant, that is, the high-voltage electrode 27b and the septum electrode 27a are substantially parallel to each other. It is formed in a curved shape along 27a.
- the electrode gap width 91 between the thin septum electrode 27a and the high-voltage electrode 27b is configured to be 10 mm or more and less than 20 mm.
- a high voltage is applied to the pre-stage exit deflector 27 to generate an electrostatic field in the electrode gap.
- the emitted beam from the pre-stage exit deflector 27 receives a force due to an electrostatic field in the electrode gap and is bent in a direction away from the orbiting charged particle beam 6. That is, when the emitted beam passes through the pre-stage exit deflector 27, the trajectory of the emitted beam (exit beam trajectory 51) is bent in a direction away from the orbiting charged particle beam 6 by receiving a force due to an electrostatic field in the electrode gap.
- a distance similar to the distance between the orbital beam orbit 50 and the pre-stage exit deflector 27 is separated from the orbital beam orbit 50 from the pre-stage exit deflector 27.
- a middle-stage exit deflector 28 is provided with a gap of 94.
- An electrostatic shield 27d is provided between the front-stage emission deflector 27 and the middle-stage emission deflector 28 so that the plane intersects the emission beam trajectory 51 of the passing charged particle beam.
- the gap 92 between the front-stage exit deflector 27 and the electrostatic shield 27d can be 10 mm to 30 mm, and in this embodiment, it is configured to be about 20 mm.
- the gap 93 between the electrostatic shield 27d and the middle-stage exit deflector 28 can be 10 mm to 40 mm, preferably 20 mm to 30 mm, and in this embodiment, it is set to about 30 mm.
- the front-stage emission deflector 27 and the middle-stage emission deflector 28 are arranged so that the distance between them is larger than the electrode gap width 91 between the high-pressure electrode 27b of the front-stage emission deflector 27 and the thin septum electrode 27a. ..
- the front-stage exit deflector 27 and the middle-stage exit deflector 28 are arranged so that the distance between them is, for example, 150 mm (15 cm) or less.
- the gap 94 which is the distance between the front-stage exit deflector 27 and the middle-stage exit deflector 28, can be 150 mm or less, more preferably 100 mm or less, and in this embodiment, 50 mm. It is composed of degrees.
- the lower limit of the distance (gap 94) between the front-stage emission deflector 27 and the middle-stage emission deflector 28 is not particularly limited, but may be, for example, 10 mm or more, preferably 20 mm or more.
- the middle-stage emission deflector 28 is a septum electromagnet, and has a magnetic pole length 95 (length in the direction parallel to the emission beam trajectory 51) of about 200 mm. That is, the middle-stage exit deflector 28 is installed as close as possible to the front-stage exit deflector 27 and in a vacuum environment.
- the middle-stage emission deflector 28 At the position of the middle-stage emission deflector 28, there is only a substantially plate-shaped magnetic shield (not shown) that separates the septum coil 28c and both beams between the orbiting charged particle beam 6 and the emission beam, and a vacuum duct is provided around the emission beam. Therefore, it is possible to reduce the magnetic pole gap of the iron core, and to reduce the thickness of the septum coil 28c while maintaining the current density and the generated magnetic field strength. Therefore, even if the separation distance between the orbiting charged particle beam 6 and the emission beam is very small at the position of the middle-stage emission deflector 28, the aperture of the middle-stage emission deflector 28 can be passed without loss of the emission beam.
- the amount of excitation required to deflect the charged particle beam of the emission beam orbit 51 in the required direction as much as necessary can be small, and the middle-stage emission deflector 28 and the vacuum container 27c accommodating the middle stage exit deflector 28 can be miniaturized.
- the middle-stage emission deflector 28 bends the emission beam in the direction opposite to that of the front-stage emission deflector 27.
- the middle-stage exit deflector 28 is arranged farther from the high-voltage electrode 27b than the electrode gap width of the front-stage exit deflector 27 in order to avoid discharge of the high-voltage electrode 27b. That is, the middle-stage exit deflector 28 is arranged so that the distance between the middle-stage exit deflector 28 and the high-voltage electrode 27b is larger than the electrode gap width 91 of the front-stage exit deflector 27.
- the front-stage exit deflector 27 and the middle-stage exit deflector 28 are arranged close to each other while avoiding the discharge of the high-voltage electrode 27b more stably. It is possible.
- the septum coil 28c of the middle-stage exit deflector 28 may be a plate-shaped conductor.
- FIG. 3 is an enlarged plan view showing the emission beam trajectory 51 of the emission beam by the front-stage emission deflector 27, the middle-stage emission deflector 28, and the rear-stage emission deflector 29, and the orbital beam trajectory 50 of the orbiting charged particle beam 6.
- a deflection electromagnet 21 and a quadrupole electromagnet 22 serving as convergence elements are arranged between the middle-stage exit deflector 28 and the rear-stage exit deflector 29.
- the exit beam orbit 51 bent in the direction away from the orbit 50 by the front-stage exit deflector 27 and then approached (intersect) by the orbit 50 in the middle-stage exit deflector 28 is the downstream deflection electromagnet 21. It enters, passes through the inside of the deflection electromagnet 21 so as to intersect the circumferential beam trajectory 50, and reaches the side opposite to the displacement of the emission beam trajectory 51 at the exit of the front-stage emission deflector 27.
- the deflection electromagnet 21 may be a function-coupled electromagnet, or may have an edge angle at the end of the electromagnet. Further, at least one or more deflection electromagnets 21 are provided between the middle-stage emission deflector 28 and the rear-stage emission deflector 29. The deflection electromagnet 21 provided with one or more of them is configured so that the total deflection angle is 60 degrees or more and 90 degrees or less.
- the deflection electromagnet 21 acts as a strong converging element. Therefore, the emitted beam can be more effectively emitted at a short distance from the circumferential beam.
- the exit beam orbit 51 that has passed through the deflection electromagnet 21 passes through the quadrupole electromagnet 22 further downstream, and is taken out of the particle accelerator 20 by the post-stage emission deflector 29 at a position sufficiently separated from the orbital beam orbit 50.
- the post-stage emission deflector 29 may be a Lambertson type electromagnet.
- FIG. 4 is an enlarged plan view of the periphery of the middle-stage emission deflector 28 for explaining the blocking structure of the emission beam.
- a beam monitor 52a is arranged downstream of the middle-stage exit deflector 28 at a position outside the orbital beam orbit 50 from the exit beam orbit 51 and through which a charged particle beam passes when the generated magnetic field of the middle-stage exit deflector 28 is lowered. Further downstream, the beam dump 52b is arranged at a position where the charged particle beam reaches. As a result, the charged particle beam can be blocked, and the position and size of the blocked charged particle beam can be monitored. Since the beam monitor 52a and the beam dump 52b are arranged on the blocking beam trajectory 52 outside the exit beam trajectory 51, the charged particle beam passing through the orbital beam trajectory 50 is not obstructed.
- the accelerator control device 40 or the irradiation control device 41 When the accelerator control device 40 or the irradiation control device 41 detects an abnormality in the device or beam, the accelerator control device 40 or the irradiation control device 41 issues a command to lower the generated magnetic field of the middle-stage exit deflector 28. As a result, the emission beam trajectory 51 can be quickly changed, and the beam can be prevented from being emitted from the particle accelerator 20. Therefore, when it is desired to stop the irradiation of the charged particle beam, such as when some abnormality occurs, the emission can be stopped immediately with a simple operation.
- the beam monitor 52a and the beam dump 52b in front of the blocking beam trajectory 52, it is possible to acquire information such as the intensity and size of the blocked beam.
- the generated magnetic field of the middle-stage emission deflector 28 is changed inside the particle accelerator 20 without using a configuration in which the emission beam is taken out from the particle accelerator 20 and measured by the beam monitor 30a in the emission beam line 30.
- the beam monitor 52a By measuring the blocking beam with the beam monitor 52a, it is possible to obtain information equivalent to measuring the emitted beam.
- the soundness of the emitted beam can be simulated and confirmed by the particle accelerator 20 alone with the blocking beam. Since the number of constituent devices of the emission beam line 30 can be reduced, the emission beam line 30 can be shortened and the particle beam therapy device 1 can be downsized.
- the particle beam therapy device 1 arranges the front-stage emission deflector 27 and the middle-stage emission deflector 28 close to each other inside the same vacuum vessel 27c, so that the long linear portion of the particle accelerator 20 (synchrotron) Can be shortened and the entire particle accelerator 20 can be miniaturized.
- the front-stage exit deflector 27 and the middle-stage exit deflector 28 in the same vacuum container 27c, a structure in which a vacuum duct or a vacuum flange is not sandwiched between devices (that is, for example, a vacuum container accommodating the front-stage exit deflector 27 and the middle stage). It is possible to realize a structure in which a vacuum container accommodating the exit deflector 28 does not need to be connected with a vacuum flange or the like). Further, since the vacuum duct between the orbital beam and the emitted beam is not required, the separation distance between the orbiting beam and the emitted beam required at the position of the middle-stage exit deflector 28 can be made very small. As a result, the front-stage exit deflector 27 and the middle-stage exit deflector 28 can be arranged close to each other, and the synchrotron can be downsized by shortening the long straight line portion more than before.
- miniaturization can be realized by intentionally placing the middle-stage exit deflector 28, which is not normally desired to be installed in the vacuum container 27c, in the vacuum container 27c. That is, when an electromagnet is installed in the vacuum vessel 27c or the like, the degree of vacuum in the vacuum vessel 27c is lowered by the emitted gas, and when the degree of vacuum is lowered, the charged particle beam causes charge conversion or multiple scattering with the emitted gas, and the particle accelerator 20 It becomes difficult to circulate for a long time inside.
- the front-stage exit deflector 27 and the middle-stage exit deflector 28 are installed in the vacuum vessel 27c, and the vacuum pump 4 is set to 2 so that the released gas generated by the electromagnet can be discharged. Miniaturization can be realized by connecting the pumps to secure the degree of vacuum.
- the emission beam bent by the middle-stage exit deflector 28 enters the downstream deflection electromagnet 21 and passes near the center of the orbit so as to intersect the orbital beam, which is opposite to the displacement of the emission beam at the exit of the front-stage exit deflector 27.
- the emitted beam passes near the center of the orbit around the inside of the deflecting electromagnet 21, the convergence force received by the emitted beam is weakened even if there is a converging element between them, and the separation from the orbiting beam is not hindered.
- the emission beam can be taken out from the particle accelerator 20 without loss by the rear-stage emission deflector 29 arranged at a position where the emission beam and the orbiting beam can be sufficiently separated.
- the front-stage exit deflector 27 and the middle-stage exit deflector 28 are arranged close to each other, and the particle accelerator 20 can be downsized by shortening the long straight line portion more than before.
