JPH02112022A - Floating-point form multiplier - Google Patents

Floating-point form multiplier

Info

Publication number
JPH02112022A
JPH02112022A JP26657788A JP26657788A JPH02112022A JP H02112022 A JPH02112022 A JP H02112022A JP 26657788 A JP26657788 A JP 26657788A JP 26657788 A JP26657788 A JP 26657788A JP H02112022 A JPH02112022 A JP H02112022A
Authority
JP
Japan
Prior art keywords
adder
input
exponent
digit
floating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26657788A
Other languages
Japanese (ja)
Inventor
Shigeki Matsuoka
茂樹 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP26657788A priority Critical patent/JPH02112022A/en
Publication of JPH02112022A publication Critical patent/JPH02112022A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F7/38Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation
    • G06F7/48Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices
    • G06F7/483Computations with numbers represented by a non-linear combination of denominational numbers, e.g. rational numbers, logarithmic number system or floating-point numbers
    • G06F7/487Multiplying; Dividing
    • G06F7/4876Multiplying

Abstract

PURPOSE:To realize a floating-point form multiplier which calculates an index with bias with one adder by using (1.2<n> + Yn-12<n-1> + Yn-22<n-2> +...+ Y12 + Y0) as one addition input and (Xn-12<n> + Xn-12<n-1> + Xn-22<n-2> +...+ X12 + X0) as another addition input and, at the same time, using one adder which inputs '1' as ab addition input as the operator for the exponent of multiplica tion. CONSTITUTION:A adder of an (n+1) digit is provided for making an arithmetic operation on two data to be operated of a floating-point form having exponent operands X and Y and either one of the exponent operands, for example, terms of after the 2<n-1> digit of the X are inputted as they are to one input of the adder. To the input of the 2<n-1> of X the term Xn-1 of the 2<n-1> digit of X is inputted after inversion and to the input of the 2<n> digit the term Xn-1 of the 2<n-1> of X is inputted. All terms after the 2<n-1> digit of the exponent operand Y are inputted to the other input of the adder and '1' is inputted to the input of the 2<n>-th digit. Moreover, '1' is inputted to the least significant digit carry input of the adder and (X+Y-B) is found. Therefore, the arithmetic operation on the exponent in the multiplication of a floating-point form can be performed with one adder only even when the exponent has a bias.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は浮動小数点形式の乗算器に関する。[Detailed description of the invention] Industrial applications This invention relates to floating point type multipliers.

従来の技術 浮動小数点形式の2進数は、 α=X X 2 R−B β=i= y X 2 y−6 と表現される。ここでx、yは仮数、X、 Yはバイア
スB付き2進数で表現した指数である。
Conventional technology A binary number in floating point format is expressed as α=X 2 R-B β=i= y X 2 y-6. Here, x and y are mantissas, and X and Y are exponents expressed in binary numbers with bias B.

2数の乗算は αXβ= (X X y ) X 21X6Y−111
−8となり、その仮数はx+y 指数はX+Y−B となる。
Multiplication of two numbers is αXβ= (X X y) X 21X6Y-111
-8, its mantissa is x+y, and its exponent is X+Y-B.

この乗算回路は、第5図に示すように仮数演算器lでx
Xyを、指数演算器2で指数X+Y−Bを演算する。
As shown in FIG. 5, this multiplication circuit uses a mantissa operator l to
An exponent calculator 2 calculates an exponent X+Y−B from Xy.

従来この種の乗算を行う乗算器はこれをハードウェアで
実現するには2つの加算器が必要であり、例えばまずX
十Yを1つの加算器で求め、次に(X+Y)−Bをもう
1つの加算器で求めていた。
Conventional multipliers that perform this type of multiplication require two adders to implement this in hardware, for example,
10Y was calculated using one adder, and then (X+Y)-B was calculated using another adder.

発明が解決すべき課題 上述のように従来“の浮動小数点形式の乗算器では2個
の加算器が必要で、ハードウェア量が多く、また演算時
間も加算器2段分が必要であるなどの欠点があった。
Problems to be Solved by the Invention As mentioned above, conventional floating-point multipliers require two adders, requiring a large amount of hardware, and require the same amount of calculation time as two adders. There were drawbacks.

この発明は1つの加算器でバイアス付の指数を演算する
浮動小数点形式の乗算を可能にし、ハードウェア量低減
と演算時間の短縮を可能にした乗算器を提供することを
目的とするものである。
An object of the present invention is to provide a multiplier that enables floating-point multiplication that calculates biased exponents using a single adder, thereby reducing the amount of hardware and calculation time. .

