JPH02114114A - Detection of internally ground shape of weld part of seam welded pipe - Google Patents

Detection of internally ground shape of weld part of seam welded pipe

Info

Publication number
JPH02114114A
JPH02114114A JP63267121A JP26712188A JPH02114114A JP H02114114 A JPH02114114 A JP H02114114A JP 63267121 A JP63267121 A JP 63267121A JP 26712188 A JP26712188 A JP 26712188A JP H02114114 A JPH02114114 A JP H02114114A
Authority
JP
Japan
Prior art keywords
linear array
probes
welded pipe
seam welded
array probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63267121A
Other languages
Japanese (ja)
Other versions
JPH0619270B2 (en
Inventor
Mikio Aratama
新玉 幹夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP63267121A priority Critical patent/JPH0619270B2/en
Publication of JPH02114114A publication Critical patent/JPH02114114A/en
Publication of JPH0619270B2 publication Critical patent/JPH0619270B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Landscapes

  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To enable accurate detection of an internally ground shape of a weld part of a seam welded pipe by arranging a pair of linear array probes sandwiching a welding line to perform an overlap processing of position information measured with an alternate switching thereof. CONSTITUTION:A pair of linear array probes 3 and 4 are arranged along the circumferential direction of the seam welded pipe 1 at positions as opposed to each other centered on a weld bead part 2 on the outside of the seam welded pipe 1. Transmitting and receiving sections 5 and 6 have a function of transmitting and receiving transmitting and receiving signals of the probes 3 and 4 and the transmission and reception thereof are controlled by mutual switching by a measurement control section 7. With the mutual switching by the measurement control section 7, one of vibrators of the probes 3 and 4 is scanned sequentially to emit an ultrasonic beam to an internal bead grinding section 2a at a certain emission angle and reflected wave is received with the other vibrator of the probes 3 and 4 to measure time between the emission and reception of the beam with a measurement control section 7 and a position of the receiving vibrator. These signals measured with the alternate switching undergo an overlap processing with an arithmetic section 8 to display 9 the results of the processing.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、電縫管溶接部内面研削形状の検知方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for detecting the internally ground shape of a welded portion of an electric resistance welded tube.

〈従来の技術〉 電縫管は、−nF7に、帯板をオープンパイプに成形し
たのち、その管軸方向に沿う突き合わせ部を熔接し、そ
の溶接ビード部の内外面の凸部をバイトで研削して平滑
にし、整形やボストアニーリングなどを施したのち所望
の長さに切断して製品とされる。
<Conventional technology> ERW pipes are made by forming a band plate into an open pipe at -nF7, welding the abutting portions along the tube axis direction, and grinding the convex portions on the inner and outer surfaces of the weld bead portion with a cutting tool. After being smoothed and subjected to shaping and boss annealing, it is cut into desired lengths to produce products.

ところで、この内外面の溶接ビード研削状況をモニタし
適正化を図ることは、電縫管製造上の重要なファクタで
あり、外面ビードの研削状況は、オペレータによる目視
やカメラでの監視が容易であり、すでに実用化されてい
る。
By the way, monitoring and optimizing the grinding status of the weld bead on the inner and outer surfaces is an important factor in manufacturing ERW pipes, and the grinding status of the outer bead can be easily monitored visually by an operator or with a camera. Yes, it is already in practical use.

一方、内面ビード研削状況の監視については、例えば実
開昭58−24062号公報に開示されているような溶
接前のオーブンパイプ位置から管内に長く突出させたロ
ンドの先端に取付けられた内面バイトの先端に管内面接
層を検出する検出器を設ける手段や、特開昭56−35
057号公報に開示されているような管の外周に配設し
た超音波厚み計を内面ビード部を中心に管周方向に周期
的に移動させてその厚みの軌跡をもって内面研削の形状
とする方法などが提案されている。
On the other hand, regarding the monitoring of the internal bead grinding status, for example, as disclosed in Utility Model Application Publication No. 58-24062, an internal cutting tool attached to the tip of a rond protruding long into the oven pipe from the position of the oven pipe before welding is used. Means for providing a detector for detecting the inner surface layer of the tube at the tip, and Japanese Patent Application Laid-Open No. 56-35
A method such as that disclosed in Publication No. 057 in which an ultrasonic thickness gauge disposed on the outer periphery of a pipe is periodically moved in the circumferential direction of the pipe around the inner bead part, and the trajectory of the thickness is used to form the shape of the internal grinding. etc. have been proposed.