- the electrostatic shield 27d between the front-stage exit deflector 27 and the middle-stage exit deflector 28 when the distance between the front-stage exit deflector 27 and the middle-stage exit deflector 28 is shortened, the electrode of the front-stage exit deflector 27 discharges. It is possible to prevent such a situation. Further, since the middle-stage exit deflector 28 can be brought closer to the front-stage exit deflector 27, the electromagnetic force required by the middle-stage exit deflector 28 can be reduced, whereby the coil of the middle-stage exit deflector 28 can be made thinner, thereby further. The middle-stage emission deflector 28 can be brought closer to the electrostatic shield 27d. As a result, the force of the middle-stage emission deflector 28 to bend the emission beam trajectory 51 back is small.
- the charged particle beam can be blocked by lowering the generated magnetic field of the middle-stage exit deflector 28, the charged particle beam can be immediately blocked in an emergency so that the target site or the like is not irradiated.
- the generated magnetic field of the middle-stage exiting deflector 28 since it can be blocked by lowering (including stopping) the generated magnetic field of the middle-stage exiting deflector 28 instead of raising it, there is a problem even when something is wrong (for example, when the generated magnetic field cannot be raised). It is possible to perform high-speed blocking of charged particle beams.
- the circumference of the synchrotron is about half that of the conventional synchrotron for heavy ion beam therapy.
- the synchrotron device area can be reduced to about 1/4.
- the present invention is not limited to the above-described embodiment, and may take various forms.
- one deflection electromagnet 21 and one quadrupole electromagnet 22 are arranged between the middle-stage exit deflector 28 and the rear-stage exit deflector 29, but two or more deflection electromagnets 21 and quadrupole electromagnets 22 are used. They may be arranged in combination. In this case as well, the same effect can be obtained.
- the front-stage exit deflector 27 and the middle-stage exit deflector 28 are arranged inside the particle accelerator 20, and the rear-stage exit deflector 29 is arranged outside the particle accelerator 20, but their internal and external arrangements are reversed from each other. You may. In this case as well, the same effect as that of the above-described embodiment can be obtained.
- This invention can be used in industries that use particle accelerators, especially synchrotrons.
- Irradiation device 40 ... Accelerator control device 40a, 41a ... Emission prevention function unit 41 ... Irradiation control device 50 ... Circular beam trajectory 51 ... Emission beam trajectory 52 ... Blocking beam trajectory 52a ... Beam monitor 52b ... Beam dump 91 ... Electrode gap width 92, 93, 94 ... Gap 95 ... Magnetic pole length
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Pathology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Particle Accelerators (AREA)
- Radiation-Therapy Devices (AREA)
Abstract
Provided is a small particle accelerator. A particle accelerator 20 comprises deflecting electromagnets 21 for deflecting a charged particle beam in a direction along an orbiting trajectory, and causes the charged particle beam to orbit and be accelerated and emitted. The particle accelerator 20 is provided with: a first-stage emission deflector 27 which causes the charged particle beam to be deflected in a separating direction away from the trajectory of the orbit; a middle-stage emission deflector 28 which causes the charged particle beam that has been deflected in the separating direction to be deflected in an approaching direction toward the trajectory of the orbit; and a later-stage emission deflector 29 which causes the charged particle beam that has been deflected in the approaching direction to be further deflected. At least one deflecting electromagnet 21 is provided between the middle-stage emission deflector 28 and the later-stage emission deflector 29. The first-stage emission deflector 27 and the middle-stage emission deflector 28 are accommodated in a single vacuum container 27c.
Description
この発明は、荷電粒子ビームを加速し出射するような粒子加速器、粒子線治療装置、および荷電粒子ビーム出射方法に関する。
The present invention relates to a particle accelerator for accelerating and emitting a charged particle beam, a particle beam therapy device, and a method for emitting a charged particle beam.
従来、科学、医療、産業などの様々な分野において、粒子加速器は、高エネルギーの荷電粒子ビームを生成する目的で広く使われている。粒子加速器の1つであるシンクロトロンは、高周波加速空洞でビームにエネルギーを与えながら、ビームエネルギーの変化に合わせて電磁石の発生磁場を高めることで、ビームの軌道半径を保ちつつ様々なエネルギーにビームを加速、出射することができる円形加速器である。シンクロトロンの小型化は、製作コストやランニングコスト、建屋コストの低減などに寄与する。このため、高エネルギーの荷電粒子ビームを用いる粒子線治療分野などから、シンクロトロンの小型化は強く求められている。
Conventionally, particle accelerators have been widely used for the purpose of generating high-energy charged particle beams in various fields such as science, medicine, and industry. The synchrotron, which is one of the particle accelerators, gives energy to the beam in the high-frequency acceleration cavity and raises the generated magnetic field of the electromagnet according to the change in beam energy, so that the beam can be applied to various energies while maintaining the orbital radius of the beam. It is a circular accelerator that can accelerate and emit energy. The miniaturization of the synchrotron contributes to the reduction of manufacturing cost, running cost, building cost, and the like. Therefore, miniaturization of the synchrotron is strongly demanded from the field of particle beam therapy using a high-energy charged particle beam.
シンクロトロンが用いられたものとして、シンクロトロン型加速器及びそれを用いた医療装置が提案されている(特許文献1参照)。この文献には、出射用の静電偏向器101により荷電粒子ビームを偏向し、出射用偏向電磁石102によりさらに偏向して出射することが記載されている。そして、静電偏向器101および出射用偏向電磁石102を同じ直線部に設置しなくてよいので、加速器100を小型化できるとされている。
A synchrotron type accelerator and a medical device using the synchrotron have been proposed as those in which the synchrotron is used (see Patent Document 1). This document describes that a charged particle beam is deflected by an emission electrostatic deflector 101, and further deflected by an emission deflection electromagnet 102. It is said that the accelerator 100 can be miniaturized because the electrostatic deflector 101 and the exiting deflection electromagnet 102 do not have to be installed in the same straight line portion.
また、同様に、シンクロトロンおよびそれを用いた粒子線治療装置も提案されている(特許文献2参照)。この文献には、第1出射用偏向器と第2出射用偏向器の間に複数台の偏向電磁石と偏向電磁石間に1台の発散四極電磁石を配置し、第1出射用偏向器の上流側と第2出射用偏向器の下流側にそれぞれ収束四極電磁石を配置する構成が示されており、出射用偏向器間の四極電磁石の台数を削減しつつ、第1出射用偏向器によって偏向された出射ビームが四極電磁石によって周回ビーム側に蹴り戻される作用をなくすことができると記載されている。
Similarly, a synchrotron and a particle beam therapy device using the synchrotron have also been proposed (see Patent Document 2). In this document, a plurality of deflection electromagnets and one divergent quadrupole electromagnet are arranged between the first exit deflector and the second exit deflector, and the upstream side of the first exit deflector. A configuration is shown in which convergent quadrupole electromagnets are arranged on the downstream side of the second exit deflector, respectively, and the quadrupole electromagnets between the exit deflectors are reduced while being deflected by the first exit deflector. It is stated that the action of the emitted beam being kicked back to the orbiting beam side by the quadrupole electromagnet can be eliminated.
このように出射用機器を多段構成にするのは、次の2点が理由に挙げられる。[1]静電場によってビームを曲げる第1の出射用機器だけでは、放電の問題による電界強度制限があるために高エネルギーのビームを大きく曲げることが難しい。[2]電磁石である第2の出射用機器では、真空ダクトやセプタムコイルにビームが衝突してロスしないように周回ビームと出射ビームが大きく分離されている必要がある。
The following two reasons are cited as the reason why the output device is configured in multiple stages in this way. [1] Bending the beam by an electrostatic field It is difficult to bend a high-energy beam significantly with only the first emitting device because of the limitation of the electric field strength due to the problem of discharge. [2] In the second emission device, which is an electromagnet, the circumferential beam and the emission beam must be largely separated so that the beam does not collide with the vacuum duct or the septum coil and is lost.
つまり、出射用機器を多段構成にすることで、周回ビームと出射ビームを十分に分離でき、ロスを少なくシンクロトロンの外にビームを取り出すことができる。
In other words, by making the emission device a multi-stage configuration, the orbiting beam and the emission beam can be sufficiently separated, and the beam can be taken out of the synchrotron with less loss.
さらに小型なシンクロトロンとするため、従来、前述の多段構成の出射用機器を用いてシンクロトロンの「曲線部」を短縮するための技術が提案されていた。すなわち、小型化のためには出射用機器を多段構成にしても電磁石等の構成機器を密に並べる必要があるため、第1と第2の出射用機器の間に偏向電磁石等の収束要素が入ってしまい、周回ビームと出射ビームの分離がうまく行えない。
In order to make the synchrotron even smaller, a technique for shortening the "curved part" of the synchrotron by using the above-mentioned multi-stage emission device has been proposed. That is, in order to reduce the size, it is necessary to closely arrange the constituent devices such as electromagnets even if the emitting devices are configured in multiple stages, so that a converging element such as a deflection electromagnet is provided between the first and second emitting devices. It enters and the orbital beam and the outgoing beam cannot be separated well.
具体的には、シンクロトロンの小型化には、曲線部の数を減らし、曲線部を短くする必要があるが、その場合、曲線部を構成する偏向電磁石の曲率と偏向角が大きくなり、偏向電磁石が強い収束要素として働く。そのため、第1の出射用機器で周回ビームから離れるように曲げられた出射ビームがその収束要素によって周回ビーム方向に戻されてしまい、第2の出射用機器の位置での周回ビームと出射ビームの大きな分離が阻害されるという問題があった。
Specifically, in order to reduce the size of the synchrotron, it is necessary to reduce the number of curved portions and shorten the curved portions. In that case, the curvature and deflection angle of the deflection electromagnets constituting the curved portions become large, resulting in deflection. The electromagnet acts as a strong convergence factor. Therefore, the emission beam bent away from the orbiting beam by the first emission device is returned in the orbital beam direction by the convergence element, and the orbiting beam and the emission beam at the position of the second emission device There was a problem that large separation was hindered.
この問題に対し、第1出射用偏向器207で周回ビームと出射ビームのセパレーションを取った後、より偏向角の大きな、例えばセプタム電磁石のような第2出射用偏向器208で第1出射用偏向器207とは逆方向に偏向し、周回ビームと交差させた後に第3出射用偏向器209で出射ビームを取り出す構成を用いたシンクロトロンおよびそれを用いた粒子線治療装置も提案されている(特許文献3参照)。これにより、第3出射用偏向器209での必要なセパレーションを確保でき、出射用機器の小型化とシンクロトロンの小型化が可能になると記載されている。
To solve this problem, after separating the orbiting beam and the emission beam with the first emission deflector 207, the first emission deflection is performed with a second emission deflector 208 having a larger deflection angle, for example, a septum electromagnet. A synchrotron using a configuration in which the emission beam is extracted by the third emission deflector 209 after deflecting in the opposite direction to the vessel 207 and crossing the circumferential beam, and a particle beam therapy device using the synchrotron have also been proposed ( See Patent Document 3). It is stated that this makes it possible to secure the necessary separation in the third exit deflector 209, and to reduce the size of the exit device and the synchrotron.
