JP2003329513A - Measuring method for propagation speed of ultrasonic waves in inner ring of cylindrical roller bearing and measuring method for degree of fatigue - Google Patents

Measuring method for propagation speed of ultrasonic waves in inner ring of cylindrical roller bearing and measuring method for degree of fatigue

Info

Publication number
JP2003329513A
JP2003329513A JP2002140432A JP2002140432A JP2003329513A JP 2003329513 A JP2003329513 A JP 2003329513A JP 2002140432 A JP2002140432 A JP 2002140432A JP 2002140432 A JP2002140432 A JP 2002140432A JP 2003329513 A JP2003329513 A JP 2003329513A
Authority
JP
Japan
Prior art keywords
inner ring
sensor
line
propagation velocity
raceway surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002140432A
Other languages
Japanese (ja)
Other versions
JP3831292B2 (en
Inventor
Noriyasu Oguma
規泰 小熊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koyo Seiko Co Ltd
Original Assignee
Koyo Seiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koyo Seiko Co Ltd filed Critical Koyo Seiko Co Ltd
Priority to JP2002140432A priority Critical patent/JP3831292B2/en
Publication of JP2003329513A publication Critical patent/JP2003329513A/en
Application granted granted Critical
Publication of JP3831292B2 publication Critical patent/JP3831292B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Rolling Contact Bearings (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a measuring method for a propagation speed of ultrasonic waves in an inner ring of a cylindrical roller bearing, in which it is not required to replace a transmitting sensor and a receiving sensor even when a diameter of the inner ring is changed and which reduces a man-hour and costs. <P>SOLUTION: In the measuring method for the propagation speed of the ultrasonic waves in the inner ring of the cylindrical roller bearing, the transmitting sensor 1 and the receiving sensor 2 are brought into line contact with the inner ring 10 so as to measure the propagation speed of the ultrasonic waves, and the transmitting sensor 1 and the receiving sensor 2 can be used for the inner ring 10 in different diameters. Consequently, it is not required to prepare a plurality of kinds of transmitting sensors 1 and receiving sensors 2 according to the diameter of the inner ring 10, and the measuring method reduces a measuring man-hour and measuring costs. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、円筒ころ軸受の
内輪に超音波を伝播させ、その伝播速度を測定する超音
波伝播速度測定方法に関し、また、上記測定した伝播速
度に基いて、上記円筒ころ軸受の内輪の疲労度を測定す
る疲労度測定方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic wave propagation velocity measuring method for propagating an ultrasonic wave to an inner ring of a cylindrical roller bearing and measuring its propagation velocity. Further, based on the measured propagation velocity, the cylinder The present invention relates to a fatigue degree measuring method for measuring the fatigue degree of an inner ring of a roller bearing.

【0002】[0002]

【従来の技術】従来、円筒ころ軸受の内輪の特性(たと
えば、硬度)を測定するに際し、超音波の送信センサお
よび受信センサのセンサ面(装着面)を、内輪の軌道面に
沿って密着するような面曲率とし、送信センサから内輪
に伝播させた超音波の速度に基いて、内輪の特性を測定
していた。
2. Description of the Related Art Conventionally, when measuring characteristics (for example, hardness) of an inner ring of a cylindrical roller bearing, the sensor surfaces (mounting surfaces) of ultrasonic transmission and reception sensors are closely attached along the raceway surface of the inner ring. With such a surface curvature, the characteristics of the inner ring have been measured based on the velocity of the ultrasonic waves propagated from the transmission sensor to the inner ring.

【0003】[0003]

【発明が解決しようとする課題】このため、上記送信セ
ンサおよび受信センサは、直径が異なる複数種類の内輪
に適用することができず、直径が異なる内輪の種類だ
け、送信センサと受信センサを用意することが必要とな
って、測定工数,測定コストを増大させていた。
Therefore, the transmission sensor and the reception sensor cannot be applied to a plurality of types of inner rings having different diameters, and the transmission sensor and the reception sensor are prepared only for the types of inner rings having different diameters. Therefore, the measurement man-hour and the measurement cost are increased.

【0004】そこで、この発明の目的は、内輪の直径が
変わっても、送信センサおよび受信センサを取り替える
必要がなく、測定工数および測定コストを低減できる円
筒ころ軸受の内輪の超音波伝播速度測定方法および疲労
度測定方法を提供することにある。
Therefore, an object of the present invention is to measure the ultrasonic propagation velocity of the inner ring of a cylindrical roller bearing, which does not require replacement of the transmitting sensor and the receiving sensor even if the diameter of the inner ring changes, and can reduce the measurement man-hour and the measurement cost. And to provide a method for measuring the degree of fatigue.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するた
め、請求項1の発明の円筒ころ軸受の内輪の超音波伝播
速度測定方法は、円筒ころ軸受の内輪の軌道面に超音波
を送信する送信センサと、上記軌道面を伝播する上記超
音波を受信する受信センサとを用いて、上記超音波が上
記軌道面を伝播する伝播速度を測定する方法であって、
上記送信センサと受信センサとを、上記内輪の軌道面に
対して、周方向に所定間隔を隔てて軸方向の線で線接触
させ、上記送信センサが上記軌道面に線接触している接
触線と上記内輪の中心とを結ぶ直線と、上記受信センサ
が上記軌道面に線接触している接触線と上記内輪の中心
とを結ぶ直線とがなす角度を2αとし、上記軌道面の半
径をr(mm)とし、上記内輪の肉厚をT(mm)とする
と、次式 r(1−cosα)<T/2 を満たすように、上記送信センサと受信センサを配置す
ることを特徴としている。上記請求項1の発明では、上
記送信センサと受信センサとを、上記内輪の軌道面に対
して、軸方向の線で線接触させて、上記送信センサが内
輪の軌道面に送信した超音波を上記受信センサで受信す
る。この超音波が上記送信センサから受信センサまで伝
播する伝播時間と上記軌道面における上記送信センサの
線接触位置と受信センサの線接触位置との間の距離(セ
ンサ間伝播距離)とから上記超音波の伝播速度が求ま
る。この伝播速度に基き、たとえば、上記内輪の表面劣
化度、硬度、疲労度等の特性を測定できる。
In order to achieve the above object, the method for measuring the ultrasonic propagation velocity of the inner ring of a cylindrical roller bearing according to the invention of claim 1 transmits ultrasonic waves to the raceway of the inner ring of the cylindrical roller bearing. A method for measuring the propagation velocity of the ultrasonic wave propagating on the orbital plane, using a transmitting sensor and a receiving sensor for receiving the ultrasonic wave propagating on the orbital plane,
A contact line in which the transmission sensor and the reception sensor are in line contact with the raceway surface of the inner ring by axial lines at predetermined intervals in the circumferential direction, and the transmission sensor is in line contact with the raceway surface. And a straight line connecting the center of the inner ring and a straight line connecting the center of the inner ring and the contact line where the receiving sensor is in line contact with the raceway surface are 2α, and the radius of the raceway surface is r. (mm) and the wall thickness of the inner ring is T (mm), the transmission sensor and the reception sensor are arranged so as to satisfy the following expression r (1-cosα) <T / 2. In the invention of claim 1, the transmission sensor and the reception sensor are brought into line contact with the raceway surface of the inner ring by a line in the axial direction, and the ultrasonic wave transmitted by the transmission sensor to the raceway surface of the inner ring is transmitted. The signal is received by the reception sensor. This ultrasonic wave from the propagation time that this ultrasonic wave propagates from the transmission sensor to the reception sensor and the distance between the line contact position of the transmission sensor and the line contact position of the reception sensor on the orbital surface (inter-sensor propagation distance) The propagation speed of is obtained. Based on this propagation velocity, it is possible to measure the characteristics such as the degree of surface deterioration, hardness, and fatigue of the inner ring.

