JPH021135A - Vertical mos field-effect transistor - Google Patents

Vertical mos field-effect transistor

Info

Publication number
JPH021135A
JPH021135A JP14217788A JP14217788A JPH021135A JP H021135 A JPH021135 A JP H021135A JP 14217788 A JP14217788 A JP 14217788A JP 14217788 A JP14217788 A JP 14217788A JP H021135 A JPH021135 A JP H021135A
Authority
JP
Japan
Prior art keywords
oxide film
gate electrode
gate
region
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14217788A
Other languages
Japanese (ja)
Inventor
Kazuyoshi Kitamura
北村 一芳
Hiroshi Tanida
宏 谷田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP14217788A priority Critical patent/JPH021135A/en
Publication of JPH021135A publication Critical patent/JPH021135A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent a short circuit between a gate electrode and a drain region by forming the gate electrode only on a gate oxide film. CONSTITUTION:A gate electrode 7 is structured in such a way that it is formed only on a flat gate oxide film 6; the gate electrode 7 is not formed in a boundary part, between a thick field oxide film 11 and the thin gate oxide film 6, where a pinhole and a defect of the oxide film are apt to cause; accordingly, an inconvenient situation such as a short circuit between the gate electrode 7 and silicon is not caused. Thereby, it is possible to prevent a short circuit between the gate electrode 6 and a drain region 3.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はスイッチング機器等に使用される縦型MO8電
界効果トランジスタ(以下縦型MOSFETと記す)に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a vertical MO8 field effect transistor (hereinafter referred to as vertical MOSFET) used in switching equipment and the like.

従来の技術 縦型MO8FETは、高速でしかも広い安全動作領域を
もち、高耐圧化、大電流化が容易であるなど、特に電力
用スイッチング素子として、スイッチング電源を始めと
して幅広い分野で利用されている。
Conventional technology Vertical MO8FETs are fast, have a wide safe operating range, and can easily handle high withstand voltages and large currents, and are used in a wide range of fields, including switching power supplies, especially as power switching elements. .

従来の縦型MO8FETは第2図に示すような断面構造
である。図示する縦型MO8FETがnチャンネル型で
あるものとして以下に詳しく説明する。
A conventional vertical MO8FET has a cross-sectional structure as shown in FIG. A detailed explanation will be given below assuming that the illustrated vertical MO8FET is an n-channel type.

この縦型MO8FETは、1の領域が活性領域の部分で
あり実際のFETとして動作する。また2の部分は、活
性領域1の端部に位置するフィールド酸化膜領域であり
、具体的にはゲート又はドレインのワイヤーボンディン
グ領域、或いは、チップ周辺部のフィールド酸化膜領域
である。
In this vertical MO8FET, the region 1 is an active region and operates as an actual FET. Further, a portion 2 is a field oxide film region located at the end of the active region 1, specifically a gate or drain wire bonding region, or a field oxide film region at the chip periphery.

この縦型MO8FETは、ドレイン領域3となる低不純
物濃度のn形のシリコン半導体基板中に、P形拡散領域
によるチャンネル領域4が形成され、このチャンネル領
域の中にn形のソース領域5が形成されるとともに、チ
ャンネル領域4とドレイン領域3の表面にゲート酸化膜
6が形成され、さらにゲート酸化膜6の上にゲート電極
7が形成され、ソース領域5およびチャンネル形成用領
域4にまたがってソース電極8が形成され、そのソース
電極8とゲート電極7の間に層間絶縁膜9が形成され、
シリコン半導体基板の裏面にドレイン電極10が形成さ
れた構造である。
In this vertical MO8FET, a channel region 4 made of a P-type diffusion region is formed in a low impurity concentration n-type silicon semiconductor substrate that becomes a drain region 3, and an n-type source region 5 is formed in this channel region. At the same time, a gate oxide film 6 is formed on the surfaces of the channel region 4 and the drain region 3, a gate electrode 7 is further formed on the gate oxide film 6, and a source electrode 7 is formed over the source region 5 and the channel forming region 4. An electrode 8 is formed, an interlayer insulating film 9 is formed between the source electrode 8 and the gate electrode 7,
This structure has a drain electrode 10 formed on the back surface of a silicon semiconductor substrate.