しかしながら、ビーム出射でのロスが少ない小型シンクロトロンを実現するためには、「曲線部」だけでなく「長直線部も含めた全体の長さ」を短縮した上で、後段の出射デフレクタ位置で周回ビームと出射ビームを十分に分離できることが必要である。
However, in order to realize a compact synchrotron with little loss in beam emission, not only the "curved part" but also the "overall length including the long straight part" should be shortened, and then the output deflector position in the subsequent stage should be used. It is necessary that the orbiting beam and the emitting beam can be sufficiently separated.
この要求に対して、前記特許文献3に記載の方法では、第1出射用偏向器207と第2出射用偏向器208の間に発散用四極電磁石を配置するか、第1出射用偏向器207と第2出射用偏向器208を離して配置しないと、第2出射用偏向器208での周回ビームと出射ビームのセパレーションが十分に確保できず、その分だけ長直線部を長くしなければならない。このため、シンクロトロンの小型化が制限されてしまう課題があった。
In response to this requirement, in the method described in Patent Document 3, a divergence quadrupole electromagnet is arranged between the first exit deflector 207 and the second exit deflector 208, or the first exit deflector 207 If the second exit deflector 208 is not arranged apart from each other, the separation of the circumferential beam and the exit beam in the second exit deflector 208 cannot be sufficiently secured, and the long straight portion must be lengthened by that amount. .. Therefore, there is a problem that the miniaturization of the synchrotron is limited.
また、各機器間には、シンクロトロン内を真空状態に保つためのダクトやフランジといった構成要素が必要であり、第1出射用偏向器207と第2出射用偏向器208を近接して配置するにも、真空ダクトや真空フランジ等の構成要素が機器間に必要である等の制限があった。
In addition, components such as ducts and flanges for keeping the inside of the synchrotron in a vacuum state are required between the devices, and the first exit deflector 207 and the second exit deflector 208 are arranged close to each other. However, there are restrictions such as the need for components such as vacuum ducts and vacuum flanges between devices.
この発明は、上述した問題に鑑み、加速された荷電粒子ビームを周回させながら出射可能な小型の粒子加速器、これを用いた粒子線治療装置、および荷電粒子ビーム出射方法を提供することを目的とする。
In view of the above-mentioned problems, it is an object of the present invention to provide a small particle accelerator capable of emitting an accelerated charged particle beam while rotating it, a particle beam therapy device using the same, and a method for emitting a charged particle beam. To do.
この発明は、荷電粒子ビームを周回軌道に沿った方向へ偏向させる複数の偏向電磁石を有して前記荷電粒子ビームを周回および加速して出射する粒子加速器であって、前記周回軌道から離間する方向へ前記荷電粒子ビームを偏向させる前段出射デフレクタと、前記離間する方向へ偏向させた荷電粒子ビームを前記周回軌道へ近づく方向へ偏向させる中段出射デフレクタと、前記近づく方向へ偏向させた荷電粒子ビームをさらに偏向させる後段出射デフレクタとを備え、前記中段出射デフレクタと前記後段出射デフレクタの間には、前記偏向電磁石が少なくとも1つ備えられ、前記前段出射デフレクタと前記中段出射デフレクタは、1つの真空容器内に収容されている粒子加速器、粒子線治療装置、および荷電粒子ビーム出射方法であることを特徴とする。
The present invention is a particle accelerator having a plurality of deflecting electromagnets that deflect a charged particle beam in a direction along an orbital orbit and orbiting and accelerating the charged particle beam to emit the charged particle beam in a direction away from the orbit. A front-stage ejecting deflector that deflects the charged particle beam, a middle-stage emitting deflector that deflects the charged particle beam deflected in the separating direction toward the orbit, and a charged particle beam deflected in the approaching direction. A rear-stage emission deflector for further deflecting is provided, and at least one deflection electromagnet is provided between the middle-stage emission deflector and the rear-stage emission deflector, and the front-stage emission deflector and the middle-stage emission deflector are contained in one vacuum vessel. It is characterized by a particle accelerator, a particle beam therapy device, and a method of emitting a charged particle beam housed in.
この発明により、加速された荷電粒子ビームを周回させながら出射可能な小型の粒子加速器、これを用いた粒子線治療装置、および荷電粒子ビーム出射方法を提供することができる。
INDUSTRIAL APPLICABILITY According to the present invention, it is possible to provide a small particle accelerator capable of emitting while orbiting an accelerated charged particle beam, a particle beam therapy device using the same, and a method for emitting a charged particle beam.
以下、本発明の一実施形態を図面と共に説明する。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
図1は、粒子線治療装置1の概略構成を示す平面図である。
粒子線治療装置1は、荷電粒子ビームを入射する入射器10と、入射器10から入射ビームライン11を通じて入射した荷電粒子ビームを加速する粒子加速器20(シンクロトロン)と、粒子加速器20から出射して出射ビームライン30上で荷電粒子ビームをモニタするビームモニタ30aと、出射ビームライン30から出射された荷電粒子ビームを治療室内の患者の標的部位に照射するため照射装置31と、入射器10及び粒子加速器20を制御する加速器制御装置40と、照射装置31を制御する照射制御装置41を有している。 FIG. 1 is a plan view showing a schematic configuration of the particlebeam therapy device 1.
The particlebeam therapy device 1 emits from an injector 10 that incidents a charged particle beam, a particle accelerator 20 (synchrotron) that accelerates a charged particle beam incident from the incidenter 10 through an incident beam line 11, and a particle accelerator 20. A beam monitor 30a that monitors a charged particle beam on the emission beam line 30, an irradiation device 31 for irradiating a target site of a patient in a treatment room with a charged particle beam emitted from the emission beam line 30, an accelerator 10, and an injector 10. It has an accelerator control device 40 that controls the particle accelerator 20 and an irradiation control device 41 that controls the irradiation device 31.
粒子線治療装置1は、荷電粒子ビームを入射する入射器10と、入射器10から入射ビームライン11を通じて入射した荷電粒子ビームを加速する粒子加速器20(シンクロトロン)と、粒子加速器20から出射して出射ビームライン30上で荷電粒子ビームをモニタするビームモニタ30aと、出射ビームライン30から出射された荷電粒子ビームを治療室内の患者の標的部位に照射するため照射装置31と、入射器10及び粒子加速器20を制御する加速器制御装置40と、照射装置31を制御する照射制御装置41を有している。 FIG. 1 is a plan view showing a schematic configuration of the particle
The particle
入射器10は、イオン源(図示せず)と線形加速器(図示せず)がこの順で配置されて構成されている。
入射器10内のイオン源は、中性ガスに高速の電子を衝突させるなどしてイオンを生成し、線形加速器にて粒子加速器20で加速可能な状態に加速する。イオン化される原子、粒子としては、例えば、水素、ヘリウム、炭素、窒素、酸素、ネオン、シリコン、アルゴンなどがある。 Theinjector 10 is configured by arranging an ion source (not shown) and a linear accelerator (not shown) in this order.
The ion source in theinjector 10 generates ions by colliding high-speed electrons with a neutral gas, and accelerates the ions to a state in which the particle accelerator 20 can accelerate them with a linear accelerator. Examples of ions and particles to be ionized include hydrogen, helium, carbon, nitrogen, oxygen, neon, silicon, and argon.
入射器10内のイオン源は、中性ガスに高速の電子を衝突させるなどしてイオンを生成し、線形加速器にて粒子加速器20で加速可能な状態に加速する。イオン化される原子、粒子としては、例えば、水素、ヘリウム、炭素、窒素、酸素、ネオン、シリコン、アルゴンなどがある。 The
The ion source in the
入射器10内の線形加速器は、イオン源から供給される荷電粒子を所定のエネルギーまで加速して、粒子加速器20に供給する。線形加速器としては、例えば、高周波の4極電場によって荷電粒子の加速と集束を行うRFQライナックやドリフトチューブライナックが用いられる。線形加速器によって、荷電粒子は、例えば、核子あたり数MeV程度のエネルギーに加速される。
入射器10は、このようにして取り出し加速した荷電粒子ビームを出射し、入射ビームライン11を通じて粒子加速器20に入射させる。 The linear accelerator in theinjector 10 accelerates the charged particles supplied from the ion source to a predetermined energy and supplies the charged particles to the particle accelerator 20. As the linear accelerator, for example, an RFQ linac or a drift tube linac that accelerates and focuses charged particles by a high-frequency quadrupole electric field is used. The linear accelerator accelerates the charged particles to, for example, an energy of several MeV per nucleon.
Theinjector 10 emits a charged particle beam that has been taken out and accelerated in this way, and is incident on the particle accelerator 20 through the incident beam line 11.
入射器10は、このようにして取り出し加速した荷電粒子ビームを出射し、入射ビームライン11を通じて粒子加速器20に入射させる。 The linear accelerator in the
The
粒子加速器20は、入射器10で加速されてから入射ビームライン11で輸送される荷電粒子ビームを粒子加速器20に入射するための入射用装置23と、粒子加速器20内を周回する荷電粒子ビ一ムを高エネルギーまで加速する高周波加速空洞24と、荷電粒子ビームを収束する四極電磁石22と、荷電粒子ビームを周回方向(周回軌道に沿った方向)に偏向する偏向電磁石21と、色収差の補正や共鳴による遅い取り出しを行うための六極電磁石25と、遅い取り出しのために周回する荷電粒子ビームを励振する高周波電場装置26と、真空容器27c内に設けられた前段出射デフレクタ27及び中段出射デフレクタ28と、後段出射デフレクタ29とを有している。
The particle accelerator 20 includes an incident device 23 for incident a charged particle beam, which is accelerated by the injector 10 and then transported by the incident beam line 11, into the particle accelerator 20, and a charged particle electromagnet orbiting in the particle accelerator 20. A high-frequency accelerator cavity 24 that accelerates the particle to high energy, a quadrupole electromagnet 22 that converges the charged particle beam, a deflecting electromagnet 21 that deflects the charged particle beam in the orbital direction (direction along the orbital orbit), and correction of chromatic aberration. A hexapole electromagnet 25 for slow take-out by resonance, a high-frequency electric field device 26 for exciting a charged particle beam orbiting for slow take-out, and a front-stage exit deflector 27 and a middle-stage exit deflector 28 provided in a vacuum vessel 27c. And a post-stage emission deflector 29.
これらの機器は、粒子加速器20に設けられた加速器制御装置40により制御される。すなわち、粒子加速器20は、加速器制御装置40の制御により、入射用装置23にて入射を受け入れた荷電粒子ビームを、偏向電磁石21により偏向させ四極電磁石22により収束させて周回軌道上を周回させ、高周波加速空洞24により高エネルギーまで加速し、六極電磁石25により色収差の補正や共鳴による遅い取り出しを行い、高周波電場装置26により遅い取り出しのために周回する荷電粒子ビームを励振して、前段出射デフレクタ27、中段出射デフレクタ28及び後段出射デフレクタ29により出射する。
These devices are controlled by the accelerator control device 40 provided in the particle accelerator 20. That is, under the control of the accelerator control device 40, the particle accelerator 20 deflects the charged particle beam received by the incident device 23 by the deflecting electromagnet 21 and converges it by the quadrupole electromagnet 22 to orbit the orbit. The high-frequency acceleration cavity 24 accelerates to high energy, the quadrupole electromagnet 25 corrects chromatic aberration and slow extraction by resonance, and the high-frequency electric field device 26 excites the orbiting charged particle beam for slow extraction, resulting in a pre-stage emission deflector. 27, the emission is performed by the middle-stage exit deflector 28 and the rear-stage exit deflector 29.