【0006】この請求項1の発明では、送信センサと受
信センサを内輪の軌道面に対して線接触させて超音波の
伝播速度を測定するから、この送信センサと受信センサ
は異なる直径の内輪に使用可能である。したがって、内
輪の直径に応じた複数種類の送信センサ,受信センサを
用意する必要がなくなり、測定工数と測定コストを低減
できる。
According to the first aspect of the present invention, since the transmission sensor and the reception sensor are in line contact with the raceway surface of the inner ring to measure the propagation velocity of ultrasonic waves, the transmission sensor and the reception sensor are inner rings having different diameters. It can be used. Therefore, it is not necessary to prepare a plurality of types of transmission sensors and reception sensors according to the diameter of the inner ring, and the number of measurement steps and the measurement cost can be reduced.

【0007】また、請求項1の発明では、上記式、r
(1−cosα)<T/2を満たすように、送信センサと受信
センサを配置することにより、上記内輪の軌道面を伝播
する超音波が内輪の内径面で反射した超音波の反射波の
干渉を受けることを抑制できる。
According to the first aspect of the invention, the above formula, r
By arranging the transmission sensor and the reception sensor so as to satisfy (1-cos α) <T / 2, the ultrasonic waves propagating on the raceway surface of the inner ring interfere with the reflected waves of the ultrasonic waves reflected on the inner diameter surface of the inner ring. Can be suppressed.

【0008】また、請求項2の発明の円筒ころ軸受の内
輪の超音波伝播速度測定方法は、円筒ころ軸受の内輪の
軌道面に超音波を送信する送信センサと、上記軌道面を
伝播する上記超音波を受信する受信センサとを用いて、
上記超音波が上記軌道面を伝播する伝播速度を測定する
方法であって、上記送信センサと受信センサとを、上記
内輪の軌道面に対して、周方向に所定間隔を隔てて軸方
向の線で線接触させ、上記送信センサが上記内輪の軌道
面に線接触している線と上記受信センサが上記内輪の軌
道面に線接触している線とに直交する直交直線と、この
直交直線と平行である上記軌道面の接線との間の距離
を、上記内輪の径方向の肉厚の2分の1未満に設定する
ことを特徴としている。
According to a second aspect of the present invention, there is provided a method for measuring an ultrasonic wave propagation velocity of an inner ring of a cylindrical roller bearing, wherein the ultrasonic wave is transmitted to the raceway surface of the inner ring of the cylindrical roller bearing, and the ultrasonic wave is propagated through the raceway surface. Using a reception sensor that receives ultrasonic waves,
A method for measuring the propagation velocity of the ultrasonic wave propagating on the orbital surface, wherein the transmitting sensor and the receiving sensor are lined in the axial direction at a predetermined interval in the circumferential direction with respect to the orbital surface of the inner ring. And a line in which the transmitting sensor is in line contact with the raceway of the inner ring and a line in which the receiving sensor is in line contact with the raceway of the inner ring are orthogonal straight lines and this orthogonal straight line It is characterized in that the distance between the parallel tangents to the raceway surface is set to less than half the radial thickness of the inner ring.

【0009】上記請求項2の発明では、上記送信センサ
と受信センサとを、上記内輪の軌道面に対して、軸方向
の線で線接触させて、上記送信センサが内輪の軌道面に
送信した超音波を上記受信センサで受信する。この超音
波が上記送信センサから受信センサまで伝播する伝播時
間と上記軌道面における上記送信センサの線接触位置と
受信センサの線接触位置との間の距離(センサ間伝播距
離)とから上記超音波の伝播速度が求まる。この伝播速
度に基き、たとえば、上記内輪の表面劣化度、硬度、疲
労度等の特性を測定できる。また、請求項2の発明で
は、上記送信センサが線接触している線と上記受信セン
サが線接触している線とに直交する直交直線と、この直
交直線と平行な上記内輪の軌道面の接線との間の距離を
内輪の径方向の肉厚の2分の1未満に設定した。この設
定により、上記内輪の軌道面を伝播する超音波が内輪の
内径面で反射した超音波の反射波の干渉を受けることを
抑制できる。したがって、軌道面を伝播する超音波の測
定感度を向上でき、伝播速度の測定精度を向上できる。
したがって、この方法を使用すれば、内輪の特性(表面
劣化度、硬度、疲労度等)を正確に測定できる。
According to the second aspect of the present invention, the transmission sensor and the reception sensor are brought into line contact with the raceway surface of the inner ring by an axial line, and the transmission sensor transmits to the raceway surface of the inner ring. Ultrasonic waves are received by the reception sensor. The ultrasonic wave from the propagation time that this ultrasonic wave propagates from the transmission sensor to the reception sensor and the distance between the line contact position of the transmission sensor and the line contact position of the reception sensor on the orbital surface (inter-sensor propagation distance) The propagation speed of is obtained. Based on this propagation velocity, it is possible to measure the characteristics such as the degree of surface deterioration, hardness, and fatigue of the inner ring. Further, in the invention of claim 2, an orthogonal straight line orthogonal to a line in which the transmission sensor is in line contact with a line in which the reception sensor is in line contact, and a raceway surface of the inner ring parallel to the orthogonal straight line. The distance from the tangent line was set to less than half the radial thickness of the inner ring. With this setting, it is possible to suppress the interference of the ultrasonic waves propagating on the raceway surface of the inner ring with the reflected waves of the ultrasonic waves reflected on the inner diameter surface of the inner ring. Therefore, the measurement sensitivity of the ultrasonic wave propagating on the orbital surface can be improved, and the measurement accuracy of the propagation velocity can be improved.
Therefore, by using this method, the characteristics of the inner ring (surface deterioration degree, hardness, fatigue degree, etc.) can be accurately measured.

【0010】また、請求項3の発明は、請求項1または
2に記載の超音波伝播速度測定方法において、上記送信
センサは、超音波の送信に有効な有効部分を上記内輪の
軌道面に接触させ、上記受信センサは、超音波の受信に
有効な有効部分を上記内輪の軌道面に接触させることを
特徴としている。
Further, the invention of claim 3 is the ultrasonic wave propagation velocity measuring method according to claim 1 or 2, wherein the transmitting sensor contacts an effective portion effective for transmitting ultrasonic waves with the raceway surface of the inner ring. The receiving sensor is characterized in that an effective portion effective for receiving ultrasonic waves is brought into contact with the raceway surface of the inner ring.

【0011】この請求項3の発明では、上記送信センサ
は、超音波の送信に有効な有効部分を上記内輪の軌道面
に接触させ、上記受信センサは、超音波の受信に有効な
有効部分を上記内輪の軌道面に接触させている。したが
って、送信センサはその有効部分から超音波を軌道面に
確実に伝播させることができ、受信センサはその有効部
分で上記超音波を確実に検出できる。
According to the third aspect of the present invention, the transmission sensor brings an effective portion effective for transmitting ultrasonic waves into contact with the raceway surface of the inner ring, and the reception sensor has an effective portion effective for receiving ultrasonic waves. It is in contact with the raceway surface of the inner ring. Therefore, the transmitting sensor can surely propagate the ultrasonic wave from the effective portion to the orbital surface, and the receiving sensor can surely detect the ultrasonic wave at the effective portion.