なお、縦型MO8FET端部のフィールド酸化膜領域2
には、ワイヤーボンド時のボンディングダメージの吸収
、或いはドレイン・ソース間の耐圧の安定性のため、ゲ
ート酸化膜6より数倍から十倍程度厚いフィールド酸化
膜11が形成されている。さらにこの厚いフィールド酸
化膜11の上にゲート電極7が部分的に延長されたり、
ゲート電極用のポンディングパッド電極が形成された構
造となっている。
Note that the field oxide film region 2 at the end of the vertical MO8FET
A field oxide film 11 that is several times to ten times thicker than the gate oxide film 6 is formed in order to absorb bonding damage during wire bonding or to stabilize breakdown voltage between the drain and source. Furthermore, the gate electrode 7 is partially extended on this thick field oxide film 11,
It has a structure in which a bonding pad electrode for a gate electrode is formed.

この構造の縦型MOSFETではチャンネル領域4とゲ
ート酸化膜6との界面にチャンネルができ、電子はソー
ス領域5からチャンネルを通ってドレイン領域3へ向い
、さらにドレイン領域3を縦方向にドレイン電極10に
向って流れる。
In a vertical MOSFET with this structure, a channel is formed at the interface between the channel region 4 and the gate oxide film 6, and electrons flow from the source region 5 through the channel to the drain region 3, and then move vertically through the drain region 3 to the drain electrode 10. flows towards.

発明が解決しようとする課題 この構造では、ゲート酸化膜6と厚いフィールド酸化膜
11の境界部分12においてピンホールが発生したり、
酸化膜厚が薄くなるため、この境界部分12の上のゲー
ト電極6とドレイン領域3の間がショートしたり、ゲー
トとドレイン間の絶縁耐圧が低下するという問題があっ
た。
Problems to be Solved by the Invention In this structure, pinholes may occur at the boundary portion 12 between the gate oxide film 6 and the thick field oxide film 11.
Since the oxide film thickness becomes thinner, there are problems in that a short circuit occurs between the gate electrode 6 and the drain region 3 above this boundary portion 12, and the dielectric strength voltage between the gate and the drain decreases.

課題を解決するための手段 本発明の縦型MOSFETは、上記の問題を排除するも
のであって、ゲート酸化膜とフィールド酸化膜による酸
化膜の段差のない平坦なゲート酸化膜上の部分にのみゲ
ート電極が形成された構造のものである。
Means for Solving the Problems The vertical MOSFET of the present invention eliminates the above-mentioned problems, and only the part on the flat gate oxide film with no step difference between the gate oxide film and the field oxide film is provided. It has a structure in which a gate electrode is formed.

作用 この構造によれば、欠陥が発生しやすい酸化膜厚の異な
る酸化膜境界部分の上にゲート電極が形成されていない
ため、たとえその部分の酸化膜にピンホールが発生して
もゲート電極と半導体基板のショートや絶縁耐圧の低下
という問題が発生しない。
Effect: According to this structure, the gate electrode is not formed on the boundary between oxide films with different oxide film thicknesses, where defects are likely to occur. Problems such as short-circuiting of the semiconductor substrate and reduction in dielectric strength voltage do not occur.

実施例 本発明の縦型MO8FETの実施例について、第1図に
示したnチャンネル縦型MO8FETの断面構造を参照
して説明する。
Embodiment An embodiment of the vertical MO8FET of the present invention will be described with reference to the cross-sectional structure of the n-channel vertical MO8FET shown in FIG.

この縦型MO8FETの各部の名称及びFETの動作原
理は、第2図に示した従来例のものと同一である。
The names of the parts of this vertical MO8FET and the principle of operation of the FET are the same as those of the conventional example shown in FIG.

ここで本発明の縦型MOSFETのゲート電極7は、平
坦なゲート酸化膜6の上にのみ形成された構造となって
おり、酸化膜のピンホールや欠陥の発生しやすい厚いフ
ィールド酸化膜11と薄いゲート酸化膜6の境界部には
ゲート電極が形成されていないため、ゲート電極とシリ
コンとのショート等の不都合が生じない。なおゲート電
極につながるポンディングパッド電極や配線層は層間絶
縁膜9に形成されたコンタクトホールを通して、フィー
ルド酸化膜11の上に形成される。
Here, the gate electrode 7 of the vertical MOSFET of the present invention has a structure in which it is formed only on the flat gate oxide film 6, and the gate electrode 7 is formed only on the flat gate oxide film 6. Since no gate electrode is formed at the boundary of the thin gate oxide film 6, problems such as short circuit between the gate electrode and silicon do not occur. Note that a bonding pad electrode and a wiring layer connected to the gate electrode are formed on the field oxide film 11 through a contact hole formed in the interlayer insulating film 9.