また、加速器制御装置40と照射制御装置41は、それぞれ出射防止機能部40a,41aを備えている。出射防止機能部40a,41aは、中段出射デフレクタ28に対して生成磁場を下げる指令を出して荷電粒子ビームを遮断して即座に出射防止する機能を有している。これらの加速器制御装置40と照射制御装置41は、記憶媒体内に記憶されているプログラムによって制御されて動作する。
Further, the accelerator control device 40 and the irradiation control device 41 are provided with emission prevention function units 40a and 41a, respectively. The emission prevention function units 40a and 41a have a function of issuing a command to lower the generated magnetic field to the middle stage emission deflector 28 to block the charged particle beam and immediately prevent the emission. The accelerator control device 40 and the irradiation control device 41 are controlled and operated by a program stored in the storage medium.
高周波加速空洞24は、内部に設けられる加速ギャップ(図示せず)の間に発生する電界によって、粒子加速器20の周回軌道を周回する荷電粒子ビームを加速するものである。高周波加速空洞24において、加速ギャップの間(図1に示す右から左)を通る荷電粒子ビームは、正のエネルギーゲインを得られる位相で高周波電界が印加されて加速され、周回毎にエネルギーが増加していく。また、出射ビーム(出射荷電粒子ビーム)の出射終了後、加速ギャップの間で発生する電界の位相を逆にすることによって、荷電粒子ビームを減速し放射線の発生を抑制する。
The high-frequency acceleration cavity 24 accelerates a charged particle beam that orbits the orbit of the particle accelerator 20 by an electric field generated between the acceleration gaps (not shown) provided inside. In the high-frequency acceleration cavity 24, the charged particle beam passing between the acceleration gaps (from right to left shown in FIG. 1) is accelerated by applying a high-frequency electric field in a phase in which a positive energy gain can be obtained, and the energy increases with each orbit. I will do it. Further, after the emission of the emitted beam (exit charged particle beam) is completed, the phase of the electric field generated between the acceleration gaps is reversed to slow down the charged particle beam and suppress the generation of radiation.
前段出射デフレクタ27は、静電デフレクタにより構成されている。
中段出射デフレクタ28及び後段出射デフレクタ29は、セプタム電磁石により構成されている。 The front-stage emission deflector 27 is composed of an electrostatic deflector.
The middle-stage emission deflector 28 and the rear-stage emission deflector 29 are composed of a septum electromagnet.
中段出射デフレクタ28及び後段出射デフレクタ29は、セプタム電磁石により構成されている。 The front-
The middle-
粒子加速器20において、荷電粒子ビームは、所定のエネルギー、例えば核子あたり数百MeVのエネルギーまで加速される。この際、偏向電磁石21、四極電磁石22、六極電磁石25、及び高周波電場装置26は、高周波加速空洞24における加速または減速に同期して、加速または減速された荷電粒子ビームのエネルギーに応じて、荷電粒子ビームが粒子加速器20の周回軌道に沿った軌道を描くように磁場強度が加速器制御装置40により制御される。
In the particle accelerator 20, the charged particle beam is accelerated to a predetermined energy, for example, an energy of several hundred MeV per nucleon. At this time, the deflection electromagnet 21, the quadrupole electromagnet 22, the hexapole electromagnet 25, and the high-frequency electric field device 26 respond to the energy of the charged particle beam accelerated or decelerated in synchronization with the acceleration or deceleration in the high-frequency acceleration cavity 24. The magnetic field strength is controlled by the accelerator control device 40 so that the charged particle beam draws an orbit along the orbital orbit of the particle accelerator 20.
周回軌道上で所定のエネルギーに加速された荷電粒子ビームは、前段出射デフレクタ27と中段出射デフレクタ28と後段出射デフレクタ29とによって、その軌道を偏向されて、粒子加速器20から出射され、出射ビームとして出射ビームライン30に取り出される。
The charged particle beam accelerated to a predetermined energy on the orbit is deflected by the front-stage exit deflector 27, the middle-stage exit deflector 28, and the rear-stage exit deflector 29, and is emitted from the particle accelerator 20 as an emission beam. It is taken out to the exit beam line 30.
図2は、前段出射デフレクタ27と中段出射デフレクタ28の周辺の概略構成を示す拡大平面図である。この図2に、周回荷電粒子ビーム6の周回軌道である周回ビーム軌道50、および出射ビームの出射ビーム軌道51を模式的に示す。
FIG. 2 is an enlarged plan view showing a schematic configuration around the front-stage exit deflector 27 and the middle-stage exit deflector 28. FIG. 2 schematically shows an orbital beam orbit 50, which is an orbital orbit of the orbiting charged particle beam 6, and an emitted beam orbit 51 of the emitted beam.
前段出射デフレクタ27と中段出射デフレクタ28は、同一の(1つの)真空容器27c内に設けられている。真空容器27cは、荷電粒子ビームの軌道方向である前後端に真空フランジ28aがそれぞれ設けられている。上流側(荷電粒子ビームの入射側)の真空フランジ28aは、六極電磁石25(図1参照)の真空フランジ(図示省略)に接続されている。下流側(荷電粒子ビームの出射側)の真空フランジ28aは、偏向電磁石21の真空フランジ21aに接続されている。
The front-stage exit deflector 27 and the middle-stage exit deflector 28 are provided in the same (one) vacuum container 27c. The vacuum vessel 27c is provided with vacuum flanges 28a at the front and rear ends in the orbital direction of the charged particle beam. The vacuum flange 28a on the upstream side (incident side of the charged particle beam) is connected to the vacuum flange (not shown) of the hexapole electromagnet 25 (see FIG. 1). The vacuum flange 28a on the downstream side (the emission side of the charged particle beam) is connected to the vacuum flange 21a of the deflection electromagnet 21.
前段出射デフレクタ27は、薄いセプタム電極27aと高圧電極27bが真空容器27c内に設置された構造となっている。薄いセプタム電極27aは、周回荷電粒子ビーム6の軌道方向に沿って、周回荷電粒子ビーム6が周回する方向を基準にして当該周回荷電粒子ビーム6の内側周辺に配置されており、周回荷電粒子ビーム6の進行方向(入射側から出射側)へ進むにつれて周回荷電粒子ビーム6から離間する方向へ湾曲した形状の薄い板状に形成および配置されている。高圧電極27bは、薄いセプタム電極27aとほぼ同じ大きさおよび同じ面積でセプタム電極27aより厚い湾曲した板状に形成され、薄いセプタム電極27aとほぼ平行で、薄いセプタム電極27aよりも周回荷電粒子ビーム6から遠い側に配置されている。
換言すると、高圧電極27bは、セプタム電極27aの幅広面であって、周回荷電粒子ビーム6から遠い側の面に対向して配置される。高圧電極27bの形状は、例えば、高圧電極27bのセプタム電極27aに対向する面がセプタム電極27aと略同じ面積および略同じ大きさであり、かつ、セプタム電極27aより厚い板状であり得る。このとき、高圧電極27bとセプタム電極27aの離間距離(電極ギャップ幅91)が略一定となるように、すなわち、高圧電極27bとセプタム電極27aがほぼ平行となるように、高圧電極27bはセプタム電極27aに沿うように湾曲した形状に形成される。 The front-stage emission deflector 27 has a structure in which a thin septum electrode 27a and a high-voltage electrode 27b are installed in a vacuum vessel 27c. The thin septum electrode 27a is arranged around the inside of the orbiting charged particle beam 6 with reference to the orbiting direction of the orbiting charged particle beam 6 along the orbital direction of the orbiting charged particle beam 6. It is formed and arranged in a thin plate shape having a curved shape in a direction away from the orbiting charged particle beam 6 as it advances in the traveling direction (from the incident side to the exit side) of 6. The high-pressure electrode 27b is formed in a curved plate shape having approximately the same size and area as the thin septum electrode 27a and thicker than the septum electrode 27a, substantially parallel to the thin septum electrode 27a, and orbiting a charged particle beam than the thin septum electrode 27a. It is located on the side far from 6.
In other words, the high-voltage electrode 27b is a wide surface of the septum electrode 27a and is arranged so as to face the surface on the side far from the orbiting charged particle beam 6. The shape of the high-voltage electrode 27b may be, for example, a plate having a surface of the high-voltage electrode 27b facing the septum electrode 27a having substantially the same area and size as the septum electrode 27a and thicker than the septum electrode 27a. At this time, the high-voltage electrode 27b is a septum electrode so that the separation distance (electrode gap width 91) between the high-voltage electrode 27b and the septum electrode 27a is substantially constant, that is, the high-voltage electrode 27b and the septum electrode 27a are substantially parallel to each other. It is formed in a curved shape along 27a.
換言すると、高圧電極27bは、セプタム電極27aの幅広面であって、周回荷電粒子ビーム6から遠い側の面に対向して配置される。高圧電極27bの形状は、例えば、高圧電極27bのセプタム電極27aに対向する面がセプタム電極27aと略同じ面積および略同じ大きさであり、かつ、セプタム電極27aより厚い板状であり得る。このとき、高圧電極27bとセプタム電極27aの離間距離(電極ギャップ幅91)が略一定となるように、すなわち、高圧電極27bとセプタム電極27aがほぼ平行となるように、高圧電極27bはセプタム電極27aに沿うように湾曲した形状に形成される。 The front-
In other words, the high-
薄いセプタム電極27aと高圧電極27bの間の電極ギャップ幅91は、10mm以上20mm未満に構成されている。この前段出射デフレクタ27は、電極ギャップに静電場を生成するための高電圧が印加される。前段出射デフレクタ27からの出射ビームは、電極ギャップで静電場による力を受けて、周回荷電粒子ビーム6から遠ざかる方向に曲げられる。即ち、出射ビームが前段出射デフレクタ27を通過すると、電極ギャップで静電場による力を受けて、出射ビームの軌道(出射ビーム軌道51)が周回荷電粒子ビーム6から遠ざかる方向に曲げられる。
The electrode gap width 91 between the thin septum electrode 27a and the high-voltage electrode 27b is configured to be 10 mm or more and less than 20 mm. A high voltage is applied to the pre-stage exit deflector 27 to generate an electrostatic field in the electrode gap. The emitted beam from the pre-stage exit deflector 27 receives a force due to an electrostatic field in the electrode gap and is bent in a direction away from the orbiting charged particle beam 6. That is, when the emitted beam passes through the pre-stage exit deflector 27, the trajectory of the emitted beam (exit beam trajectory 51) is bent in a direction away from the orbiting charged particle beam 6 by receiving a force due to an electrostatic field in the electrode gap.
前段出射デフレクタ27の下流(荷電粒子ビームの出射側)には、周回ビーム軌道50と前段出射デフレクタ27の距離と同程度の距離を周回ビーム軌道50から離間させた位置で、前段出射デフレクタ27からギャップ94の距離を開けて中段出射デフレクタ28が設けられている。前段出射デフレクタ27と中段出射デフレクタ28の間には、通過する荷電粒子ビームの出射ビーム軌道51と平面が交差する静電シールド27dが設けられている。
Downstream of the pre-stage exit deflector 27 (on the emission side of the charged particle beam), a distance similar to the distance between the orbital beam orbit 50 and the pre-stage exit deflector 27 is separated from the orbital beam orbit 50 from the pre-stage exit deflector 27. A middle-stage exit deflector 28 is provided with a gap of 94. An electrostatic shield 27d is provided between the front-stage emission deflector 27 and the middle-stage emission deflector 28 so that the plane intersects the emission beam trajectory 51 of the passing charged particle beam.
前段出射デフレクタ27と静電シールド27dの間のギャップ92は、10mm~30mmとすることができ、この実施例では20mm程度に構成されている。静電シールド27dと中段出射デフレクタ28の間のギャップ93は、10mm~40mmとすることができ、20mm~30mmが好ましく、この実施例では30mm程度に構成されている。前段出射デフレクタ27と中段出射デフレクタ28とは、互いの間の距離を、前段出射デフレクタ27の高圧電極27bと薄いセプタム電極27aとの間の電極ギャップ幅91よりも、大きくして配置されている。具体的には、前段出射デフレクタ27と中段出射デフレクタ28とは、互いの間の距離を例えば150mm(15cm)以下にして配置されている。前段出射デフレクタ27と中段出射デフレクタ28のとの隙間の距離であるギャップ94は、例示したように、150mm以下とすることができ、さらには、100mm以下とすることが好ましく、この実施例では50mm程度に構成されている。前段出射デフレクタ27と中段出射デフレクタ28との距離(ギャップ94)の下限は特に限定されないが、例えば10mm以上、好ましくは20mm以上とすることができる。
The gap 92 between the front-stage exit deflector 27 and the electrostatic shield 27d can be 10 mm to 30 mm, and in this embodiment, it is configured to be about 20 mm. The gap 93 between the electrostatic shield 27d and the middle-stage exit deflector 28 can be 10 mm to 40 mm, preferably 20 mm to 30 mm, and in this embodiment, it is set to about 30 mm. The front-stage emission deflector 27 and the middle-stage emission deflector 28 are arranged so that the distance between them is larger than the electrode gap width 91 between the high-pressure electrode 27b of the front-stage emission deflector 27 and the thin septum electrode 27a. .. Specifically, the front-stage exit deflector 27 and the middle-stage exit deflector 28 are arranged so that the distance between them is, for example, 150 mm (15 cm) or less. As illustrated, the gap 94, which is the distance between the front-stage exit deflector 27 and the middle-stage exit deflector 28, can be 150 mm or less, more preferably 100 mm or less, and in this embodiment, 50 mm. It is composed of degrees. The lower limit of the distance (gap 94) between the front-stage emission deflector 27 and the middle-stage emission deflector 28 is not particularly limited, but may be, for example, 10 mm or more, preferably 20 mm or more.
中段出射デフレクタ28は、セプタム電磁石であり、磁極長95(出射ビーム軌道51と平行方向の長さ)が200mm程度に構成されている。すなわち、中段出射デフレクタ28は、できるだけ前段出射デフレクタ27に近づけ、かつ、真空環境内に設置されている。
The middle-stage emission deflector 28 is a septum electromagnet, and has a magnetic pole length 95 (length in the direction parallel to the emission beam trajectory 51) of about 200 mm. That is, the middle-stage exit deflector 28 is installed as close as possible to the front-stage exit deflector 27 and in a vacuum environment.
中段出射デフレクタ28の位置において、周回荷電粒子ビーム6と出射ビームの間にはセプタムコイル28cと両ビームの間を仕切る略板状の磁気シールド(図示省略)しかなく、出射ビームの周辺に真空ダクトもないため、鉄心の磁極ギャップを小さくすることが可能であり、電流密度と生成磁場強度を保ちながらセプタムコイル28cの厚みを薄くできる。このため、中段出射デフレクタ28位置で周回荷電粒子ビーム6と出射ビームの分離距離が非常に小さくても、出射ビームをロスすることなく中段出射デフレクタ28のアパーチャを通過させることができる。したがって、出射ビーム軌道51の荷電粒子ビームを必要な方向へ必要なだけ偏向させるために必要な励磁量が小さくてすみ、中段出射デフレクタ28及びこれを収容する真空容器27cを小型化できる。
At the position of the middle-stage emission deflector 28, there is only a substantially plate-shaped magnetic shield (not shown) that separates the septum coil 28c and both beams between the orbiting charged particle beam 6 and the emission beam, and a vacuum duct is provided around the emission beam. Therefore, it is possible to reduce the magnetic pole gap of the iron core, and to reduce the thickness of the septum coil 28c while maintaining the current density and the generated magnetic field strength. Therefore, even if the separation distance between the orbiting charged particle beam 6 and the emission beam is very small at the position of the middle-stage emission deflector 28, the aperture of the middle-stage emission deflector 28 can be passed without loss of the emission beam. Therefore, the amount of excitation required to deflect the charged particle beam of the emission beam orbit 51 in the required direction as much as necessary can be small, and the middle-stage emission deflector 28 and the vacuum container 27c accommodating the middle stage exit deflector 28 can be miniaturized.
中段出射デフレクタ28は、前段出射デフレクタ27とは逆方向に出射ビームを曲げる。中段出射デフレクタ28は、高圧電極27bの放電を避けるために、前段出射デフレクタ27の電極ギャップ幅よりも高圧電極27bから離して配置されている。即ち、中段出射デフレクタ28と高圧電極27bとの距離が、前段出射デフレクタ27の電極ギャップ幅91よりも大きくなるように、中段出射デフレクタ28が配置される。また、前段出射デフレクタ27と中段出射デフレクタ28の間に静電シールド27dを設けることで、より安定に高圧電極27bの放電を避けつつ、前段出射デフレクタ27と中段出射デフレクタ28を近接して配置することが可能となっている。
The middle-stage emission deflector 28 bends the emission beam in the direction opposite to that of the front-stage emission deflector 27. The middle-stage exit deflector 28 is arranged farther from the high-voltage electrode 27b than the electrode gap width of the front-stage exit deflector 27 in order to avoid discharge of the high-voltage electrode 27b. That is, the middle-stage exit deflector 28 is arranged so that the distance between the middle-stage exit deflector 28 and the high-voltage electrode 27b is larger than the electrode gap width 91 of the front-stage exit deflector 27. Further, by providing the electrostatic shield 27d between the front-stage exit deflector 27 and the middle-stage exit deflector 28, the front-stage exit deflector 27 and the middle-stage exit deflector 28 are arranged close to each other while avoiding the discharge of the high-voltage electrode 27b more stably. It is possible.
なお、中段出射デフレクタ28のセプタムコイル28cは、板状の導体であってもよい。セプタム電磁石である中段出射デフレクタ28は、放出ガスが多く、真空容器27c内の真空度を悪化させてしまうため、静電デフレクタである前段出射デフレクタ27の放電の原因となる。そのため、前段出射デフレクタ27と中段出射デフレクタ28を一緒に収める真空容器27cには複数の吸引孔3を設け、それぞれに真空ポンプ4を設けることで複数台の真空ポンプ4にて真空にすることが好ましい。この真空ポンプ4としては、特にイオンポンプを取り付けるとよい。
The septum coil 28c of the middle-stage exit deflector 28 may be a plate-shaped conductor. The middle-stage exit deflector 28, which is a septum electromagnet, emits a large amount of gas and deteriorates the degree of vacuum in the vacuum vessel 27c, which causes discharge of the front-stage exit deflector 27, which is an electrostatic deflector. Therefore, a plurality of suction holes 3 are provided in the vacuum container 27c that houses the front-stage exit deflector 27 and the middle-stage exit deflector 28 together, and a vacuum pump 4 is provided in each of the vacuum containers 27 to create a vacuum with the plurality of vacuum pumps 4. preferable. As the vacuum pump 4, it is particularly preferable to attach an ion pump.
図3は、前段出射デフレクタ27と中段出射デフレクタ28と後段出射デフレクタ29による出射ビームの出射ビーム軌道51と周回荷電粒子ビーム6の周回ビーム軌道50を示す拡大平面図である。図示するように、中段出射デフレクタ28と後段出射デフレクタ29の間には、収束要素となる偏向電磁石21及び四極電磁石22が配置されている。
FIG. 3 is an enlarged plan view showing the emission beam trajectory 51 of the emission beam by the front-stage emission deflector 27, the middle-stage emission deflector 28, and the rear-stage emission deflector 29, and the orbital beam trajectory 50 of the orbiting charged particle beam 6. As shown in the figure, a deflection electromagnet 21 and a quadrupole electromagnet 22 serving as convergence elements are arranged between the middle-stage exit deflector 28 and the rear-stage exit deflector 29.
前段出射デフレクタ27で周回ビーム軌道50から離間する方向へ曲げられた後に中段出射デフレクタ28で周回ビーム軌道50へ近づく方向(交差する方向)へ曲げられた出射ビーム軌道51は、下流の偏向電磁石21に入り、周回ビーム軌道50と交差するように偏向電磁石21内部を通過し、前段出射デフレクタ27出口での出射ビーム軌道51の変位とは逆符号側に至る。
The exit beam orbit 51 bent in the direction away from the orbit 50 by the front-stage exit deflector 27 and then approached (intersect) by the orbit 50 in the middle-stage exit deflector 28 is the downstream deflection electromagnet 21. It enters, passes through the inside of the deflection electromagnet 21 so as to intersect the circumferential beam trajectory 50, and reaches the side opposite to the displacement of the emission beam trajectory 51 at the exit of the front-stage emission deflector 27.
なお、偏向電磁石21は機能結合型電磁石でもよく、また、電磁石端部にエッジ角があってもよい。また、偏向電磁石21は、中段出射デフレクタ28と後段出射デフレクタ29との間に少なくとも1つ以上備えられている。この1つ以上備えられる偏向電磁石21は、合計した偏向角度が60度以上90度以下になるように構成されている。ここで、中段出射デフレクタ28と後段出射デフレクタ29の間の偏向電磁石21の偏向角が60度以上、特に90度の場合、偏向電磁石21が強い収束要素として働くようになる。このため、より効果的に出射ビームを周回ビームから短距離で十分に離間させて出射することができる。
The deflection electromagnet 21 may be a function-coupled electromagnet, or may have an edge angle at the end of the electromagnet. Further, at least one or more deflection electromagnets 21 are provided between the middle-stage emission deflector 28 and the rear-stage emission deflector 29. The deflection electromagnet 21 provided with one or more of them is configured so that the total deflection angle is 60 degrees or more and 90 degrees or less. Here, when the deflection angle of the deflection electromagnet 21 between the middle-stage exit deflector 28 and the rear-stage exit deflector 29 is 60 degrees or more, particularly 90 degrees, the deflection electromagnet 21 acts as a strong converging element. Therefore, the emitted beam can be more effectively emitted at a short distance from the circumferential beam.
偏向電磁石21を抜けた出射ビーム軌道51はさらに下流の四極電磁石22を通過し、周回ビーム軌道50と十分に分離された位置で、後段出射デフレクタ29により粒子加速器20の外に取り出される。後段出射デフレクタ29は、ランバートソン型電磁石としてもよい。
The exit beam orbit 51 that has passed through the deflection electromagnet 21 passes through the quadrupole electromagnet 22 further downstream, and is taken out of the particle accelerator 20 by the post-stage emission deflector 29 at a position sufficiently separated from the orbital beam orbit 50. The post-stage emission deflector 29 may be a Lambertson type electromagnet.
図4は、出射ビームの遮断構造を説明する中段出射デフレクタ28周辺の拡大平面図である。中段出射デフレクタ28の下流には、出射ビーム軌道51より周回ビーム軌道50の外側で、中段出射デフレクタ28の生成磁場を下げた際に荷電粒子ビームが通過する位置に、ビームモニタ52aを配置し、さらにその下流で荷電粒子ビームが届く位置にビームダンプ52bを配置している。これにより、荷電粒子ビームを遮断でき、遮断している荷電粒子ビームの位置や大きさ等をモニタリングすることができる。ビームモニタ52aとビームダンプ52bは、出射ビーム軌道51よりも外側の遮断ビーム軌道52上に配置されるため、周回ビーム軌道50を通過する荷電粒子ビームを阻害することはない。
FIG. 4 is an enlarged plan view of the periphery of the middle-stage emission deflector 28 for explaining the blocking structure of the emission beam. A beam monitor 52a is arranged downstream of the middle-stage exit deflector 28 at a position outside the orbital beam orbit 50 from the exit beam orbit 51 and through which a charged particle beam passes when the generated magnetic field of the middle-stage exit deflector 28 is lowered. Further downstream, the beam dump 52b is arranged at a position where the charged particle beam reaches. As a result, the charged particle beam can be blocked, and the position and size of the blocked charged particle beam can be monitored. Since the beam monitor 52a and the beam dump 52b are arranged on the blocking beam trajectory 52 outside the exit beam trajectory 51, the charged particle beam passing through the orbital beam trajectory 50 is not obstructed.
加速器制御装置40や照射制御装置41が機器やビームの異常を検知した場合には、加速器制御装置40または照射制御装置41が指令を出して中段出射デフレクタ28の生成磁場を下げる。これにより、速やかに出射ビーム軌道51を変え、粒子加速器20からビームが出射されることを防ぐことができる。従って、なんらかの異常が生じた場合など、荷電粒子ビームの照射を停止したい場合に、簡単な操作で即座に出射を停止することができる。
When the accelerator control device 40 or the irradiation control device 41 detects an abnormality in the device or beam, the accelerator control device 40 or the irradiation control device 41 issues a command to lower the generated magnetic field of the middle-stage exit deflector 28. As a result, the emission beam trajectory 51 can be quickly changed, and the beam can be prevented from being emitted from the particle accelerator 20. Therefore, when it is desired to stop the irradiation of the charged particle beam, such as when some abnormality occurs, the emission can be stopped immediately with a simple operation.
また、遮断ビーム軌道52の先にビームモニタ52aやビームダンプ52bを配置することで、遮断されたビームの強度やサイズなどの情報を取得することもできる。
Further, by arranging the beam monitor 52a and the beam dump 52b in front of the blocking beam trajectory 52, it is possible to acquire information such as the intensity and size of the blocked beam.
またこれにより、例えば粒子加速器20から出射ビームを取り出して出射ビームライン30にあるビームモニタ30aで測定するといった構成を用いなくても、粒子加速器20の内部で中段出射デフレクタ28の生成磁場を変更し、遮断ビームをビームモニタ52aで測定することで、出射ビ一ムを測定することと同等の情報を得ることができる。そうすれば、照射を行う前に、粒子加速器20単独で出射ビームの健全性を遮断ビームで模擬して確認することもできる。そして、出射ビームライン30の構成機器を減らすことができるため、出射ビームライン30を短縮化して粒子線治療装置1を小型化することもできる。
Further, as a result, the generated magnetic field of the middle-stage emission deflector 28 is changed inside the particle accelerator 20 without using a configuration in which the emission beam is taken out from the particle accelerator 20 and measured by the beam monitor 30a in the emission beam line 30. By measuring the blocking beam with the beam monitor 52a, it is possible to obtain information equivalent to measuring the emitted beam. Then, before the irradiation, the soundness of the emitted beam can be simulated and confirmed by the particle accelerator 20 alone with the blocking beam. Since the number of constituent devices of the emission beam line 30 can be reduced, the emission beam line 30 can be shortened and the particle beam therapy device 1 can be downsized.
以上の構成および動作により、粒子線治療装置1は、前段出射デフレクタ27と中段出射デフレクタ28を同一の真空容器27cの内部に近接して配置することで粒子加速器20(シンクロトロン)の長直線部を短縮化し、粒子加速器20全体を小型化することができる。
With the above configuration and operation, the particle beam therapy device 1 arranges the front-stage emission deflector 27 and the middle-stage emission deflector 28 close to each other inside the same vacuum vessel 27c, so that the long linear portion of the particle accelerator 20 (synchrotron) Can be shortened and the entire particle accelerator 20 can be miniaturized.
すなわち、前段出射デフレクタ27と中段出射デフレクタ28を同一の真空容器27c内に入れることで、機器間に真空ダクトや真空フランジを挟まない構造(つまり、例えば前段出射デフレクタ27を収容する真空容器と中段出射デフレクタ28を収容する真空容器を真空フランジ等で接続するという必要のない構造)を実現できる。また、周回ビームと出射ビームの間の真空ダクトも不要なため、中段出射デフレクタ28位置で必要な周回ビームと出射ビームの分離距離を非常に小さくできる。これにより、前段出射デフレクタ27と中段出射デフレクタ28を近接した配置が可能となり、長直線部を従来以上に短縮することでシンクロトロンの小型化を実現できる。
That is, by putting the front-stage exit deflector 27 and the middle-stage exit deflector 28 in the same vacuum container 27c, a structure in which a vacuum duct or a vacuum flange is not sandwiched between devices (that is, for example, a vacuum container accommodating the front-stage exit deflector 27 and the middle stage). It is possible to realize a structure in which a vacuum container accommodating the exit deflector 28 does not need to be connected with a vacuum flange or the like). Further, since the vacuum duct between the orbital beam and the emitted beam is not required, the separation distance between the orbiting beam and the emitted beam required at the position of the middle-stage exit deflector 28 can be made very small. As a result, the front-stage exit deflector 27 and the middle-stage exit deflector 28 can be arranged close to each other, and the synchrotron can be downsized by shortening the long straight line portion more than before.
特に、真空容器27c内に本来であれば設置したくない中段出射デフレクタ28をあえて真空容器27c内に入れて設置することで、小型化を実現できる。すなわち、真空容器27c等に電磁石を設置すると、放出ガスによって真空容器27c内の真空度が低下し、真空度が低下すると荷電粒子ビームが放出ガスとの荷電変換や多重散乱を起こして粒子加速器20内で長時間周回させることが困難になる。しかしながら、このような技術的疎外要因があるにもかかわらず、真空容器27c内に前段出射デフレクタ27や中段出射デフレクタ28を設置し、電磁石の発生する放出ガスを排出できるように真空ポンプ4を2つ接続して真空度を確保することで、小型化を実現することができる。
In particular, miniaturization can be realized by intentionally placing the middle-stage exit deflector 28, which is not normally desired to be installed in the vacuum container 27c, in the vacuum container 27c. That is, when an electromagnet is installed in the vacuum vessel 27c or the like, the degree of vacuum in the vacuum vessel 27c is lowered by the emitted gas, and when the degree of vacuum is lowered, the charged particle beam causes charge conversion or multiple scattering with the emitted gas, and the particle accelerator 20 It becomes difficult to circulate for a long time inside. However, in spite of such technical alienation factors, the front-stage exit deflector 27 and the middle-stage exit deflector 28 are installed in the vacuum vessel 27c, and the vacuum pump 4 is set to 2 so that the released gas generated by the electromagnet can be discharged. Miniaturization can be realized by connecting the pumps to secure the degree of vacuum.
また、中段出射デフレクタ28で曲げられた出射ビームは下流の偏向電磁石21に入り、周回ビームと交差するように周回軌道中心付近を通過し、前段出射デフレクタ27出口での出射ビーム変位とは逆符号側に至る。出射ビームは偏向電磁石21内部で周回軌道中心付近を通過するため、その間に収束要素があっても出射ビームが受ける収束力は弱くなり、周回ビームとの分離が阻害されない。そうして出射ビームと周回ビームが十分に分離できる位置に配置された後段出射デフレクタ29により、粒子加速器20から出射ビームをロスなく取り出すことができる。
Further, the emission beam bent by the middle-stage exit deflector 28 enters the downstream deflection electromagnet 21 and passes near the center of the orbit so as to intersect the orbital beam, which is opposite to the displacement of the emission beam at the exit of the front-stage exit deflector 27. To the side. Since the emitted beam passes near the center of the orbit around the inside of the deflecting electromagnet 21, the convergence force received by the emitted beam is weakened even if there is a converging element between them, and the separation from the orbiting beam is not hindered. The emission beam can be taken out from the particle accelerator 20 without loss by the rear-stage emission deflector 29 arranged at a position where the emission beam and the orbiting beam can be sufficiently separated.
また、前段出射デフレクタ27と中段出射デフレクタ28を同一の真空容器27c内に入れることで、前段出射デフレクタ27と中段出射デフレクタ28の間に真空ダクトや真空フランジをはさまない構造を実現し、また、周回ビームと出射ビームの間の真空ダクトも不要なため、中段出射デフレクタ28位置で必要な周回ビームと出射ビームの分離距離を非常に小さくできる。その結果、前段出射デフレクタ27と中段出射デフレクタ28を近接した配置が可能となり、長直線部を従来以上に短縮することで粒子加速器20の小型化を実現できる。
Further, by putting the front-stage exit deflector 27 and the middle-stage exit deflector 28 in the same vacuum container 27c, a structure is realized in which a vacuum duct or a vacuum flange is not sandwiched between the front-stage exit deflector 27 and the middle-stage exit deflector 28. Since the vacuum duct between the orbiting beam and the emission beam is not required, the separation distance between the orbiting beam and the emission beam required at the position of the middle-stage exit deflector 28 can be made very small. As a result, the front-stage exit deflector 27 and the middle-stage exit deflector 28 can be arranged close to each other, and the particle accelerator 20 can be downsized by shortening the long straight line portion more than before.
また、前段出射デフレクタ27と中段出射デフレクタ28の間に静電シールド27dを設けたことにより、前段出射デフレクタ27と中段出射デフレクタ28の間の距離を短くした際に前段出射デフレクタ27の電極から放電してしまうといったことを防止できる。また、中段出射デフレクタ28を前段出射デフレクタ27に近づけることができることによって、中段出射デフレクタ28が必要とする電磁力を小さくでき、これによって中段出射デフレクタ28のコイルを薄くすることができ、これによってさらに中段出射デフレクタ28を静電シールド27dに近づけることができる。これによって、中段出射デフレクタ28が出射ビーム軌道51を曲げ戻す力が小さくて済むようになる。
Further, by providing the electrostatic shield 27d between the front-stage exit deflector 27 and the middle-stage exit deflector 28, when the distance between the front-stage exit deflector 27 and the middle-stage exit deflector 28 is shortened, the electrode of the front-stage exit deflector 27 discharges. It is possible to prevent such a situation. Further, since the middle-stage exit deflector 28 can be brought closer to the front-stage exit deflector 27, the electromagnetic force required by the middle-stage exit deflector 28 can be reduced, whereby the coil of the middle-stage exit deflector 28 can be made thinner, thereby further. The middle-stage emission deflector 28 can be brought closer to the electrostatic shield 27d. As a result, the force of the middle-stage emission deflector 28 to bend the emission beam trajectory 51 back is small.
また、この機構を出射ビームの高速遮断システムに応用することで出射ビームラインを短縮することも可能であり、結果として、粒子線治療装置1全体を小型化することも可能となる。
Further, by applying this mechanism to a high-speed blocking system for an emitted beam, it is possible to shorten the emitted beam line, and as a result, it is possible to reduce the size of the entire particle beam therapy device 1.
つまり、中段出射デフレクタ28の生成磁場を下げることで荷電粒子ビームを遮断できるため、緊急時のときに荷電粒子ビームを即座に遮断して標的部位等に照射されない状態とすることができる。特に、中段出射デフレクタ28の生成磁場を上げる方向ではなく下げる(停止も含む)ことで遮断できるため、どこかに不具合が生じているような場合(例えば生成磁場を上げられない場合など)でも問題なく荷電粒子ビームの高速遮断を実行することができる。
That is, since the charged particle beam can be blocked by lowering the generated magnetic field of the middle-stage exit deflector 28, the charged particle beam can be immediately blocked in an emergency so that the target site or the like is not irradiated. In particular, since it can be blocked by lowering (including stopping) the generated magnetic field of the middle-stage exiting deflector 28 instead of raising it, there is a problem even when something is wrong (for example, when the generated magnetic field cannot be raised). It is possible to perform high-speed blocking of charged particle beams.
このようにして、本発明を超電導電磁石と組み合わせて重粒子線治療用のシンクロトロン設計に用いた場合、従来の重粒子線治療用シンクロトロンに比べて、シンクロトロンの周長を1/2程度、シンクロトロン装置面積を1/4程度に縮小が可能となる。
In this way, when the present invention is used in combination with a superconducting magnet to design a synchrotron for heavy ion beam therapy, the circumference of the synchrotron is about half that of the conventional synchrotron for heavy ion beam therapy. , The synchrotron device area can be reduced to about 1/4.
なお、本発明は、上述した実施例に限らず、様々な形態をとることができる。
例えば、上述した実施例では、中段出射デフレクタ28と後段出射デフレクタ29の間に1台の偏向電磁石21と1台の四極電磁石22を配置したが、2台以上の偏向電磁石21や四極電磁石22を組み合わせて配置してもよい。この場合も同様の作用効果を得られる。 The present invention is not limited to the above-described embodiment, and may take various forms.
For example, in the above-described embodiment, onedeflection electromagnet 21 and one quadrupole electromagnet 22 are arranged between the middle-stage exit deflector 28 and the rear-stage exit deflector 29, but two or more deflection electromagnets 21 and quadrupole electromagnets 22 are used. They may be arranged in combination. In this case as well, the same effect can be obtained.
例えば、上述した実施例では、中段出射デフレクタ28と後段出射デフレクタ29の間に1台の偏向電磁石21と1台の四極電磁石22を配置したが、2台以上の偏向電磁石21や四極電磁石22を組み合わせて配置してもよい。この場合も同様の作用効果を得られる。 The present invention is not limited to the above-described embodiment, and may take various forms.
For example, in the above-described embodiment, one
また、上述した実施例では、前段出射デフレクタ27と中段出射デフレクタ28を粒子加速器20の内側に、後段出射デフレクタ29を粒子加速器20の外側にそれぞれ配置したが、それらの内外の配置を互いに逆にしてもよい。この場合も上述した実施例と同様の効果を得られる。
Further, in the above-described embodiment, the front-stage exit deflector 27 and the middle-stage exit deflector 28 are arranged inside the particle accelerator 20, and the rear-stage exit deflector 29 is arranged outside the particle accelerator 20, but their internal and external arrangements are reversed from each other. You may. In this case as well, the same effect as that of the above-described embodiment can be obtained.
この発明は、粒子加速器、特にシンクロトロンを用いる産業に利用することができる。
This invention can be used in industries that use particle accelerators, especially synchrotrons.
1…粒子線治療装置
6…周回荷電粒子ビーム
10…入射器
11…入射ビームライン
20…粒子加速器
21…偏向電磁石
21a,28a…真空フランジ
22…四極電磁石
23…入射用装置
24…高周波加速空洞
25…六極電磁石
26…高周波電場装置
27…前段出射デフレクタ
27a…セプタム電極
27b…高圧電極
27c…真空容器
27d…静電シールド
28…中段出射デフレクタ
28c…セプタムコイル
29…後段出射デフレクタ
30…出射ビームライン
30a…ビームモニタ
31…照射装置
40…加速器制御装置
40a,41a…出射防止機能部
41…照射制御装置
50…周回ビーム軌道
51…出射ビーム軌道
52…遮断ビーム軌道
52a…ビームモニタ
52b…ビームダンプ
91…電極ギャップ幅
92、93、94…ギャップ
95…磁極長 1 ... Particlebeam therapy device 6 ... Orbiting charged particle beam 10 ... Injector 11 ... Incident beam line 20 ... Particle accelerator 21 ... Deflection electromagnets 21a, 28a ... Vacuum flange 22 ... Quadrupole electromagnet 23 ... Incident device 24 ... High frequency acceleration cavity 25 ... Hexagonal electromagnet 26 ... High-frequency electric field device 27 ... Front-stage exit deflector 27a ... Septum electrode 27b ... High-pressure electrode 27c ... Vacuum container 27d ... Electrostatic shield 28 ... Middle-stage exit deflector 28c ... Septum coil 29 ... Rear-stage exit deflector 30 ... Exit beamline 30a ... Beam monitor 31 ... Irradiation device 40 ... Accelerator control device 40a, 41a ... Emission prevention function unit 41 ... Irradiation control device 50 ... Circular beam trajectory 51 ... Emission beam trajectory 52 ... Blocking beam trajectory 52a ... Beam monitor 52b ... Beam dump 91 ... Electrode gap width 92, 93, 94 ... Gap 95 ... Magnetic pole length
6…周回荷電粒子ビーム
10…入射器
11…入射ビームライン
20…粒子加速器
21…偏向電磁石
21a,28a…真空フランジ
22…四極電磁石
23…入射用装置
24…高周波加速空洞
25…六極電磁石
26…高周波電場装置
27…前段出射デフレクタ
27a…セプタム電極
27b…高圧電極
27c…真空容器
27d…静電シールド
28…中段出射デフレクタ
28c…セプタムコイル
29…後段出射デフレクタ
30…出射ビームライン
30a…ビームモニタ
31…照射装置
40…加速器制御装置
40a,41a…出射防止機能部
41…照射制御装置
50…周回ビーム軌道
51…出射ビーム軌道
52…遮断ビーム軌道
52a…ビームモニタ
52b…ビームダンプ
91…電極ギャップ幅
92、93、94…ギャップ
95…磁極長 1 ... Particle
Claims (12)
- 荷電粒子ビームを周回軌道に沿った方向へ偏向させる複数の偏向電磁石を有して前記荷電粒子ビームを周回および加速して出射する粒子加速器であって、
前記周回軌道から離間する方向へ前記荷電粒子ビームを偏向させる前段出射デフレクタと、
前記離間する方向へ偏向させた荷電粒子ビームを前記周回軌道へ近づく方向へ偏向させる中段出射デフレクタと、
前記近づく方向へ偏向させた荷電粒子ビームをさらに偏向させる後段出射デフレクタとを備え、
前記中段出射デフレクタと前記後段出射デフレクタの間には、前記偏向電磁石が少なくとも1つ備えられ、
前記前段出射デフレクタと前記中段出射デフレクタは、1つの真空容器内に収容されている
粒子加速器。 A particle accelerator having a plurality of deflecting electromagnets that deflect a charged particle beam in a direction along an orbit, orbiting and accelerating the charged particle beam.
A pre-stage emission deflector that deflects the charged particle beam in a direction away from the orbit, and
A middle-stage exit deflector that deflects the charged particle beam deflected in the separating direction toward the orbit.
A post-stage exit deflector that further deflects the charged particle beam deflected in the approaching direction is provided.
At least one deflection electromagnet is provided between the middle-stage emission deflector and the rear-stage emission deflector.
The front-stage exit deflector and the middle-stage exit deflector are particle accelerators housed in one vacuum container. - 前記少なくとも1つ備えられた偏向電磁石は、合計した偏向角度が60度以上90度以下になるように構成されている
請求項1記載の粒子加速器。 The particle accelerator according to claim 1, wherein the deflection electromagnet provided at least one is configured so that the total deflection angle is 60 degrees or more and 90 degrees or less. - 前記前段出射デフレクタと前記中段出射デフレクタとは、互いの間の距離を15cm以下にして配置されている
請求項1または2記載の粒子加速器。 The particle accelerator according to claim 1 or 2, wherein the front-stage emission deflector and the middle-stage emission deflector are arranged so that the distance between them is 15 cm or less. - 前記前段出射デフレクタは、高圧電極と前記高圧電極よりも薄い電極とを有する静電デフレクタで構成され、
前記中段出射デフレクタは、電磁石によって構成され、
前記前段出射デフレクタと前記中段出射デフレクタとは、互いの間の距離を、前記高圧電極と前記薄い電極との間の電極ギャップ幅よりも、大きくして配置されている
請求項1、2、または3記載の粒子加速器。 The pre-stage emission deflector is composed of an electrostatic deflector having a high-voltage electrode and an electrode thinner than the high-voltage electrode.
The middle-stage emission deflector is composed of an electromagnet.
Claims 1, 2 or the above-mentioned first-stage exit deflector and the middle-stage exit deflector are arranged so that the distance between them is larger than the electrode gap width between the high-voltage electrode and the thin electrode. 3. The particle accelerator according to 3. - 前記前段出射デフレクタと前記中段出射デフレクタの間に、静電シールドを配置した
請求項1から4のいずれか1つに記載の粒子加速器。 The particle accelerator according to any one of claims 1 to 4, wherein an electrostatic shield is arranged between the front-stage emission deflector and the middle-stage emission deflector. - 前記真空容器は、2台以上の真空ポンプが接続されている
請求項1から5のいずれか1つに記載の粒子加速器。 The particle accelerator according to any one of claims 1 to 5, wherein the vacuum vessel is connected to two or more vacuum pumps. - 請求項1から6のいずれか1つに記載の粒子加速器と、
前記粒子加速器に荷電粒子ビームを供給する入射器と、
前記入射器と前記粒子加速器を制御する加速器制御装置と、
前記後段出射デフレクタから出射される荷電粒子ビームを治療室に輸送する出射ビームラインと、
前記輸送された荷電粒子ビームを標的部位に照射する照射装置と、
前記前段出射デフレクタから前記中段出射デフレクタへ入射される荷電粒子ビームが前記後段出射デフレクタから出射されないように前記中段出射デフレクタの生成磁場を低下させて出射防止する出射防止機能部と、
を備えた粒子線治療装置。 The particle accelerator according to any one of claims 1 to 6.
An injector that supplies a charged particle beam to the particle accelerator,
An accelerator control device that controls the injector and the particle accelerator,
An emission beam line that transports the charged particle beam emitted from the post-stage emission deflector to the treatment room, and
An irradiation device that irradiates the target site with the transported charged particle beam,
An emission prevention function unit that lowers the generated magnetic field of the middle-stage exit deflector to prevent the charged particle beam incident from the front-stage exit deflector into the middle-stage exit deflector from being emitted from the rear-stage exit deflector.
A particle therapy device equipped with. - 前記中段出射デフレクタの生成磁場を低下させることによって出射軌道の変化した荷電粒子ビームを遮断するビームダンプを前記粒子加速器内に備えた
請求項7記載の粒子線治療装置。 The particle beam therapy apparatus according to claim 7, further comprising a beam dump in the particle accelerator that blocks a charged particle beam whose emission trajectory has changed by lowering the generated magnetic field of the middle-stage exit deflector. - 前記生成磁場を低下させた中段出射デフレクタから出射した荷電粒子ビームを検出するビームモニタを前記粒子加速器内に備えた
請求項7または8記載の粒子線治療装置。 The particle beam therapy apparatus according to claim 7 or 8, wherein a beam monitor for detecting a charged particle beam emitted from a middle-stage emission deflector having a reduced generated magnetic field is provided in the particle accelerator. - 荷電粒子ビームを周回軌道に沿った方向へ偏向させる複数の偏向電磁石を有して前記荷電粒子ビームを周回および加速して出射する粒子加速器を備え、
前記粒子加速器は、
前記周回軌道から離間する方向へ前記荷電粒子ビームを偏向させる前段出射デフレクタと、
前記離間する方向へ偏向させた荷電粒子ビームを所定の方向へ偏向させる中段出射デフレクタと、
前記所定の方向へ偏向させた荷電粒子ビームをさらに偏向させる後段出射デフレクタと、を含み、
前記粒子加速器に荷電粒子ビームを供給する入射器と、
前記入射器と前記粒子加速器を制御する加速器制御装置と、
前記後段出射デフレクタから出射される荷電粒子ビームを治療室に輸送する出射ビームラインと、
前記輸送された荷電粒子ビームを標的部位に照射する照射装置と、
前記前段出射デフレクタから前記中段出射デフレクタへ入射される荷電粒子ビームが前記後段出射デフレクタから出射されないように前記中段出射デフレクタの生成磁場を低下させて出射防止する出射防止機能部と、
を備えた粒子線治療装置。 A particle accelerator having a plurality of deflection electromagnets for deflecting a charged particle beam in a direction along an orbit orbit and accelerating and emitting the charged particle beam.
The particle accelerator
A pre-stage emission deflector that deflects the charged particle beam in a direction away from the orbit, and
A middle-stage exit deflector that deflects the charged particle beam deflected in the separating direction in a predetermined direction, and
A post-stage exit deflector that further deflects the charged particle beam deflected in the predetermined direction is included.
An injector that supplies a charged particle beam to the particle accelerator,
An accelerator control device that controls the injector and the particle accelerator,
An emission beam line that transports the charged particle beam emitted from the post-stage emission deflector to the treatment room, and
An irradiation device that irradiates the target site with the transported charged particle beam,
An emission prevention function unit that lowers the generated magnetic field of the middle-stage exit deflector to prevent the charged particle beam incident from the front-stage exit deflector into the middle-stage exit deflector from being emitted from the rear-stage exit deflector.
A particle therapy device equipped with. - 前記所定の方向は、前記周回軌道へ近づく方向である
請求項10に記載の粒子線治療装置。 The particle beam therapy apparatus according to claim 10, wherein the predetermined direction is a direction approaching the orbit. - 荷電粒子ビームを周回軌道に沿った方向へ偏向させる複数の偏向電磁石を備えた粒子加速器により前記荷電粒子ビームを周回および加速して出射する荷電粒子ビーム出射方法であって、
前記粒子加速器は、前段出射デフレクタと中段出射デフレクタと後段出射デフレクタとを備え、
前記中段出射デフレクタと前記後段出射デフレクタとの間には、前記偏向電磁石が少なくとも1つ備えられ、
前記前段出射デフレクタと前記中段出射デフレクタは、1つの真空容器内に収容された構成であり、
前記真空容器内で、
前記前段出射デフレクタにより前記周回軌道から離間する方向へ前記荷電粒子ビームを偏向させ、かつ、前記離間する方向へ偏向させた荷電粒子ビームを前記中段出射デフレクタにより前記周回軌道へ近づく方向へ偏向させ、
前記真空容器外で、
前記近づく方向へ偏向させた荷電粒子ビームを後段出射デフレクタによりさらに偏向させる
荷電粒子ビーム出射方法。 It is a method of emitting a charged particle beam that orbits and accelerates the charged particle beam by a particle accelerator provided with a plurality of deflection electromagnets that deflect the charged particle beam in a direction along an orbit.
The particle accelerator includes a front-stage emission deflector, a middle-stage emission deflector, and a rear-stage emission deflector.
At least one deflection electromagnet is provided between the middle-stage emission deflector and the rear-stage emission deflector.
The front-stage exit deflector and the middle-stage exit deflector are housed in one vacuum container.
In the vacuum vessel
The charged particle beam is deflected in a direction away from the orbit by the front-stage exit deflector, and the charged particle beam deflected in the distance is deflected in a direction approaching the orbit by the middle-stage exit deflector.
Outside the vacuum vessel,
A method of emitting a charged particle beam in which a charged particle beam deflected in an approaching direction is further deflected by a post-stage emission deflector.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021504926A JP7481753B2 (en) | 2019-03-08 | 2020-02-28 | Particle Therapy Equipment |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019043027 | 2019-03-08 | ||
JP2019-043027 | 2019-03-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020184232A1 true WO2020184232A1 (en) | 2020-09-17 |
Family
ID=72426539
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/008484 WO2020184232A1 (en) | 2019-03-08 | 2020-02-28 | Particle accelerator, particle beam radiation therapy device, and method for emitting charged particle beam |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7481753B2 (en) |
WO (1) | WO2020184232A1 (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6325500U (en) * | 1986-08-01 | 1988-02-19 | ||
JP2003036998A (en) * | 2001-07-23 | 2003-02-07 | Mitsubishi Electric Corp | Electrostatic septum electrode |
JP2012022776A (en) * | 2010-07-12 | 2012-02-02 | Hitachi Ltd | Synchrotron and particle beam medical treatment device |
WO2013030996A1 (en) * | 2011-08-31 | 2013-03-07 | 株式会社日立製作所 | Charged particle beam irradiation system and operating method of charged particle beam irradiation system |
JP2016081729A (en) * | 2014-10-17 | 2016-05-16 | 国立研究開発法人放射線医学総合研究所 | Particle accelerator and beam emission method for the same |
JP2016110941A (en) * | 2014-12-10 | 2016-06-20 | 株式会社東芝 | Accelerator and particle beam medical treatment device |
JP2018149730A (en) | 2017-03-13 | 2018-09-27 | 東レエンジニアリング株式会社 | Fiber bundle sticking device |
-
2020
- 2020-02-28 WO PCT/JP2020/008484 patent/WO2020184232A1/en active Application Filing
- 2020-02-28 JP JP2021504926A patent/JP7481753B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6325500U (en) * | 1986-08-01 | 1988-02-19 | ||
JP2003036998A (en) * | 2001-07-23 | 2003-02-07 | Mitsubishi Electric Corp | Electrostatic septum electrode |
JP2012022776A (en) * | 2010-07-12 | 2012-02-02 | Hitachi Ltd | Synchrotron and particle beam medical treatment device |
WO2013030996A1 (en) * | 2011-08-31 | 2013-03-07 | 株式会社日立製作所 | Charged particle beam irradiation system and operating method of charged particle beam irradiation system |
JP2016081729A (en) * | 2014-10-17 | 2016-05-16 | 国立研究開発法人放射線医学総合研究所 | Particle accelerator and beam emission method for the same |
JP2016110941A (en) * | 2014-12-10 | 2016-06-20 | 株式会社東芝 | Accelerator and particle beam medical treatment device |
JP2018149730A (en) | 2017-03-13 | 2018-09-27 | 東レエンジニアリング株式会社 | Fiber bundle sticking device |
Also Published As
Publication number | Publication date |
---|---|
JPWO2020184232A1 (en) | 2020-09-17 |
JP7481753B2 (en) | 2024-05-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7432516B2 (en) | Rapid cycling medical synchrotron and beam delivery system | |
JP5472944B2 (en) | High current DC proton accelerator | |
JP4691576B2 (en) | Particle beam therapy system | |
EP1358656B1 (en) | Apparatus for generating and selecting ions used in a heavy ion cancer therapy facility | |
JP5914130B2 (en) | Synchrotron and particle beam therapy system | |
US10300302B2 (en) | Particle beam transport system, and segment thereof | |
TWI792220B (en) | particle wire device | |
US20230199935A1 (en) | Charged particle beam injector and charged particle beam injection method | |
WO2020184232A1 (en) | Particle accelerator, particle beam radiation therapy device, and method for emitting charged particle beam | |
JP6253268B2 (en) | Particle beam therapy system | |
US10850132B2 (en) | Particle therapy system | |
JP7490263B2 (en) | Particle accelerators and particle beam therapy equipment | |
JP4959434B2 (en) | Particle beam irradiation system | |
WO2016060215A1 (en) | Particle accelerator and beam emission method therefor | |
JP7169163B2 (en) | Particle beam irradiation system | |
JP6758958B2 (en) | Heavy ion beam generator and method | |
Garnett | LAMP Technical Readiness Evaluation Report (Rev. 1) | |
Sawada et al. | Performance test of electron cyclotron resonance ion sources for the Hyogo Ion Beam Medical Center | |
US20230268096A1 (en) | Systems, devices, and methods for multi-directional dipole magnets and compact beam systems | |
JP2023106745A (en) | Function-coupled septum magnet, accelerator using the same, and particle beam therapy system | |
CN117121122A (en) | Neutron ray generating device and neutron ray treatment equipment | |
Alexeev et al. | Upgrade concept of multipurpose ITEP-TWAC | |
JPH05258897A (en) | Septum electromagnet | |
JP2023084781A (en) | Circular accelerator and particle beam treatment system | |
JP2019153509A (en) | Ion beam incidence device and particle beam therapeutic device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20769189 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021504926 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20769189 Country of ref document: EP Kind code of ref document: A1 |