【0012】また、請求項4の発明は、請求項1または
2に記載の超音波伝播速度測定方法において、上記内輪
の軌道面に対向させる上記送信センサの対向面は平面形
状であり、上記内輪の軌道面に対向させる上記受信セン
サの対向面は平面形状であることを特徴としている。
Further, the invention of claim 4 is the ultrasonic wave propagation velocity measuring method according to claim 1 or 2, wherein the facing surface of the transmission sensor facing the raceway surface of the inner ring is a flat shape, and the inner ring is It is characterized in that the facing surface of the above-mentioned reception sensor facing the track surface of is a planar shape.

【0013】この請求項4の発明では、上記内輪の軌道
面に対向させる上記送信センサの対向面は平面形状であ
り、上記内輪の軌道面に対向させる上記受信センサの対
向面は平面形状である。したがって、送信センサおよび
受信センサの対向面の形状を特に単純化でき、センサコ
ストを低減できる。
In the invention of claim 4, the facing surface of the transmitting sensor facing the raceway surface of the inner ring is flat, and the facing surface of the receiving sensor facing the raceway surface of the inner ring is flat. . Therefore, the shapes of the facing surfaces of the transmitting sensor and the receiving sensor can be particularly simplified, and the sensor cost can be reduced.

【0014】また、請求項5の発明の疲労度測定方法
は、請求項1乃至4のいずれか1つに記載の超音波伝播
速度測定方法によって、円筒ころ軸受の内輪を伝播する
超音波の伝播速度を測定し、この測定した伝播速度に基
いて、上記円筒ころ軸受の内輪の疲労度を測定する。
According to a fifth aspect of the present invention, there is provided a fatigue measuring method according to any one of the first to fourth aspects, in which the ultrasonic wave propagating through the inner ring of the cylindrical roller bearing is propagated. The speed is measured, and the fatigue degree of the inner ring of the cylindrical roller bearing is measured based on the measured propagation speed.

【0015】この請求項5の発明では、上記超音波伝播
速度測定方法でもって、内輪の軌道面を伝播する超音波
の伝播速度を正確かつ容易に測定でき、この正確に測定
した伝播速度に基いて、内輪の疲労度を正確かつ容易に
測定できる。
According to the fifth aspect of the present invention, the ultrasonic wave propagation velocity measuring method can accurately and easily measure the propagation velocity of the ultrasonic wave propagating on the raceway surface of the inner ring, and based on the accurately measured propagation velocity. In addition, the degree of fatigue of the inner ring can be measured accurately and easily.

【0016】[0016]

【発明の実施の形態】以下、この発明を図示の実施の形
態により詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below with reference to the embodiments shown in the drawings.

【0017】図1,2,3を参照して、この発明の円筒こ
ろ軸受の内輪の疲労度測定方法の実施形態を説明する。
With reference to FIGS. 1, 2 and 3, an embodiment of a method for measuring the degree of fatigue of an inner ring of a cylindrical roller bearing of the present invention will be described.

【0018】図1に示すように、この実施形態の疲労度
測定方法では、円筒ころ軸受の内輪10の軌道面10A
に送信センサ1と受信センサ2を線接触させる。つま
り、送信センサ1は軸方向の接触線3で軌道面10Aに
線接触しており、受信センサ2は軸方向の接触線5で軌
道面10Aに線接触している。
As shown in FIG. 1, in the fatigue measuring method of this embodiment, the raceway surface 10A of the inner ring 10 of the cylindrical roller bearing is used.
The transmitting sensor 1 and the receiving sensor 2 are brought into line contact with each other. That is, the transmission sensor 1 is in line contact with the raceway surface 10A at the axial contact line 3, and the reception sensor 2 is in line contact with the raceway surface 10A at the axial contact line 5.

【0019】また、図1,図2に示すように、上記送信
センサ1の接触線3と受信センサ2の接触線5とに直交
する直交直線6と、この直交直線6に平行な上記軌道面
10Aの接線7との間の距離H(mm)を、内輪10の径
方向の肉厚T(mm)の0.4倍に設定した。また、上記
軌道面10Aに対向させる送信センサ1の対向面1Aお
よび受信センサ2の対向面2Aは平面形状とした。
Further, as shown in FIGS. 1 and 2, an orthogonal straight line 6 which is orthogonal to the contact line 3 of the transmission sensor 1 and the contact line 5 of the reception sensor 2 and the raceway surface parallel to the orthogonal straight line 6. The distance H (mm) between the tangential line 7 of 10A was set to 0.4 times the radial thickness T (mm) of the inner ring 10. Further, the facing surface 1A of the transmitting sensor 1 and the facing surface 2A of the receiving sensor 2 facing the track surface 10A have a planar shape.

【0020】さらに、送信センサ1は、その対向面1A
のうちの超音波の送信に有効な有効部分11を軌道面1
0Aに接触させている。また、受信センサ2は、その対
向面2Aのうちの超音波の受信に有効な有効部分12を
軌道面10Aに接触させている。
Further, the transmission sensor 1 has its facing surface 1A.
Of the effective part 11 effective for transmitting ultrasonic waves in the orbital surface 1
It is in contact with 0A. Further, the reception sensor 2 brings an effective portion 12 of the facing surface 2A effective for receiving ultrasonic waves into contact with the track surface 10A.

【0021】次に、図3を参照して、上記送信センサ1
の構造を説明する。この送信センサ1は、外側樹脂部1
4の内部に圧電素子15が埋め込まれており、この圧電
素子15の振動面15Aは、上記対向面1Aに対して角
度β(度)だけ傾斜している。この振動面15Aの両端か
ら振動面15Aに直交する方向に延ばした延長線L1,
L2が上記対向面1Aに交わる2点P1,P2よりも所
定寸法だけ内側の領域R1が上記有効部分11となる。
図3に示すように、圧電素子15の振動面15Aを対向
面1Aに対して傾斜させたことで、振動面15Aからの
超音波を有効部分11の接触線3から軌道面10Aに沿
って伝播する剪断水平波(SH波(ShearHorizontal W
ave))を効率よく生成させることができる。
Next, referring to FIG. 3, the transmission sensor 1
The structure of is explained. This transmission sensor 1 has an outer resin portion 1
A piezoelectric element 15 is embedded in the interior of the piezoelectric element 4, and a vibrating surface 15A of the piezoelectric element 15 is inclined by an angle β (degrees) with respect to the facing surface 1A. An extension line L1 extending from both ends of the vibrating surface 15A in a direction orthogonal to the vibrating surface 15A,
A region R1 inside the two points P1 and P2 where L2 intersects the facing surface 1A by a predetermined dimension becomes the effective portion 11.
As shown in FIG. 3, by vibrating the vibrating surface 15A of the piezoelectric element 15 with respect to the facing surface 1A, ultrasonic waves from the vibrating surface 15A propagate from the contact line 3 of the effective portion 11 along the track surface 10A. Shear horizontal wave (SH wave (Shear Horizontal W
ave)) can be generated efficiently.