本発明の縦型MO8FETによると、ゲート電極は均一
で欠陥の少ないゲート酸化膜の上にのみ形成されている
ため、ゲートとシリコン基板とのショート不良およびそ
の絶縁耐圧の低下率が大幅に減少する。
According to the vertical MO8FET of the present invention, since the gate electrode is formed only on the gate oxide film which is uniform and has few defects, the short-circuit failure between the gate and the silicon substrate and the rate of decrease in the dielectric strength are greatly reduced. .

第3図は、従来と本発明の縦型MO8FETについて、
ゲート酸化膜厚に対するゲート電極とシリコン基板間の
ショート不良率を比較したものである。これより、ゲー
ト酸化膜厚が1100n以下の場合について、膜厚が薄
くなるにつれショート不良率の差は顕著に表われてくる
。特に最近注目されている50nm程度の膜厚では、そ
の差は50%以上にもなる。
Figure 3 shows the conventional and inventive vertical MO8FETs.
This is a comparison of the short-circuit failure rate between the gate electrode and the silicon substrate with respect to the gate oxide film thickness. From this, when the gate oxide film thickness is 1100 nm or less, the difference in short-circuit failure rate becomes more noticeable as the film thickness becomes thinner. In particular, for a film thickness of about 50 nm, which has recently attracted attention, the difference is more than 50%.

第4図は、従来と本発明の縦型MO8FETについてゲ
ート酸化膜厚とその絶縁耐圧を比較したものである。こ
れより従来構造の場合は、ゲート酸化膜厚が1100n
より薄くなると耐圧が低下するものが多くなり、そのば
らつきも大きくなる。しかし本発明のものは、耐圧のば
らつきが非常に小さ(、本来の酸化膜厚で決定される耐
圧が安定して得られている。
FIG. 4 compares the gate oxide film thickness and the dielectric breakdown voltage of the conventional vertical MO8FET and the present invention. From this, in the case of the conventional structure, the gate oxide film thickness is 1100nm.
As the thickness becomes thinner, the withstand voltage decreases in many cases, and the variation thereof also increases. However, in the case of the present invention, the variation in breakdown voltage is very small (the breakdown voltage determined by the original oxide film thickness is stably obtained).

発明の効果 本発明の縦型MOSFETによれば、ゲート電極をゲー
ト酸化膜の上にのみ形成するためゲート電極とドレイン
領域間のショートをなくし、ゲート絶縁耐圧を高めるこ
とができる。
Effects of the Invention According to the vertical MOSFET of the present invention, since the gate electrode is formed only on the gate oxide film, short circuits between the gate electrode and the drain region can be eliminated and the gate dielectric breakdown voltage can be increased.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の縦型MO8FETの実施例を示す断面
構造図、第2図は従来の縦型MO8FETを示す断面構
造図、第3図はゲート酸化膜厚に対するゲート電極とシ
リコン基板間のショート不良率の関係を示したグラフ、
第4図はゲート酸化膜厚とその絶縁耐圧との関係を比較
したグラフである。 1・・・・・・縦型MOSFETの活性領域、2・・・
・・・フィールド酸化膜領域、3・・・・・・ドレイン
領域、4・・・・・・チャンネル領域、5・・・・・・
ソース領域、6・・・・・・ゲート酸化膜、7・・・・
・・ゲート電極、8・・・・・・ソース電極、9・・・
・・・層間絶縁膜、10・・・・・・ドレイン電極、1
1・・・・・・フィールド酸化膜、12・・・・・・ゲ
ート酸化膜とフィールド酸化膜の境界部。 代理人の氏名 弁理士 中尾敏男 ほか1名城 0つ
Fig. 1 is a cross-sectional structural diagram showing an embodiment of the vertical MO8FET of the present invention, Fig. 2 is a cross-sectional structural diagram showing a conventional vertical MO8FET, and Fig. 3 is a diagram showing the gap between the gate electrode and the silicon substrate with respect to the gate oxide film thickness. Graph showing the relationship between short defect rate,
FIG. 4 is a graph comparing the relationship between gate oxide film thickness and its dielectric strength voltage. 1... Active region of vertical MOSFET, 2...
...Field oxide film region, 3...Drain region, 4...Channel region, 5...
Source region, 6... Gate oxide film, 7...
...Gate electrode, 8...Source electrode, 9...
...Interlayer insulating film, 10...Drain electrode, 1
1...Field oxide film, 12...Boundary portion between gate oxide film and field oxide film. Name of agent: Patent attorney Toshio Nakao and 1 other person 0