課題を解決する手段 浮動小数点形式の2進数の指数部はバイアス付き2進数
で表現されることが多い。0桁の指数点の場合バイアス
BはB=2r′−1−1にとられ、真の指数はx=X−
Bと表せる。ここでXはバイアス付き2進数表現の指数
で0から2″−1までの値をとり、これにより真の指数
Xを−(2n−’−1)から2 n−1まで表現する。
Means for Solving the Problem The exponent part of a binary number in floating point format is often expressed as a biased binary number. In the case of a 0-digit index point, the bias B is taken as B=2r'-1-1, and the true index is x=X-
It can be expressed as B. Here, X is an exponent in biased binary representation and takes a value from 0 to 2''-1, thereby expressing the true exponent X from -(2n-'-1) to 2n-1.

かかる浮動小数点形式の2進数を乗算する場合2つの指
数部X、  Yから乗算結果の指数部を求める必要があ
る。
When such binary numbers in floating point format are multiplied, it is necessary to obtain the exponent part of the multiplication result from the two exponent parts X and Y.

浮動小数点乗算の真の指数部は肢演算数の真の指数部の
和となり(X −B)+(Y −B)と表せる。
The true exponent part of floating point multiplication is the sum of the true exponent parts of the limb operations and can be expressed as (X - B) + (Y - B).

この真の指数部を変形しくX+Y−B)−Bと表現する
とX+Y−BはバイアスB付き表現の指数部であること
がわかる。X+Y−Bを求めるのに通常は2つの加算回
路を必要とする。
If this true exponent part is expressed in a modified form as X+Y-B)-B, it can be seen that X+Y-B is the exponent part expressed with bias B. Two adder circuits are normally required to obtain X+Y-B.

いま X :Xn−+2′′−’+Xn−t2”−””
’+L2”X。
Now X :Xn-+2''-'+Xn-t2"-""
'+L2''X.

Y =Y、1−、2”−’+Yn−*2″−”+=−+
Y、2+Y。
Y = Y, 1-, 2"-'+Yn-*2"-"+=-+
Y, 2+Y.

とする。shall be.

Bは  B  =  2n−’−1=  2″−’+2
n−3+−+2+2゜なノテ、−B = 2n+2”−
’+1(Bの各桁を反転し、LSBに1を加えた。また
1桁拡張した。) よって、 X+Y−B = O−2″+Y、1−.2r′−’+Y
n−、2″−’+−+Y、2+Y。
B is B = 2n-'-1= 2''-'+2
n-3+-+2+2° note, -B = 2n+2"-
'+1 (Each digit of B was inverted and 1 was added to the LSB. Also extended by one digit.) Therefore, X+Y-B = O-2"+Y, 1-.2r'-'+Y
n-, 2″-′+-+Y, 2+Y.

+ 1−2”+(1+X、、)2n−’+X、、2′′
−’+・・・+スt2+Xo+に 〇”2+Yn−12′′1−1+Yn−t2n−2t2
”Y。
+ 1-2"+(1+X,,)2n-'+X,,2''
-'+...+st2+Xo+〇"2+Yn-12''1-1+Yn-t2n-2t2
“Y.

+ (1+Xn、)2”+X、、2n−’+X、1−t
2”+−−−十x、2+’(。+1= (1−2n+Y
、、2”+Y、t2n−’+・+Y、2+YO)”((
Xn−12”X−+2n−’Xo−z2°1+−+X、
24X、)+l+           −(1)とな
る。なおアンダーラインを施した項Xn−1・2n1は
(t+xn□)・2n″と表せる。
+ (1+Xn,)2''+X,, 2n-'+X, 1-t
2”+---10x, 2+'(.+1= (1-2n+Y
,,2"+Y,t2n-'+・+Y,2+YO)"((
Xn-12"X-+2n-'Xo-z2°1+-+X,
24X, )+l+ -(1). Note that the underlined term Xn-1·2n1 can be expressed as (t+xn□)·2n″.

従って、(1)式の2つかっこ内を第1項と第2項とを
入力とする1つの加算器でバイアス付浮動小数点形式の
乗算が可能となる。
Therefore, it is possible to perform biased floating-point format multiplication using one adder that inputs the first term and the second term in the two parentheses of equation (1).