【0022】より具体的な一例としては、図3に示すよ
うに、送信センサ1の端壁1Bと圧電素子15との間の
寸法をDa(mm)とし、対向面1Aと平行な方向におけ
る圧電素子15の寸法をDb(mm)とし、対向面1Aと
圧電素子15との間の寸法をDcとする。さらに、端壁
1Bと点P2との間の寸法をDm(mm)とし、端壁1B
と点P1との間の寸法をDn(mm)とする。このとき、
上記端壁1Bから有効部分11の一端11Aまでの寸法
X1(mm)、および、上記端壁1Bから有効部分11の
他端11Bまでの寸法X2(mm)を、次の式(1)および
式(2)で算出される値とする。なお、以下では、寸法単
位系を(mm)とし、角度単位系を(度)とする。
As a more specific example, as shown in FIG. 3, the dimension between the end wall 1B of the transmission sensor 1 and the piezoelectric element 15 is Da (mm), and the piezoelectric element in the direction parallel to the facing surface 1A is used. The dimension of the element 15 is Db (mm), and the dimension between the facing surface 1A and the piezoelectric element 15 is Dc. Further, the dimension between the end wall 1B and the point P2 is set to Dm (mm), and the end wall 1B
The dimension between the point P1 and the point P1 is Dn (mm). At this time,
The dimension X1 (mm) from the end wall 1B to one end 11A of the effective portion 11 and the dimension X2 (mm) from the end wall 1B to the other end 11B of the effective portion 11 are calculated by the following equation (1) and Use the value calculated in (2). In the following, the dimension unit system is (mm) and the angle unit system is (degrees).

【0023】 X1=Dm+1=Da−(Dc+Db・tanβ)tanβ+1 …(1) X2=Dn−1=(Da+Db)−Dc・tanβ−1 …(2) つまり、この一例では、圧電素子15の振動面15Aを
対向面1Aに射影した領域R0よりも1mmだけ内側の
領域R1を有効部分11とし、この有効部分11を内輪
10の軌道面10Aに線接触させた。
X1 = Dm + 1 = Da− (Dc + Db · tanβ) tanβ + 1 (1) X2 = Dn−1 = (Da + Db) −Dc · tanβ−1 (2) That is, in this example, the vibrating surface of the piezoelectric element 15 is used. A region R1 which is inside by 1 mm from the region R0 in which 15A is projected on the facing surface 1A is defined as an effective portion 11, and this effective portion 11 is brought into line contact with the raceway surface 10A of the inner ring 10.

【0024】図2を参照すれば、この送信センサ1の対
向面1Aが軌道面10Aと線接触している接触線3と端
壁1Bとの間の寸法X0を、X1≦X0≦X2、に設定
することで、送信センサ1の対向面1Aの有効部分11
を軌道面10Aに線接触させることができる。この寸法
X0を接触位置X0と言う。
Referring to FIG. 2, the dimension X0 between the end wall 1B and the contact line 3 where the facing surface 1A of the transmission sensor 1 is in line contact with the raceway surface 10A is set to X1≤X0≤X2. By setting, the effective portion 11 of the facing surface 1A of the transmission sensor 1
Can be brought into line contact with the raceway surface 10A. This dimension X0 is called the contact position X0.

【0025】また、図2に示すように、この送信センサ
1の接触線3と軌道面10Aの中心P0とを結ぶ直線L
rが、この中心P0から延びて上記直交直線6に直交す
る中心線Lcとなす角度をαとする。上記直線Lrと、
上記接触位置X0における上記軌道面10Aの接線Ls
と上記中心線Lcとがなす直角三角形において、角度α
の補角は、(θ/2)であり、図1に示すように、この角
度(θ/2)の2倍である角度θをセンサ角度と言う。ま
た、上記送信センサ1の対向面1Aと端壁1Bとの交線
Laと上記受信センサ2の対向面2Aと端壁2Bとの交
線Lbとの間の距離Wをセンサ間隔と言う。
Further, as shown in FIG. 2, a straight line L connecting the contact line 3 of the transmission sensor 1 and the center P0 of the raceway surface 10A.
The angle that r extends from the center P0 and the center line Lc orthogonal to the orthogonal straight line 6 is α. The straight line Lr and
Tangent line Ls of the raceway surface 10A at the contact position X0
And a right-angled triangle formed by the center line Lc and the angle α
The complementary angle of (θ / 2) is (θ / 2), and as shown in FIG. 1, the angle θ that is twice this angle (θ / 2) is called the sensor angle. The distance W between the line of intersection La between the facing surface 1A of the transmission sensor 1 and the end wall 1B and the line of intersection Lb between the facing surface 2A of the reception sensor 2 and the end wall 2B is called the sensor interval.

【0026】また、接触線3と接触線5との間の軌道面
10A上の距離Ddを伝播距離と言う。この伝播距離D
dは次式(3)で算出される。
The distance Dd between the contact line 3 and the contact line 5 on the track surface 10A is called the propagation distance. This propagation distance D
d is calculated by the following equation (3).

【0027】 Dd=α・π・r/90 ……(3) 式(3)において、rは軌道面10Aの半径、πは円周
率。
Dd = α · π · r / 90 (3) In the formula (3), r is the radius of the orbital surface 10A, and π is the circular constant.

【0028】この実施形態の内輪10の疲労度測定方法
では、上記送信センサ1の圧電素子15を駆動して振動
面15Aを振動させることで、有効部分11を振動さ
せ、接触線3から軌道面10Aに超音波を伝播させる。
この超音波は、上記軌道面10Aに沿って進行するとと
もに、軌道面10Aに平行な振幅を有する横波であるS
H波である。
In the method of measuring the degree of fatigue of the inner ring 10 of this embodiment, the effective portion 11 is vibrated by driving the piezoelectric element 15 of the transmission sensor 1 to vibrate the vibrating surface 15A, and the contact line 3 to the raceway surface. Propagate ultrasonic waves to 10A.
This ultrasonic wave is a transverse wave S traveling along the orbital surface 10A and having an amplitude parallel to the orbital surface 10A.
It is an H wave.

【0029】このSH波が上記軌道面10Aを伝播し
て、上記受信センサ2の有効部分12の接触線5に達す
ると、受信センサ2はSH波を検知したことを表す検知
信号を出力する。上記送信センサ1の圧電素子15を駆
動したときから、上記受信センサ2が検知信号を出力し
たときまでの時間Ttと上記接触線3から接触線5まで
の軌道面10Aにおける距離Ddとから上記SH波の伝
播速度Vを算出できる。つまり、V=Dd/Tt(mm/
秒)。この伝播速度Vに基いて、内輪10の疲労度を測
定できる。たとえば、内輪10の疲労が進行するのに伴
ない、上記SH波の伝播速度Vが低下する。
When the SH wave propagates on the orbital surface 10A and reaches the contact line 5 of the effective portion 12 of the reception sensor 2, the reception sensor 2 outputs a detection signal indicating that the SH wave is detected. From the time Tt from when the piezoelectric element 15 of the transmission sensor 1 is driven to when the reception sensor 2 outputs a detection signal and the distance Dd on the track surface 10A from the contact line 3 to the contact line 5 to the SH The wave propagation velocity V can be calculated. That is, V = Dd / Tt (mm /
Seconds). Based on this propagation velocity V, the degree of fatigue of the inner ring 10 can be measured. For example, as the fatigue of the inner ring 10 progresses, the propagation speed V of the SH wave decreases.