Claims (1)

【特許請求の範囲】[Claims] ドレイン領域となる一導電形の半導体基板上に、同半導
体基板とは逆導電形のチャンネル領域が形成され、同チ
ャンネル領域内に一導電形のソース領域が形成され、前
記チャンネル領域と前記ドレイン領域上に均一なゲート
絶縁膜が形成され、前記ゲート絶縁膜上にのみゲート電
極が形成され、同ゲート電極の上に層間絶縁膜が形成さ
れ、同層間絶縁膜の上に前記ゲート電極とコンタクトホ
ールを通して接続されたゲート配線層が形成され、前記
半導体基板の裏面にドレイン電極が、前記ソース領域と
前記チャンネル領域にまたがってソース電極が形成され
たことを特徴とする縦型MOS電界効果トランジスタ。
A channel region of a conductivity type opposite to that of the semiconductor substrate is formed on a semiconductor substrate of one conductivity type that becomes a drain region, a source region of one conductivity type is formed in the channel region, and the channel region and the drain region are formed. A uniform gate insulating film is formed thereon, a gate electrode is formed only on the gate insulating film, an interlayer insulating film is formed on the gate electrode, and the gate electrode and the contact hole are formed on the interlayer insulating film. A vertical MOS field effect transistor characterized in that a gate wiring layer is formed connected through the semiconductor substrate, a drain electrode is formed on the back surface of the semiconductor substrate, and a source electrode is formed spanning the source region and the channel region.
JP14217788A 1988-06-09 1988-06-09 Vertical mos field-effect transistor Pending JPH021135A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14217788A JPH021135A (en) 1988-06-09 1988-06-09 Vertical mos field-effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14217788A JPH021135A (en) 1988-06-09 1988-06-09 Vertical mos field-effect transistor

Publications (1)

Publication Number Publication Date
JPH021135A true JPH021135A (en) 1990-01-05

Family

ID=15309157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14217788A Pending JPH021135A (en) 1988-06-09 1988-06-09 Vertical mos field-effect transistor

Country Status (1)

Country Link
JP (1) JPH021135A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8853062B2 (en) 2011-10-18 2014-10-07 Samsung Display Co., Ltd. Laser crystallization apparatus and laser crystallization method using the apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8853062B2 (en) 2011-10-18 2014-10-07 Samsung Display Co., Ltd. Laser crystallization apparatus and laser crystallization method using the apparatus

Similar Documents

Publication Publication Date Title
US6713794B2 (en) Lateral semiconductor device
WO1993023878A1 (en) Semiconductor device
JPH0766428A (en) Thin film soi device and its manufacture
US4901124A (en) Conductivity modulated MOSFET
JPH02143566A (en) Double diffusion type insulated gate field effect transistor
US20020117716A1 (en) Power mosfet device, structures employing the same and methods of fabrication
JPH021135A (en) Vertical mos field-effect transistor
JPH03104169A (en) Semiconductor device
JPH01309380A (en) Insulated-gate type semiconductor device
JPS60154671A (en) Semiconductor device
EP0109692A1 (en) Semiconductor device for a MOSFET
JPH0222868A (en) Insulated-gate field-effect transistor
JPH01111378A (en) Vertical mosfet
JPH04365373A (en) Semiconductor intrgtrated circuit device
JP3074064B2 (en) Lateral MOS field effect transistor
JPH04127574A (en) Vertical type insulated-gate field-effect transistor
JPH01238172A (en) Manufacture of mos type semiconductor device
JPS5898969A (en) Semiconductor device
JPS6189675A (en) Semiconductor device
JPH07221291A (en) Semiconductor device and its manufacture
JPH01114079A (en) Semiconductor device
JPH03120830A (en) Semiconductor device
JP3392496B2 (en) Power semiconductor device
JP3095912B2 (en) Semiconductor integrated circuit device
JPS6355976A (en) Field effect semiconductor device