このような演算を行う本発明の乗算器は、それぞれ指数
部オペランドX、Yを有する浮動小数点形式の2つの被
演算データについて、各指数部オペランドがB=2n−
’−1のバイアス付き2進数で表現されており、X+Y
−Bを実行することにより前記2つの被演算データを乗
算する浮動小数点乗算器において、前記演算を行うため
にn+1桁の加算器を設け、加算器の一方の入力には前
記指数部オペランドのどちらか一方、例えばXの2″−
”FN以下の項はそのまま入力し、2 n−1桁の入力
にはXの2°−1桁の項Xn−+を反転して入力し、2
0桁の人力にはXの2°1桁の項X n −1を入力し
、また加算器の他方の入力には、もう一つの指数部オペ
ランドYの2°1桁以下の項すべてを入力し、2″桁目
の入力には1を入力し、また加算器の最下位桁へのキャ
リー人力には1を入力し、X+Y−Bを求めることを特
徴とする。
The multiplier of the present invention that performs such an operation has two operand data in floating point format each having exponent operands X and Y, and each exponent operand is B=2n-
It is expressed as a biased binary number of '-1, and X+Y
A floating point multiplier that multiplies the two operand data by executing -B is provided with an n+1 digit adder to perform the operation, and one input of the adder is connected to either of the exponent operands. On the other hand, for example, 2″-
”Enter the terms below FN as they are, and for the 2n-1 digit input, invert the 2°-1 digit term Xn-+ of X,
Input the 2° 1-digit term X n -1 of X into the 0-digit input, and input all the terms below 2° 1-digit of the other exponent operand Y into the other input of the adder. However, 1 is input to the input of the 2'' digit, and 1 is input to the carry input to the lowest digit of the adder to obtain X+Y-B.

なお上述の構成は正論理に基づいているが、負論理の場
合も本発明の技術的範囲に含まれる。
Although the above-described configuration is based on positive logic, negative logic is also included within the technical scope of the present invention.

本発明によればハードウェアは従来に比して加算器1個
分少なくなり、また従来X+Yの加算に要した時間を0
に出来る。
According to the present invention, the hardware is reduced by one adder compared to the conventional one, and the time required to add X+Y in the conventional method is reduced to 0.
I can do it.

実施例 指数部の計算を行う第1図に示す加算器10は一方の加
算入力として(1)式における最明のかっこ内の項(2
n+yn−+2n−’+−yo) h<図上左端側より
端子1.Y、、、Y、−1Y、に供給され、また他方の
入力として(1)式の第2のかっこ内の項(Xn−+ 
2 n+ Xn−+ 2 n−’+−・・Xo)が端子
X n −1+Xn−1・・・Xoに供給される。Xn
−1を行うためにインバータ5が設けられている。キャ
リー入力端子には1が印加される。
Embodiment The adder 10 shown in FIG. 1 that calculates the exponent part receives the brightest term (2) in parentheses in equation (1) as one addition input.
n+yn-+2n-'+-yo)h<Terminal 1. Y, , ,Y,−1Y, and as the other input, the term in the second parentheses (Xn−+
2n+Xn-+2n-'+-...Xo) are supplied to the terminals Xn-1+Xn-1...Xo. Xn
-1, an inverter 5 is provided. 1 is applied to the carry input terminal.

第1図に示した加算器によって(1)式を演算し、結果
的に演算α×βの指数部X+Y−Bを演算する。
The adder shown in FIG. 1 calculates equation (1), and as a result, calculates the exponent part X+Y-B of the calculation α×β.

第1図の加算器10は第2図に示すように入力aとbを
加算する全加算器20を所要ビット分設けて、下位ビッ
トの全加算器の桁上出力Coatをすぐ上位のビットの
全加算器のキャリー人力としたものである。kビット目
(k=1,2.3・・・n)の全加算器のa、b入力に
はにビット目の値Xk。
The adder 10 in FIG. 1 is provided with full adders 20 for adding inputs a and b for the required bits as shown in FIG. The carry of the full adder is carried out manually. The a and b inputs of the k-th bit (k=1, 2.3...n) full adder contain the value Xk of the second bit.

Ykが印加される。Yk is applied.

各全加算器20はインバータ■とアンドゲートAとオア
ゲート0とを第3図図示のごとく接続したものでもよい
し、エクスクル−シブオアEXとアンドゲートAとオア
ゲート0とを第4図図示のごとく接続したものを例示で
きる。
Each full adder 20 may be configured by connecting an inverter (1), an AND gate A, and an OR gate 0 as shown in FIG. 3, or connect an exclusive OR EX, an AND gate A, and an OR gate 0 as shown in FIG. 4. I can give an example of what I did.

さらに加算器として第5図に示す桁上げ先見発生回路を
用いたものでもよい。
Further, the adder may use a carry lookahead generation circuit shown in FIG.

なお上述の加算器で指数部を演算し、仮数部は公知の種
々の乗算器を用いて演算して仮数部と指数部とを合わせ
ることにより所期の浮動小数点方式の乗算結果が得られ
る。
The exponent part is calculated using the above-mentioned adder, the mantissa part is calculated using various known multipliers, and the desired floating-point multiplication result is obtained by combining the mantissa part and the exponent part.