【0030】この実施形態によれば、送信センサ1と受
信センサ2を内輪10に線接触させて超音波としてのS
H波の伝播速度を測定するから、この送信センサ1と受
信センサ2は異なる直径の内輪に使用可能である。した
がって、内輪10の直径に応じた複数種類の送信セン
サ,受信センサを用意する必要がなくなり、測定工数と
測定コストを低減できる。
According to this embodiment, the transmitting sensor 1 and the receiving sensor 2 are brought into line contact with the inner ring 10 to generate S as an ultrasonic wave.
Since the propagation velocity of the H wave is measured, the transmission sensor 1 and the reception sensor 2 can be used for inner rings having different diameters. Therefore, it is not necessary to prepare a plurality of types of transmission sensors and reception sensors according to the diameter of the inner ring 10, and the number of measurement steps and the measurement cost can be reduced.

【0031】また、この実施形態では、送信センサ1が
線接触している接触線3と受信センサ2が線接触してい
る接触線5とに直交する直交直線6と、この直交直線6
と平行な接線7との間の距離Hを内輪10の径方向の肉
厚Tの2分の1未満である5分の2に設定した。この設
定により、上記内輪10の軌道面10Aを伝播するSH
波が内輪10の内径面10Bで反射した超音波の反射波
の干渉を受けることを抑制できる。したがって、軌道面
10Aを伝播するSH波の測定感度を向上でき、伝播速
度の測定精度を向上でき、疲労度を正確に測定できる。
Further, in this embodiment, an orthogonal straight line 6 orthogonal to the contact line 3 with which the transmission sensor 1 is in line contact with the contact line 5 with which the reception sensor 2 is in line contact, and this orthogonal straight line 6
The distance H between the parallel tangent line 7 and the parallel tangent line 7 is set to ⅕ which is less than ½ of the radial thickness T of the inner ring 10. With this setting, the SH propagating on the raceway surface 10A of the inner ring 10
It is possible to suppress the interference of the reflected waves of the ultrasonic waves reflected by the inner diameter surface 10B of the inner ring 10 with the waves. Therefore, the measurement sensitivity of the SH wave propagating on the track surface 10A can be improved, the measurement accuracy of the propagation velocity can be improved, and the fatigue level can be accurately measured.

【0032】また、この実施形態では、送信センサ1
は、超音波の送信に有効な有効部分11を内輪10の軌
道面10Aに接触させ、受信センサ2は超音波の受信に
有効な有効部分12を内輪10の軌道面10Aに接触さ
せている。したがって、送信センサ1はその有効部分1
1から超音波を軌道面10Aに確実に伝播させることが
でき、受信センサ2はその有効部分12で上記超音波を
確実に検出できる。
Further, in this embodiment, the transmission sensor 1
The effective portion 11 effective for transmitting ultrasonic waves is in contact with the raceway surface 10A of the inner ring 10, and the reception sensor 2 is contacting the effective portion 12 effective for receiving ultrasonic waves with the raceway surface 10A of the inner ring 10. Therefore, the transmitting sensor 1 has its effective part 1
The ultrasonic wave can be reliably propagated from 1 to the orbital surface 10A, and the reception sensor 2 can reliably detect the ultrasonic wave at the effective portion 12 thereof.

【0033】また、この実施形態では、内輪10の軌道
面10Aに対向させる送信センサ1の対向面1Aは平面
形状であり、内輪10の軌道面10Aに対向させる受信
センサ2の対向面2Aは平面形状である。したがって、
送信センサ1および受信センサ2の対向面2Aの形状を
特に単純化でき、センサコストを低減できる。
Further, in this embodiment, the facing surface 1A of the transmitting sensor 1 facing the raceway surface 10A of the inner ring 10 is flat, and the facing surface 2A of the receiving sensor 2 facing the raceway surface 10A of the inner ring 10 is flat. The shape. Therefore,
The shapes of the facing surfaces 2A of the transmission sensor 1 and the reception sensor 2 can be particularly simplified, and the sensor cost can be reduced.

【0034】また、図2を参照すれば、軌道面10Aの
半径rにsinαを乗算した値rsinαからセンサ間隔Wの
2分の1を減算した値(rsinα−W/2)は、接触位置X
0×cosαに等しいことが分かる。すなわち、次式(4)
が成立する。
Further, referring to FIG. 2, the value (rsinα-W / 2) obtained by subtracting one half of the sensor interval W from the value rsinα obtained by multiplying the radius r of the track surface 10A by sinα is the contact position X.
It can be seen that it is equal to 0 × cos α. That is, the following equation (4)
Is established.

【0035】 X0=(rsinα−W/2)/cosα … (4) ただし、角度α=90°−(θ/2)、θは上記センサ角
度。
X0 = (rsinα−W / 2) / cosα (4) where angle α = 90 ° − (θ / 2), and θ is the sensor angle.

【0036】この式(4)において、半径r=19.25
mmとしたときの、センサ角度θとセンサ間隔Wと接触
位置X0との関係の一例を図4に示す。なお、図4にお
いて、X1,X2は有効部分11の両端の位置を示して
いる。したがって、図4を参照すれば、接触位置X0が
X1とX2の間(有効部分)に入るように、センサ間隔W
とセンサ角度θを容易に設定できる。
In this equation (4), the radius r = 19.25
FIG. 4 shows an example of the relationship among the sensor angle θ, the sensor interval W, and the contact position X0 when the distance is mm. In FIG. 4, X1 and X2 indicate the positions of both ends of the effective portion 11. Therefore, referring to FIG. 4, the sensor interval W is set so that the contact position X0 is between X1 and X2 (effective portion).
And the sensor angle θ can be easily set.

【0037】また、図2を参照すれば、距離Hは、軌道
面10Aの半径rから(rcosα)を減算した値であるこ
とが分かる。この角度αは、接触線3と中心P0とを結
ぶ直線Lrと、接触線5と中心P0とを結ぶ直線Lqと
がなす角度2αの2分の1である。すなわち、H=r
(1−cosα) …(5)である。この実施形態では、式
(5)で算出される距離Hを内輪10の肉厚Tの0.4倍
に設定した。
Further, referring to FIG. 2, it can be seen that the distance H is a value obtained by subtracting (rcosα) from the radius r of the track surface 10A. This angle α is half of the angle 2α formed by the straight line Lr connecting the contact line 3 and the center P0 and the straight line Lq connecting the contact line 5 and the center P0. That is, H = r
(1-cosα) (5). In this embodiment, the formula
The distance H calculated in (5) was set to 0.4 times the wall thickness T of the inner ring 10.

【0038】図5に、半径r=19.25(mm)におい
て、この式(1)に基づく、センサ角度θ(=2(90°−
α))と距離Hとの関係を示す。図5では、センサ角度θ
が126°以上の領域において、距離Hが肉厚T(=4.
25)の2分の1以下になり、反射波の影響を抑制で
き、SH波を正確に検出できる。一方、センサ角度θが
126°未満では、距離Hが肉厚Tの2分の1を越える
から、反射波の影響を無視できなくなり、SH波を正確
に検出できなくなる。
In FIG. 5, at a radius r = 19.25 (mm), the sensor angle θ (= 2 (90 ° −
The relationship between α)) and the distance H is shown. In FIG. 5, the sensor angle θ
Is 126 ° or more, the distance H is the wall thickness T (= 4.
It becomes 1/2 or less of 25), the influence of the reflected wave can be suppressed, and the SH wave can be accurately detected. On the other hand, when the sensor angle θ is less than 126 °, the distance H exceeds ½ of the wall thickness T, so that the influence of the reflected wave cannot be ignored and the SH wave cannot be accurately detected.