〈発明が解決しようとする課題〉 しかしながら、前者の実開昭58−24062号の手段
では、径の小さい管の場合は取付けが困難であり、また
、検出器を管内部に設置するために、溶接時に発生する
ビットなどに汚tnされて正確に検出することができな
いなどの問題がある。
<Problems to be Solved by the Invention> However, the former method of Utility Model Application No. 58-24062 is difficult to install in the case of a small-diameter tube, and in order to install the detector inside the tube, There are problems such as contamination by bits generated during welding, making accurate detection impossible.

一方、後者の特開昭56−35057号の方法では、溶
接後のビードカットされた後で直ちに検出して内面バイ
トの位置制御にフィードバックしてやることが重要であ
ることから、溶接ビード部の近傍に超音波厚み針を配置
させる必要がある。
On the other hand, in the latter method of JP-A No. 56-35057, it is important to detect the bead immediately after it is cut after welding and feed it back to the position control of the inner bit. It is necessary to place an ultrasonic thickness needle.

しかし、溶接ビード部は通常300°C以上もの高温で
あるから、音響カップリング水を介して超音波厚み針を
管外面に接触させることは現状の技術では極めて困難で
ある。なお、その対策として音響カップリング水を大量
に使用することは、ビードカット部を急冷することにな
るので、溶接ビード部の品質上からみて重大な問題であ
る。
However, since the temperature of the weld bead is usually as high as 300° C. or higher, it is extremely difficult with the current technology to bring the ultrasonic thickness needle into contact with the outer surface of the tube via acoustic coupling water. It should be noted that using a large amount of acoustic coupling water as a countermeasure against this problem results in rapid cooling of the bead cut section, which is a serious problem from the viewpoint of the quality of the weld bead section.

そのような5題を解決するため、例えば文献[超音波合
成開口イメージング(非破壊検査、第36巻第10号、
昭和62年io月発行、 P、 742〜747) J
に紹介されているような管外面からの超音波探傷を応用
して内面プロフィールを測定することが考えられる。
In order to solve these five problems, for example, the literature [Ultrasonic Synthetic Aperture Imaging (Non-Destructive Testing, Vol. 36, No. 10,
Published in May 1988, P, 742-747) J
It is possible to measure the inner surface profile by applying ultrasonic flaw detection from the outer surface of the tube, as introduced in .

しかし、この方式では、内面ビード上に位置するように
超音波探触子を走査する必要が住しるから、前記した待
I7n昭56−35057号の方法と同様の問題がある
。また、外面に溶接ビードが残った場合、それに超音波
探触子が乗り上がると音響カップリング水が保持されず
、測定ができなくなるという問題がある。さらに、合成
開口の計算処理を行うためには、装置が複雑でかつ高価
になるという問題もある。
However, in this method, since it is necessary to scan the ultrasonic probe so as to position it above the inner bead, there is a problem similar to that of the method of the above-mentioned Patent I7n No. 56-35057. Further, if a weld bead remains on the outer surface and the ultrasonic probe rides on it, there is a problem that acoustic coupling water is not retained and measurement cannot be performed. Furthermore, there is a problem in that the apparatus required to perform calculation processing of the synthetic aperture is complicated and expensive.

本発明は、上記のような課題を解決すべくしてなされた
ものであって、電縫管溶接部の内面研削形状を検知する
のに好適な方法を提供することを目的とする。
The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a method suitable for detecting the internally ground shape of a welded portion of an electric resistance welded pipe.