発明の効果 以上詳述したように、この発明は浮動小数点形式の乗算
における指数部の演算はバイアス付の場合でも1個の加
算器で行うことができ、ハードウェアの部品点数を低減
できるとともに、演算速度を高速化できる。
Effects of the Invention As detailed above, the present invention allows calculation of the exponent part in floating-point multiplication with a single adder even in the case of bias, reducing the number of hardware components, and Computation speed can be increased.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例を示すブロック図、第2図
は第1図の実施例の詳細な例を示すブロック図、第3図
ないし第5図は第2図の例に用いられる全加算器の具体
例を示す回路図、第6図は浮動小数点形式の乗算器の例
を示すブロック図である。 1・・・仮数部、2・・・指数部、10・・・加算器、
20・・・全加算器。
FIG. 1 is a block diagram showing one embodiment of the invention, FIG. 2 is a block diagram showing a detailed example of the embodiment shown in FIG. 1, and FIGS. 3 to 5 are used for the example shown in FIG. FIG. 6 is a circuit diagram showing a specific example of a full adder, and FIG. 6 is a block diagram showing an example of a floating-point multiplier. 1... Mantissa part, 2... Exponent part, 10... Adder,
20...Full adder.

Claims (1)

【特許請求の範囲】[Claims] (1)(1・2^n+Y_n_−_12^n^−^1+
Y_n_−_22^n^−^2+・・・+Y_12+Y
_0)を一方の加算入力、(X_n_−_12^n+@
X_n_−_1@2^n^−^1+X_n_−_22^
n^−^2+・・・+X_12+X_0)を他方の加算
入力とするとともに、1を加算入力とする一個の加算器
を浮動小数点形式の乗算の指数部の演算器とすることを
特徴とする浮動小数点形式の乗算器。
(1) (1・2^n+Y_n_-_12^n^-^1+
Y_n_-_22^n^-^2+...+Y_12+Y
_0) as one addition input, (X_n_-_12^n+@
X_n_-_1@2^n^-^1+X_n_-_22^
n^-^2+...+X_12+X_0) as the other addition input, and one adder having 1 as the addition input is used as an arithmetic unit for the exponent part of floating-point multiplication. Multiplier of the form.
JP26657788A 1988-10-20 1988-10-20 Floating-point form multiplier Pending JPH02112022A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26657788A JPH02112022A (en) 1988-10-20 1988-10-20 Floating-point form multiplier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26657788A JPH02112022A (en) 1988-10-20 1988-10-20 Floating-point form multiplier

Publications (1)

Publication Number Publication Date
JPH02112022A true JPH02112022A (en) 1990-04-24

Family

ID=17432742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26657788A Pending JPH02112022A (en) 1988-10-20 1988-10-20 Floating-point form multiplier

Country Status (1)

Country Link
JP (1) JPH02112022A (en)

Similar Documents

Publication Publication Date Title
KR920005226B1 (en) Floating point arithmetic units
JP2002108606A (en) Sticky bit generating circuit and multiplier
US5148386A (en) Adder-subtracter for signed absolute values
KR960002061A (en) Arithmetic Device for Floating Point
US5260889A (en) Computation of sticky-bit in parallel with partial products in a floating point multiplier unit
KR20020063058A (en) apparatus and method for design of the floating point ALU performing addition and round operations in parallel
JP7285966B2 (en) Multi-input floating point adder
KR920003493B1 (en) Operation circuit based on floating-point representation
JPH0346024A (en) Floating point computing element
US6684236B1 (en) System of and method for efficiently performing computations through extended booth encoding of the operands thereto
US6202078B1 (en) Arithmetic circuit using a booth algorithm
JPH02112022A (en) Floating-point form multiplier
JP2645422B2 (en) Floating point processor
JPH0251732A (en) Floating point computing element
JP2856792B2 (en) Floating point arithmetic unit
JPS5938849A (en) Arithmetic circuit
JPS59140560A (en) Floating point multiplier
JPH07200259A (en) Arithmetic processing method and arithmetic processor
JPH0285922A (en) Arithmetic circuit
JP3100868B2 (en) Arithmetic unit for floating point numbers
JPH03282926A (en) Floating-point numerical arithmetic unit
JPH01232430A (en) Arithmetic circuit
JP2001034455A (en) Adding device, subtracting device, multiplying device and dividing device
JPH04160533A (en) Microprocessor
JPH03138724A (en) Floating point reciprocal computing element