【0039】尚、上記実施形態では、本発明の超音波伝
播速度測定方法でもって内輪の疲労度を測定したが、こ
の発明の内輪の超音波伝播速度測定方法は、内輪の表面
劣化,硬化の評価にも適用可能である。
In the above embodiment, the fatigue level of the inner ring was measured by the ultrasonic propagation velocity measuring method of the present invention. However, the ultrasonic propagation velocity measuring method of the inner ring of the present invention is effective for the surface deterioration and hardening of the inner ring. It is also applicable to evaluation.

【0040】[0040]

【発明の効果】以上より明らかなように、請求項1,2
の発明の円筒ころ軸受の内輪の超音波伝播速度測定方法
では、送信センサと受信センサを内輪に線接触させて超
音波の伝播速度を測定するから、この送信センサと受信
センサは異なる直径の内輪に使用可能である。したがっ
て、内輪の直径に応じた複数種類の送信センサ,受信セ
ンサを用意する必要がなくなり、測定工数と測定コスト
を低減できる。
As is apparent from the above, claims 1, 2
In the method of measuring the ultrasonic wave propagation velocity of the inner ring of the cylindrical roller bearing according to the invention, the transmitting sensor and the receiving sensor are brought into line contact with the inner ring to measure the ultrasonic wave propagation velocity. Therefore, the transmitting sensor and the receiving sensor have inner diameters different from each other. Can be used for. Therefore, it is not necessary to prepare a plurality of types of transmission sensors and reception sensors according to the diameter of the inner ring, and the number of measurement steps and the measurement cost can be reduced.

【0041】また、請求項1の発明では、r(1−cos
α)<T/2を満たすように、送信センサと受信センサを
配置した。また、請求項2の発明では、上記送信センサ
が線接触している線と上記受信センサが線接触している
線とに直交する直交直線と、この直交直線と平行な接線
との間の距離を内輪の径方向の肉厚の2分の1未満に設
定した。この設定により、上記内輪の軌道面を伝播する
超音波が内輪の内径面で反射した超音波の反射波の干渉
を受けることを抑制できる。したがって、軌道面を伝播
する超音波の測定感度を向上でき、伝播速度の測定精度
を向上できる。
According to the invention of claim 1, r (1-cos
The transmitting sensor and the receiving sensor are arranged so as to satisfy α) <T / 2. Further, in the invention of claim 2, a distance between a line orthogonal to the line in which the transmission sensor is in line contact with a line in which the reception sensor is in line contact and a tangent line parallel to the orthogonal line. Was set to less than half the radial thickness of the inner ring. With this setting, it is possible to suppress the interference of the ultrasonic waves propagating on the raceway surface of the inner ring with the reflected waves of the ultrasonic waves reflected on the inner diameter surface of the inner ring. Therefore, the measurement sensitivity of the ultrasonic wave propagating on the orbital surface can be improved, and the measurement accuracy of the propagation velocity can be improved.

【0042】また、請求項3の発明では、上記送信セン
サは、超音波の送信に有効な有効部分を上記内輪の軌道
面に接触させ、上記受信センサは、超音波の受信に有効
な有効部分を上記内輪の軌道面に接触させている。した
がって、送信センサはその有効部分から超音波を軌道面
に確実に伝播させることができ、受信センサはその有効
部分で上記超音波を確実に検出できる。
In the invention of claim 3, the transmitting sensor brings an effective portion effective for transmitting ultrasonic waves into contact with the raceway surface of the inner ring, and the receiving sensor has an effective portion effective for receiving ultrasonic waves. Is in contact with the raceway surface of the inner ring. Therefore, the transmitting sensor can surely propagate the ultrasonic wave from the effective portion to the orbital surface, and the receiving sensor can surely detect the ultrasonic wave at the effective portion.

【0043】また、請求項4の発明では、上記内輪の軌
道面に対向させる上記送信センサの対向面は平面形状で
あり、上記内輪の軌道面に対向させる上記受信センサの
対向面は平面形状である。したがって、送信センサおよ
び受信センサの対向面の形状を特に単純化して、センサ
コストを低減できる。
Further, in the invention of claim 4, the facing surface of the transmitting sensor facing the raceway surface of the inner ring is flat, and the facing surface of the receiving sensor facing the raceway surface of the inner ring is flat. is there. Therefore, the shapes of the facing surfaces of the transmitting sensor and the receiving sensor can be particularly simplified to reduce the sensor cost.

【0044】また、請求項5の発明の疲労度測定方法で
は、上記超音波伝播速度測定方法でもって、内輪の軌道
面を伝播する超音波の伝播速度を正確に測定でき、この
正確に測定した伝播速度に基いて、内輪の疲労度を正確
に測定できる。
Further, in the fatigue degree measuring method according to the fifth aspect of the present invention, it is possible to accurately measure the propagation velocity of the ultrasonic wave propagating on the raceway surface of the inner ring by the above ultrasonic propagation velocity measuring method. The fatigue of the inner ring can be accurately measured based on the propagation velocity.

【図面の簡単な説明】[Brief description of drawings]

【図1】 この発明の円筒ころ軸受の内輪の疲労度測定
方法の実施形態における内輪と送信センサ,受信センサ
の配置を示す配置図である。
FIG. 1 is a layout diagram showing a layout of an inner ring, a transmission sensor, and a reception sensor in an embodiment of a method for measuring a fatigue degree of an inner ring of a cylindrical roller bearing of the present invention.

【図2】 上記配置図の要部拡大図である。FIG. 2 is an enlarged view of a main part of the above layout diagram.

【図3】 上記送信センサの要部の構造を示す模式図で
ある。
FIG. 3 is a schematic diagram showing a structure of a main part of the transmission sensor.

【図4】 上記実施形態における送信センサの接触位置
X0とセンサ間隔Wとセンサ角度θとの関係の一例を示
すグラフである。
FIG. 4 is a graph showing an example of a relationship between a contact position X0 of a transmission sensor, a sensor interval W, and a sensor angle θ in the above embodiment.

【図5】 上記実施形態におけるセンサ角度θと距離H
との関係を示すグラフである。
FIG. 5 is a sensor angle θ and a distance H in the above embodiment.
It is a graph which shows the relationship with.

【符号の説明】[Explanation of symbols]

1…送信センサ、1A…対向面、1B…端壁、2…受信
センサ、2A…対向面、3,5…接触線、6…直交直
線、7…接線、10…内輪、10A…軌道面、11,1
2…有効部分、14…外側樹脂部、15…圧電素子、1
5A…振動面、β…角度、P1,P2…点、T…肉厚、
X0…接触位置、W…センサ間隔。
1 ... Transmitting sensor, 1A ... Opposing surface, 1B ... End wall, 2 ... Receiving sensor, 2A ... Opposing surface, 3,5 ... Contact line, 6 ... Orthogonal straight line, 7 ... Tangent line, 10 ... Inner ring, 10A ... Raceway surface, 11,1
2 ... Effective part, 14 ... Outer side resin part, 15 ... Piezoelectric element, 1
5A ... vibrating surface, β ... angle, P1, P2 ... point, T ... wall thickness,
X0 ... contact position, W ... sensor interval.