く課題を解決するだめの手段〉 本発明は、管軸方向に沿う突き合わせ部を溶接したのち
、その溶接ビード部をビードカッタで研削された電縫管
の内面研削形状を検知する方法において、前記電縫管の
外面の前記溶接ビード部を中心として対向した位置に一
対のリニアアレイプローブを円周方向に沿って配置し、
一方のリニアアレイプローブを発振側とし′ζその振動
子を走査しながら超音波ビームを発振し、もう一方のリ
ニアアレイプローブを受信側としてその振動子を前記発
振周期に同期させて走査しながらその反射波を検出して
反射点の位置情報を求め、ついで、発振側のリニアアレ
イプローブと受信側のリニアアレイプローブとを切り換
えて同様に発受(δを行ってその反射波を検出して反射
点の位置情報を求め、さらに、これら反射点の位置情報
を重ね合わせ処理して研削プロフィールを得ることを特
徴とする電縫管溶接部内面研削形状の検知方法である。
Means for Solving the Problem> The present invention provides a method for detecting the internal grinding shape of an electric resistance welded pipe in which the welded bead is ground with a bead cutter after welding the abutting portion along the pipe axis direction. A pair of linear array probes are arranged along the circumferential direction at opposing positions centering on the weld bead portion on the outer surface of the sewing tube,
One linear array probe is used as the oscillation side, and the ultrasonic beam is oscillated while its transducer is scanned. Detect the reflected wave and obtain the position information of the reflection point, then switch between the linear array probe on the oscillating side and the linear array probe on the receiving side to transmit and receive in the same way (δ) to detect and reflect the reflected wave. This is a method for detecting the internal grinding shape of an electric resistance welded pipe welded part, which is characterized by obtaining positional information of a point, and then superimposing the positional information of these reflection points to obtain a grinding profile.

以下に、本発明の具体的構成について、第1図を用いて
説明する。
Below, a specific configuration of the present invention will be explained using FIG. 1.

第1図は、本発明に係る電縫管溶接部の内面研削形状検
知装置の実施例を示す構成図である。
FIG. 1 is a configuration diagram showing an embodiment of an internal grinding shape detection device for a welded portion of an electric resistance welded pipe according to the present invention.

図において、電縫管lの外面の溶接ビード部2を中心と
して対向した位置に一対のリニアアレイプローブ3.4
を電縫管1の円周方向に沿って配置する。
In the figure, a pair of linear array probes 3.4 are placed at opposing positions centering on the weld bead 2 on the outer surface of the ERW tube l.
are arranged along the circumferential direction of the ERW tube 1.

送受信部5.6は、リニアアレイプローブ34の送受信
信号を送受信する機能を有しており、その送信、受信の
交互切換は測定制御部7によって制御される。
The transmitting/receiving section 5.6 has a function of transmitting and receiving signals transmitted and received by the linear array probe 34, and the alternating switching between transmission and reception is controlled by the measurement control section 7.

演算部8は、交互切換によって測定された信号をそれぞ
れ演算して重ね合わ処理する機能を有しており、その処
理結果はデイスプレィ9で表示される。
The calculation unit 8 has a function of calculating and superimposing the signals measured by alternate switching, and the processing results are displayed on the display 9.

なお、ここで用いるリニアアレイプローブ3゜4は、例
えば文献「非破壊検査(第35巻第9号。
The linear array probe 3゜4 used here is described, for example, in the document "Nondestructive Testing (Vol. 35, No. 9).

667i)Jに記載されているように、各振動子の発振
タイミングを位相制御することにより、超音波ビームを
広範囲にわたって走査することのできるものであればよ
い。
As described in No. 667i) J, any ultrasonic beam may be used as long as it can scan an ultrasonic beam over a wide range by controlling the phase of the oscillation timing of each transducer.

〈作 用〉 以下に、本発明の作用について説明する。<For production> The operation of the present invention will be explained below.

第1図に示した内面研削形伏検知装置において、溶接ビ
ード部2からリニアアレイプローブ3,4までの距離l
を例えば0.5スキツプのようにスキンプ点が同一な値
とする。
In the internally ground type depression detection device shown in FIG.
For example, assume that the skimp points are the same value, such as 0.5 skip.

そして、一方のリニアアレイプローブ3の振動子を順次
走査して内面ビード研削部2aに対しである射出角度で
超音波ビームを発振し、もう一方のリニアアレイプロー
ブ4で反射波を受信させる。
Then, the transducer of one linear array probe 3 is sequentially scanned to oscillate an ultrasonic beam at a certain emission angle to the inner bead grinding portion 2a, and the other linear array probe 4 receives reflected waves.

このとき、測定制御部7でその超音波ビームの発振から
受信までの時間(距離)および受信側のリニアアレイプ
ローブ4での受信した振動子の位置を計測する。
At this time, the measurement control unit 7 measures the time (distance) from oscillation to reception of the ultrasonic beam and the position of the received transducer on the receiving side linear array probe 4.

このように超音波ビームの射出角度、射出位置。In this way, the emission angle and injection position of the ultrasonic beam.

入射位置、入射までの時間(距j!tI)を計測するこ
とにより、演算部8において反射波の反射点の位置を求
めるのである。
By measuring the incident position and the time until the incident (distance j!tI), the calculation unit 8 determines the position of the reflection point of the reflected wave.

いま、第2図に示すように、測定面をy軸とy軸の平面
座標で表すものとし、射出点F1の座標を(x+ 、y
+ )、入射点F、の座標を(X、。
Now, as shown in Fig. 2, the measurement surface is represented by the plane coordinates of the y-axis and the y-axis, and the coordinates of the injection point F1 are (x+, y
+), the coordinates of the incident point F, are (X,.

y8)、反射点Rの座標を(χ、y)とする、また、電
縫管lの中心点0を通る射出点F1の法線■に対する射
出角度をα、y軸と法線Vとの交叉角をβ、また、射出
点F1と入射点1+ zのy軸」二の距離をF、超音波
ビームの伝tm距離すなわち射出点F、→反射反射点2
財 る。
y8), the coordinates of the reflection point R are (χ, y), and the injection angle with respect to the normal ■ of the injection point F1 passing through the center point 0 of the ERW tube l is α, and the y-axis and the normal V The intersection angle is β, and the distance between the emission point F1 and the incident point 1 + the y-axis of z is F, the transmission tm distance of the ultrasonic beam, that is, the emission point F, → reflection reflection point 2
Make money.

そこで、反射波の反射点Rの極座標を(r,  θ)と
すると、前記した反射点Rの座!ff(x.y)との関
係は、下記のように表すことができる。
Therefore, if the polar coordinates of the reflection point R of the reflected wave are (r, θ), then the position of the reflection point R mentioned above! The relationship with ff(x.y) can be expressed as follows.

x ”’ r cos θ  −−゛゛゛−−(+)y
=rsin θ ・− ・−〜ーーー・−・・・−・−
・・−・−・−・−(2)ここで、θ−α+βである。
x ”' r cos θ −−゛゛゛−−(+)y
=rsin θ ・− ・−〜ーー・−・・・−・−
・・−・−・−・−(2) Here, θ−α+β.

この反射点Rの軌跡は、第3図に示すように、射出点F
,と入射点F,との2点からの距離の和すなわち超音波
ビームの伝播距NLが一定の軌跡を11ηくという楕円
の定義を適用すれば、楕円Eで近位させることができる
。すなわら、射出点F。
The locus of this reflection point R is as shown in FIG.
, and the point of incidence F, that is, the propagation distance NL of the ultrasonic beam, if we apply the definition of an ellipse in which the propagation distance NL of the ultrasonic beam is 11η along a constant locus, the ellipse E can be used to approximate the ultrasonic beam. That is, injection point F.

を極,F,−xを原綿とする極座標(r,  θ)を用
いれば、距Nrは下記(3)式で表すことができる。
By using polar coordinates (r, θ) where F is the pole and F and −x are the raw cotton, the distance Nr can be expressed by the following equation (3).

r=p/ (1+εcos θ)  −−−−一・−・
・−−−−−−−−一(3)ここで、P;直弦の半分 ε;離心率 いま、この楕円Eの短辺をa,長辺をbとすると、それ
らは下記(4)、 (5)式で表される。
r=p/ (1+εcos θ) −−−−1・−・
--------1 (3) Here, P: Half of the straight line ε: Eccentricity Now, if the short side of this ellipse E is a and the long side is b, then they are as follows (4) , expressed by equation (5).

a=L/2  −−−・−・・・−・−・−−−−−・
−−−−−・−・−・− 441b=172fi下下”
 −−−・・・・−−−(5)また、この楕円Eの乱心
率εは、 ε= ( 1/a) 、/7Y]]T = F/L さらに、直弦の半分pは、 p=b”/a = ( L” + F ” ) / 2 L  −−−
−(7)したがって、前記(3)式は、下記(8)式の
ようにすべて既知の値で表すことができる。
a=L/2 −−−・−・・−・−・−−−−−・
−−−−−・−・−・− 441b=172fi lower
−−−・・−−−(5) Also, the randomness ε of this ellipse E is ε= (1/a), /7Y]]T = F/L Furthermore, half of the straight line p is: p=b”/a=(L”+F”)/2 L---
-(7) Therefore, the above equation (3) can be expressed by all known values as shown in the following equation (8).

r =  (L”  1−F”  ) / (2 L+
Fcos  θ)これによって求められたr.θを前記
(+)、 (21式に代入すれば、反射点Rの座標(x
,y)を算出することができる。
r = (L"1-F") / (2 L+
Fcos θ) The r. By substituting θ into the above (+) and (21), the coordinates of the reflection point R (x
,y) can be calculated.

このようにして、一方のリニアアレイプローブ3の振動
子の走査を完了し、演算部8において反射波の反射点R
の座標(x,y)の演算処理を行って位置情報を求めて
から、測定制御部7の切換制御jによってもう一方のリ
ニアアレイプローブ4から超音波ビームを発振させリニ
アアレイプローブ3で受信させるようにして、演算部8
で同様の演算処理を行って位置情報を求める。
In this way, the scanning of the transducer of one linear array probe 3 is completed, and the reflection point R of the reflected wave is
After performing arithmetic processing on the coordinates (x, y) of and obtaining positional information, the measurement control unit 7 controls switching control j to oscillate an ultrasonic beam from the other linear array probe 4 and receive it at the linear array probe 3. In this way, the calculation section 8
Similar arithmetic processing is performed to obtain position information.

さらに、演算部8で両者の位置情報を重ね合わせ処理す
ることにより、もし一方のリニアアレイプローブで反射
波の影となる部分があって検出することができなくても
、もう一方のリニアアレイプローブで検出することがで
きるから、影の部分を解消した正確な内面ビード研削部
2aの研削ブロフィールが得るのである。
Furthermore, by superimposing the position information of both in the calculation unit 8, even if one linear array probe cannot detect a part that is shadowed by the reflected wave, the other linear array probe Therefore, it is possible to obtain an accurate grinding profile of the inner bead grinding portion 2a with the shadow portion eliminated.

なお、上記の説明において、溶接ビード部2の中心から
リニアアレイプローブ3,4までの距離Pを例えば0.
−5スキップ点としたが、溶接ビード部2からの熱的影
響を考慮すると、距離lを超音波ビームのスキップ距離
に応じてできるだけ大きくするのが望ましい。
In the above description, the distance P from the center of the weld bead portion 2 to the linear array probes 3, 4 is, for example, 0.
-5 skip points were set, but considering the thermal influence from the weld bead portion 2, it is desirable to make the distance l as large as possible according to the skip distance of the ultrasonic beam.

〈実施例〉 以下に、本発明の実施例について説明する。<Example> Examples of the present invention will be described below.

第1図に示した内面研削形状検知装置を用いて、外径1
14.3mmφ、肉厚9.52mmの電縫管が60m/
winO造管速度で溶接される製造ラインに適用した。
Using the internal grinding shape detection device shown in Fig. 1, the outer diameter 1
60m of ERW pipe with 14.3mmφ and wall thickness of 9.52mm
It was applied to a production line that welds at winO pipe manufacturing speed.

ここで用いたリニアアレイプローブは、64素子(0,
5mmピッチ)のものを溶接線から1.5スキップ点に
対向させて配置し、位相制御により合成した射角ビーム
(45“)となるように12素子を位相制御して励振し
た。なお、このリニアアレイプローブは、10kPRF
 (1秒間に10に回)で超音波ビームが射出されるも
のであるから、1走査で52回、したがって192走査
/Sである。リニアアレイプローブを左右切り換えて走
査して2回分を1画面とすると、1秒間に96ii!j
面が得られることになる。
The linear array probe used here had 64 elements (0,
5mm pitch) were placed facing the 1.5 skip point from the welding line, and the 12 elements were phase-controlled and excited so as to form an incident angle beam (45") synthesized by phase control. Linear array probe is 10kPRF
Since the ultrasonic beam is emitted at a rate of 10 times per second, one scan corresponds to 52 times, which is 192 scans/S. If you switch the linear array probe left and right to scan and make two scans into one screen, 96ii per second! j
You will get a surface.

そこで、16画面の平均化処理を行うと電縫管の長さ1
66M毎に測定することができる。
Therefore, if we average the 16 screens, the length of the ERW tube will be 1
It can be measured every 66M.

その測定結果のデイスプレィ百面表示の一例を第4図(
a)、 (b)に示した。
An example of a 100-page display of the measurement results is shown in Figure 4 (
Shown in a) and (b).

第4図(a)は、内面ビード部が正常に研削された場合
を示しており、そのプロフィールの軌跡がほぼ連続して
いる。
FIG. 4(a) shows a case where the inner bead portion is properly ground, and the locus of the profile is almost continuous.

一方、第4図(b)では、研削残りがあることを示して
いるが、そのプロフィールの軌跡に断点が認められる。
On the other hand, FIG. 4(b) shows that there is some residual grinding, but a break point is recognized in the locus of the profile.

これは2個のリニアアレイプローブを切り1^えて測定
する際、凹凸の大きい部分がいずれのリニアアレイプロ
ーブからも影になっていて検出できなかったため、それ
らの位置情報を重ね合わせ処理するときに欠落したもの
である。しかし、プロフィールの全体から研削残りがあ
ると判断することができる。
This is because when measuring by cutting two linear array probes, the parts with large irregularities were in the shadow from both linear array probes and could not be detected, so when processing their position information to superimpose them, This is what was missing. However, it can be determined that there is some residual grinding from the entire profile.

これによって、溶接ビード研削状況は、はぼ連続的に監
視することができる。また、例えばバイト欠けなどによ
りプロフィールが危、激に変化した場合でも、0.5秒
以下でアラームを出すことができ、その信号をフィード
パ・7りすることもできるから、実用上十分に使用する
ことができる。
Thereby, the weld bead grinding status can be monitored almost continuously. In addition, even if the profile changes drastically or dangerously due to, for example, missing bites, an alarm can be issued in less than 0.5 seconds, and the signal can also be fed and transmitted, so it can be used effectively for practical purposes. be able to.

〈発明の効果〉 以上説明したように、本発明によれば、溶接線をはさん
で一対のリニアアレイプローブを配置して、交互に切り
換えて測定した位置情報を重ね合わせ処理して内面ビー
ド研削部のプロフィールを求めるようにしたので、正確
に研削形状を検知することができ、電縫管の品質および
歩留り向上に寄与する。
<Effects of the Invention> As explained above, according to the present invention, a pair of linear array probes are arranged across a welding line, and the position information measured by switching them alternately is superimposed to perform internal bead grinding. Since the profile of the part is determined, it is possible to accurately detect the ground shape, which contributes to improving the quality and yield of the electric resistance welded pipe.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明に係る内面研削形状検知装置の実施例
を示す構成図、第2,3図は、本発明の測定原理を示す
説明図、第4図は、測定例を示す線図である。 3.4・・・リニアアレイプローブ。 5.6・・・送受信部、  7・・・測定制御部。 8・・・演算部、     9・・・デイスプレィ。 ■・・・電縫管、     2・・・溶接ビード部。 2a・・・内面ビード研削部。
FIG. 1 is a configuration diagram showing an embodiment of the internal grinding shape detection device according to the present invention, FIGS. 2 and 3 are explanatory diagrams showing the measurement principle of the present invention, and FIG. 4 is a diagram showing a measurement example. It is. 3.4...Linear array probe. 5.6...Transmission/reception unit, 7...Measurement control unit. 8... Arithmetic unit, 9... Display. ■...Erw pipe, 2...Weld bead part. 2a...Inner bead grinding part.

Claims (1)

【特許請求の範囲】[Claims] 管軸方向に沿う突き合わせ部を溶接したのち、その溶接
ビード部をビードカッタで研削された電縫管の内面研削
形状を検知する方法において、前記電縫管の外面の前記
溶接ビード部を中心として対向した位置に一対のリニア
アレイプローブを円周方向に沿って配置し、一方のリニ
アアレイプローブを発振側としてその振動子を走査しな
がら超音波ビームを発振し、もう一方のリニアアレイプ
ローブを受信側としてその振動子を前記発振周期に同期
させて走査しながらその反射波を検出して反射点の位置
情報を求め、ついで、発振側のリニアアレイプローブと
受信側のリニアアレイプローブとを切り換えて同様に発
受信を行ってその反射波を検出して反射点の位置情報を
求め、さらに、これら反射点の位置情報を重ね合わせ処
理して研削プロフィールを得ることを特徴とする電縫管
溶接部内面研削形状の検知方法。
In a method for detecting the internal grinding shape of an ERW tube in which the butt portion along the tube axis direction is welded and the weld bead portion is ground with a bead cutter, the electrodes are opposite to each other centering on the weld bead portion on the outer surface of the ERW tube. A pair of linear array probes is placed along the circumferential direction at the position where one linear array probe is used as the oscillating side to oscillate an ultrasound beam while scanning its transducer, and the other linear array probe is used as the receiving side. While scanning the vibrator in synchronization with the oscillation cycle, the reflected wave is detected to obtain the positional information of the reflection point, and then the linear array probe on the oscillating side and the linear array probe on the receiving side are switched and the same process is performed. The inner surface of a welded part of an ERW pipe is characterized in that the position information of the reflection point is obtained by transmitting and receiving signals to and from the ERW pipe, detecting the reflected waves, and then superimposing the position information of these reflection points to obtain a grinding profile. How to detect grinding shape.
JP63267121A 1988-10-25 1988-10-25 Detection method of inner surface grinding shape of ERW pipe weld Expired - Lifetime JPH0619270B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63267121A JPH0619270B2 (en) 1988-10-25 1988-10-25 Detection method of inner surface grinding shape of ERW pipe weld

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63267121A JPH0619270B2 (en) 1988-10-25 1988-10-25 Detection method of inner surface grinding shape of ERW pipe weld

Publications (2)

Publication Number Publication Date
JPH02114114A true JPH02114114A (en) 1990-04-26
JPH0619270B2 JPH0619270B2 (en) 1994-03-16

Family

ID=17440362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63267121A Expired - Lifetime JPH0619270B2 (en) 1988-10-25 1988-10-25 Detection method of inner surface grinding shape of ERW pipe weld

Country Status (1)

Country Link
JP (1) JPH0619270B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003329513A (en) * 2002-05-15 2003-11-19 Koyo Seiko Co Ltd Measuring method for propagation speed of ultrasonic waves in inner ring of cylindrical roller bearing and measuring method for degree of fatigue
WO2008040407A1 (en) * 2006-09-29 2008-04-10 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Ultrasonic test arrangement

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003329513A (en) * 2002-05-15 2003-11-19 Koyo Seiko Co Ltd Measuring method for propagation speed of ultrasonic waves in inner ring of cylindrical roller bearing and measuring method for degree of fatigue
WO2008040407A1 (en) * 2006-09-29 2008-04-10 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Ultrasonic test arrangement

Also Published As

Publication number Publication date
JPH0619270B2 (en) 1994-03-16

Similar Documents

Publication Publication Date Title
JP4910768B2 (en) Calibration method of ultrasonic flaw detection, tube quality control method and manufacturing method
JP4910769B2 (en) Pipe quality control method and manufacturing method
US6948369B2 (en) Methods for ultrasonic inspection of spot and seam resistance welds in metallic sheets and a spot weld examination probe system (SWEPS)
US9063059B2 (en) Three-dimensional matrix phased array spot weld inspection system
KR101641014B1 (en) Defect detection device, defect detection method, and storage medium
JP5003275B2 (en) Ultrasonic flaw detection apparatus and ultrasonic flaw detection method for tubular body
JP2007163470A (en) Apparatus and method for ultrasonically detecting flaw of tube
KR20190016086A (en) Ultrasonic Flaw Detector, Ultrasonic Flaw Detector, Manufacturing Method of Welded Steel Pipe, and Quality Control Method of Welded Steel Pipe
JP4690167B2 (en) Weld penetration depth exploration method and weld penetration depth exploration device
JP2017509873A (en) Portable matrix phased array spot weld inspection system
CN105044211A (en) TRL phased array probe-based defect 3D visualization ultrasonic testing flow
CN105973990A (en) Inclined crack TOFD quantitative detection method based on geometric relationship
JPH0453622B2 (en)
JP4593862B2 (en) Ultrasonic inspection method for welded seam of welded structure turbine rotor
CN105717197B (en) A kind of thick-walled pipe girth joint cosmetic bug diffraction time difference supersonic detection method
JPH02114114A (en) Detection of internally ground shape of weld part of seam welded pipe
JP5699695B2 (en) Electric seam pipe seam detection method and apparatus
JPH04151553A (en) Method for detecting cut shape of inner surface of welded part of seam welded pipe
JP3389599B2 (en) Ultrasonic flaw detection method for steel pipe and ultrasonic flaw detection apparatus for steel pipe
JP2747825B2 (en) Ultrasonic tomography detection method and apparatus
JP2001050941A (en) Variable angle ultrasonic probe and variable angle ultrasonic flaw-detecting device
CN109917019A (en) A kind of steel frame polyethylene compound pipe phased array imaging detection device and method
CN108956779A (en) A kind of Resistance Welding point detecting method based on total focus synthetic aperture technique
KR20070005767A (en) Laser using welding flaw detecting for spiral welding pipe
WO2016172178A1 (en) Gating methods for use in weld inspection systems