フロントページの続き Fターム(参考) 2G024 AC01 BA12 BA21 CA13 DA09 FA02 2G047 AB01 AC08 BA01 BB02 BC02 BC11 EA12 EA16 GA03 2G064 AA17 AB05 AB13 BA28 DD23 3J101 AA13 AA52 AA62 BA77 FA24 FA26 Continued front page    F-term (reference) 2G024 AC01 BA12 BA21 CA13 DA09                       FA02                 2G047 AB01 AC08 BA01 BB02 BC02                       BC11 EA12 EA16 GA03                 2G064 AA17 AB05 AB13 BA28 DD23                 3J101 AA13 AA52 AA62 BA77 FA24                       FA26

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 円筒ころ軸受の内輪の軌道面に超音波を
送信する送信センサと、上記軌道面を伝播する上記超音
波を受信する受信センサとを用いて、上記超音波が上記
軌道面を伝播する伝播速度を測定する方法であって、 上記送信センサと受信センサとを、上記内輪の軌道面に
対して、周方向に所定間隔を隔てて軸方向の線で線接触
させ、 上記送信センサが上記軌道面に線接触している接触線と
上記内輪の中心とを結ぶ直線と、上記受信センサが上記
軌道面に線接触している接触線と上記内輪の中心とを結
ぶ直線とがなす角度を2αとし、上記軌道面の半径をr
(mm)とし、上記内輪の肉厚をT(mm)とすると、次式 r(1−cosα)<T/2 を満たすように、上記送信センサと受信センサを配置す
ることを特徴とする円筒ころ軸受の内輪の超音波伝播速
度測定方法。
1. An ultrasonic wave transmits the ultrasonic wave to the raceway surface of an inner ring of a cylindrical roller bearing, and a receiving sensor which receives the ultrasonic wave propagating on the raceway surface is used. A method of measuring a propagation velocity of propagation, wherein the transmitting sensor and the receiving sensor are brought into line contact with an orbital surface of the inner ring by axial lines at predetermined intervals in a circumferential direction, and the transmitting sensor Is formed by a straight line connecting the contact line in line contact with the raceway surface and the center of the inner ring, and a straight line connecting the contact line in which the receiving sensor is in line contact with the raceway surface and the center of the inner ring The angle is 2α and the radius of the above raceway surface is r
(mm) and the wall thickness of the inner ring is T (mm), the cylinder is characterized in that the transmission sensor and the reception sensor are arranged so as to satisfy the following expression r (1-cosα) <T / 2. Measuring method of ultrasonic wave propagation velocity of inner ring of roller bearing.
【請求項2】 円筒ころ軸受の内輪の軌道面に超音波を
送信する送信センサと、上記軌道面を伝播する上記超音
波を受信する受信センサとを用いて、上記超音波が上記
軌道面を伝播する伝播速度を測定する方法であって、 上記送信センサと受信センサとを、上記内輪の軌道面に
対して、周方向に所定間隔を隔てて軸方向の線で線接触
させ、 上記送信センサが上記内輪の軌道面に線接触している線
と上記受信センサが上記内輪の軌道面に線接触している
線とに直交する直交直線と、この直交直線と平行である
上記軌道面の接線との間の距離を、上記内輪の径方向の
肉厚の2分の1未満に設定することを特徴とする円筒こ
ろ軸受の内輪の超音波伝播速度測定方法。
2. The ultrasonic wave is transmitted through the raceway surface of an inner ring of a cylindrical roller bearing by using a transmitting sensor that transmits the ultrasonic wave and a receiving sensor that receives the ultrasonic wave that propagates through the raceway surface. A method of measuring a propagation velocity of propagation, wherein the transmitting sensor and the receiving sensor are brought into line contact with an orbital surface of the inner ring by axial lines at predetermined intervals in a circumferential direction, and the transmitting sensor Is a line that is in line contact with the raceway of the inner ring and a line that is orthogonal to the line that the receiving sensor is in line contact with the raceway of the inner ring, and a tangent line of the raceway that is parallel to this line. The distance between the inner ring and the inner ring is set to be less than half the radial thickness of the inner ring.
【請求項3】 請求項1または2に記載の超音波伝播速
度測定方法において、 上記送信センサは、超音波の送信に有効な有効部分を上
記内輪の軌道面に接触させ、上記受信センサは、超音波
の受信に有効な有効部分を上記内輪の軌道面に接触させ
ることを特徴とする円筒ころ軸受の内輪の超音波伝播速
度測定方法。
3. The ultrasonic propagation velocity measuring method according to claim 1 or 2, wherein the transmitting sensor brings an effective portion effective for transmitting ultrasonic waves into contact with a raceway surface of the inner ring, and the receiving sensor comprises: An ultrasonic propagation velocity measuring method for an inner ring of a cylindrical roller bearing, characterized in that an effective portion effective for receiving ultrasonic waves is brought into contact with the raceway surface of the inner ring.
【請求項4】 請求項1または2に記載の超音波伝播速
度測定方法において、 上記内輪の軌道面に対向させる上記送信センサの対向面
は平面形状であり、上記内輪の軌道面に対向させる上記
受信センサの対向面は平面形状であることを特徴とする
円筒ころ軸受の内輪の超音波伝播速度測定方法。
4. The ultrasonic propagation velocity measuring method according to claim 1 or 2, wherein the facing surface of the transmission sensor facing the raceway surface of the inner ring has a planar shape, and the facing surface faces the raceway surface of the inner ring. A method for measuring an ultrasonic wave propagation velocity of an inner ring of a cylindrical roller bearing, characterized in that the opposing surface of the reception sensor is flat.
【請求項5】 請求項1乃至4のいずれか1つに記載の
超音波伝播速度測定方法によって、円筒ころ軸受の内輪
を伝播する超音波の伝播速度を測定し、この測定した伝
播速度に基いて、上記円筒ころ軸受の内輪の疲労度を測
定することを特徴とする疲労度測定方法。
5. The ultrasonic propagation velocity measuring method according to claim 1, the propagation velocity of ultrasonic waves propagating through the inner ring of the cylindrical roller bearing is measured, and the measured propagation velocity is based on the measured propagation velocity. Furthermore, a fatigue degree measuring method characterized by measuring the fatigue degree of the inner ring of the cylindrical roller bearing.
JP2002140432A 2002-05-15 2002-05-15 Fatigue measurement method for inner ring of cylindrical roller bearing Expired - Fee Related JP3831292B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002140432A JP3831292B2 (en) 2002-05-15 2002-05-15 Fatigue measurement method for inner ring of cylindrical roller bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002140432A JP3831292B2 (en) 2002-05-15 2002-05-15 Fatigue measurement method for inner ring of cylindrical roller bearing

Publications (2)

Publication Number Publication Date
JP2003329513A true JP2003329513A (en) 2003-11-19
JP3831292B2 JP3831292B2 (en) 2006-10-11

Family

ID=29701320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002140432A Expired - Fee Related JP3831292B2 (en) 2002-05-15 2002-05-15 Fatigue measurement method for inner ring of cylindrical roller bearing

Country Status (1)

Country Link
JP (1) JP3831292B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011145146A (en) * 2010-01-14 2011-07-28 Jfe Steel Corp Roller outside crack diagnostic device and diagnostic method
CN109752185A (en) * 2019-01-24 2019-05-14 长安大学 A kind of measurement method for rolling bearing roller or so skew oscillation state

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4093039B2 (en) * 2002-12-06 2008-05-28 株式会社ジェイテクト Inspection method for decarburization of steel parts and inspection method for polishing and firing of steel parts

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5627647A (en) * 1979-08-15 1981-03-18 Nippon Sekiyu Seisei Kk Supersonic flaw detecting method for centrifugal cast stainless steel pipe exposed to high temperature
JPS62194454A (en) * 1986-02-20 1987-08-26 Nippon Steel Corp Method for inspecting flaw of steel pipe welded part
JPH02114114A (en) * 1988-10-25 1990-04-26 Kawasaki Steel Corp Detection of internally ground shape of weld part of seam welded pipe
JPH0385443A (en) * 1989-08-30 1991-04-10 Ishikawajima Harima Heavy Ind Co Ltd Method and device for measuring ultrasonic sound velocity
JPH03279856A (en) * 1990-03-28 1991-12-11 Japan Steel Works Ltd:The Ultrasonic material testing device
JPH05281201A (en) * 1992-04-06 1993-10-29 Hitachi Ltd Method and apparatus for measurement of depth of quenched and hardened layer
JPH0618487A (en) * 1992-07-02 1994-01-25 Hitachi Ltd Method and apparatus for measuring depth of hardening
JPH06258297A (en) * 1993-03-04 1994-09-16 Japan Steel Works Ltd:The Ultrasonic material testing device and material testing method by using ultrasonic wave
JPH08261997A (en) * 1995-03-24 1996-10-11 Hitachi Ltd Surface wave probe
JPH08271485A (en) * 1995-03-31 1996-10-18 Mannesmann Ag Method and device for detecting defect of drawn processed material
JPH10197498A (en) * 1997-01-13 1998-07-31 Mitsubishi Electric Corp Inspection device
JPH10300565A (en) * 1997-04-30 1998-11-13 Hitachi Ltd Method and device for measuring surface wave sound velocity
JPH11281633A (en) * 1998-03-30 1999-10-15 Hitachi Ltd Hardened layer evaluating device by array-type ultrasonic probe
JP2002116191A (en) * 2000-05-18 2002-04-19 Torrington Co:The Method and apparatus to provide dynamic ultrasonic measurement of rolling element bearing parameter

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5627647A (en) * 1979-08-15 1981-03-18 Nippon Sekiyu Seisei Kk Supersonic flaw detecting method for centrifugal cast stainless steel pipe exposed to high temperature
JPS62194454A (en) * 1986-02-20 1987-08-26 Nippon Steel Corp Method for inspecting flaw of steel pipe welded part
JPH02114114A (en) * 1988-10-25 1990-04-26 Kawasaki Steel Corp Detection of internally ground shape of weld part of seam welded pipe
JPH0385443A (en) * 1989-08-30 1991-04-10 Ishikawajima Harima Heavy Ind Co Ltd Method and device for measuring ultrasonic sound velocity
JPH03279856A (en) * 1990-03-28 1991-12-11 Japan Steel Works Ltd:The Ultrasonic material testing device
JPH05281201A (en) * 1992-04-06 1993-10-29 Hitachi Ltd Method and apparatus for measurement of depth of quenched and hardened layer
JPH0618487A (en) * 1992-07-02 1994-01-25 Hitachi Ltd Method and apparatus for measuring depth of hardening
JPH06258297A (en) * 1993-03-04 1994-09-16 Japan Steel Works Ltd:The Ultrasonic material testing device and material testing method by using ultrasonic wave
JPH08261997A (en) * 1995-03-24 1996-10-11 Hitachi Ltd Surface wave probe
JPH08271485A (en) * 1995-03-31 1996-10-18 Mannesmann Ag Method and device for detecting defect of drawn processed material
JPH10197498A (en) * 1997-01-13 1998-07-31 Mitsubishi Electric Corp Inspection device
JPH10300565A (en) * 1997-04-30 1998-11-13 Hitachi Ltd Method and device for measuring surface wave sound velocity
JPH11281633A (en) * 1998-03-30 1999-10-15 Hitachi Ltd Hardened layer evaluating device by array-type ultrasonic probe
JP2002116191A (en) * 2000-05-18 2002-04-19 Torrington Co:The Method and apparatus to provide dynamic ultrasonic measurement of rolling element bearing parameter

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011145146A (en) * 2010-01-14 2011-07-28 Jfe Steel Corp Roller outside crack diagnostic device and diagnostic method
CN109752185A (en) * 2019-01-24 2019-05-14 长安大学 A kind of measurement method for rolling bearing roller or so skew oscillation state
CN109752185B (en) * 2019-01-24 2020-11-06 长安大学 Method for measuring left-right skew swinging state of rolling bearing roller

Also Published As

Publication number Publication date
JP3831292B2 (en) 2006-10-11

Similar Documents

Publication Publication Date Title
US8695405B2 (en) Bearing, arrangement for determining properties of a lubricant in a bearing and method for determining properties of a lubricant in a bearing
KR101138534B1 (en) Shaft joint monitoring device
US20020157470A1 (en) Device for measuring bearing data
CA2258439A1 (en) Ultrasonic lamb wave technique for measurement of pipe wall thickness at pipe supports
TW200827723A (en) Method and arrangement for determining rotational movement
JP2003329513A (en) Measuring method for propagation speed of ultrasonic waves in inner ring of cylindrical roller bearing and measuring method for degree of fatigue
US11493335B2 (en) Measurement device and measurement method
US11237136B2 (en) Method for installing probes, and method for driving transmission probe
JP2003121142A (en) Method and instrument for measuring profile of tubular body, method of measuring stress of tubular body, and cross-sectional form measuring instrument for tubular body
US20220018693A1 (en) Ultrasonic transducer arrangement for a clamp-on ultrasonic flow measuring point and a clamp-on ultrasonic flow measuring point and method for commissioning the clamp-on ultrasonic flow measuring point
JP5031314B2 (en) Electromagnetic ultrasonic sensor and electromagnetic ultrasonic detection system
JP4913480B2 (en) Thickness measuring device
JP4186694B2 (en) Ultrasonic propagation velocity measuring method and solid surface layer state measuring method using the same
JP4945092B2 (en) Ultrasonic probe
JP4055601B2 (en) Ultrasonic propagation velocity measuring method and solid surface state measuring method using the same
JP3810661B2 (en) Defect detection method for piping
JP2001201333A (en) Detecting method and detecting device for width direction camber of strip
JPH03276041A (en) Method for measuring residual stress of rolling roll
JP2004184258A (en) Metallic member surface layer part inspecting method
JP3713384B2 (en) Tissue orientation evaluation method and apparatus
JPH02259462A (en) Paper strength measuring apparatus
JP2005315800A (en) Ultrasonic flaw detector
JPH04299208A (en) Device for detecting position of moving body inside tube
JPH11101891A (en) Outside diameter measuring instrument for rod
JP2007057508A (en) Film thickness measuring instrument and film thickness measuring method for belt

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060713

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3831292

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090721

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100721

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110721

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110721

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120721

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120721

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130721

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees