JPH02111844A - Alloy excellent in erosion resistance - Google Patents
Alloy excellent in erosion resistanceInfo
- Publication number
- JPH02111844A JPH02111844A JP26403788A JP26403788A JPH02111844A JP H02111844 A JPH02111844 A JP H02111844A JP 26403788 A JP26403788 A JP 26403788A JP 26403788 A JP26403788 A JP 26403788A JP H02111844 A JPH02111844 A JP H02111844A
- Authority
- JP
- Japan
- Prior art keywords
- alloy
- resistance
- less
- strength
- erosion resistance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910045601 alloy Inorganic materials 0.000 title claims abstract description 33
- 239000000956 alloy Substances 0.000 title claims abstract description 33
- 230000003628 erosive effect Effects 0.000 title claims abstract description 17
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 4
- 239000000203 mixture Substances 0.000 abstract description 4
- 229910052720 vanadium Inorganic materials 0.000 abstract description 3
- 229910052721 tungsten Inorganic materials 0.000 abstract description 2
- 229910000599 Cr alloy Inorganic materials 0.000 abstract 1
- 238000001556 precipitation Methods 0.000 abstract 1
- 239000006210 lotion Substances 0.000 description 15
- 230000000694 effects Effects 0.000 description 9
- 229910001347 Stellite Inorganic materials 0.000 description 6
- AHICWQREWHDHHF-UHFFFAOYSA-N chromium;cobalt;iron;manganese;methane;molybdenum;nickel;silicon;tungsten Chemical compound C.[Si].[Cr].[Mn].[Fe].[Co].[Ni].[Mo].[W] AHICWQREWHDHHF-UHFFFAOYSA-N 0.000 description 6
- 229910000734 martensite Inorganic materials 0.000 description 6
- 229910001566 austenite Inorganic materials 0.000 description 5
- 150000001247 metal acetylides Chemical class 0.000 description 5
- 230000009466 transformation Effects 0.000 description 5
- 206010073306 Exposure to radiation Diseases 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 230000004580 weight loss Effects 0.000 description 3
- 230000032683 aging Effects 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910000859 α-Fe Inorganic materials 0.000 description 2
- 229910001339 C alloy Inorganic materials 0.000 description 1
- 229910017086 Fe-M Inorganic materials 0.000 description 1
- 229910000914 Mn alloy Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000006690 co-activation Effects 0.000 description 1
- 230000009931 harmful effect Effects 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 230000029052 metamorphosis Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
Landscapes
- Turbine Rotor Nozzle Sealing (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、タービンのエロージョンシールド、バルブな
ど流体による二ローションが起こりやすい機器、部品に
使用されるのに適した耐二ローション性のすぐれた合金
に関するものである。[Detailed Description of the Invention] [Industrial Application Field] The present invention provides an excellent double-lotion resistant material suitable for use in equipment and parts that are prone to double-lotion due to fluids, such as turbine erosion shields and valves. It concerns alloys.
現在、原子力発電プラントのタービンの二ローションシ
ールドやバルブシートなどの二ローションが起こりやす
い機器、部品には非常に耐二ローション性のすぐれた合
金であるCo−Cr−W−C系合金のステライトが主と
して用いられている。Currently, Stellite, a Co-Cr-W-C alloy, is used in equipment and parts that are prone to double-lotion, such as the double-lotion shields and valve seats of turbines in nuclear power plants. Mainly used.
しかしながら、ステライトはCoを多く含むため、原子
力発電プラントに使用される場合には、Coの放射化に
よる被ばく性が問題となっていた。However, since stellite contains a large amount of Co, when used in a nuclear power plant, radiation exposure due to Co activation has been a problem.
これを防ぐ手段として、Coを含まない材料、部材が提
案されている。例えば特開昭61−60865号に、重
量%にてMn 10−30%、Cr 10−30%、V
O,5〜3.0%、CO,3%以下、N002〜1.
0%、残部実質的にFeよりなる耐キヤビテーシヨンエ
ロージョン部材が提案されている。特開昭61−608
65号は、Goを含まないため、Goの放射化による被
ばく性の問題はないが、本発明者等の検討によると良好
な耐エロージョン性を得るには至っていない。As a means to prevent this, materials and members that do not contain Co have been proposed. For example, in JP-A-61-60865, Mn 10-30%, Cr 10-30%, V
O, 5-3.0%, CO, 3% or less, N002-1.
A cavitation-erosion resistant member has been proposed which is made of 0% Fe and the remainder substantially Fe. Japanese Patent Publication No. 61-608
Since No. 65 does not contain Go, there is no problem with radiation exposure due to activation of Go, but according to studies by the present inventors, it has not yet achieved good erosion resistance.
(発明が解決しようとする課題〕
本発明はかかる点に鑑み、Coを含まず、すぐれた耐エ
ロージョン性1強度を有する合金を提供するものである
。(Problems to be Solved by the Invention) In view of the above, the present invention provides an alloy that does not contain Co and has excellent erosion resistance and strength.
本発明者等は、CO基合金のステライトがすぐれた耐エ
ロージョン性を示す原因について検討した結果、二ロー
ションをを起こす水等の流体による衝撃力を面心立方晶
から稠密六方晶へのマルテンサイト変態を起こすことに
よって吸収することが最も重要な要因であるということ
を見出した。As a result of investigating the reason why the CO-based alloy stellite exhibits excellent erosion resistance, the present inventors have found that the impact force caused by fluids such as water, which causes two-lotion, transforms martensite from face-centered cubic crystal to dense hexagonal crystal. We found that absorption through metamorphosis is the most important factor.
そこで、発明者等はかかる問題点を解決すべく、このよ
うな変態を生ずる可能性のあるCoを含まない合金系と
して高Mn系Fe基合金に着目して検討した結果、■炭
化物によって析出強化したFe−M、n−Cr系合金が
有望であることを新たに見出し、本発明に到ったもので
あり、具体的には重ffi%にてCO,9を越え1.7
%以下、Si2.5%以下、Mn1O〜25%、Cr
6〜20%、V 3.7−7%、8以下のWおよび3%
以下のTiの1種または2種、N O,1%以下、残部
実質的にFeよりなることを特徴とする耐エロージョン
性のすぐれた合金である。Therefore, in order to solve this problem, the inventors focused on a high-Mn-based Fe-based alloy as an alloy system that does not contain Co, which may cause such a transformation, and found that: The present invention was developed based on the new discovery that Fe-M, n-Cr based alloys are promising.
% or less, Si2.5% or less, Mn1O~25%, Cr
6-20%, V 3.7-7%, W below 8 and 3%
It is an alloy with excellent erosion resistance characterized by consisting of one or two of the following Ti, 1% or less of N2O, and the balance substantially of Fe.
次に本発明における各元素の作用および数値の限定理由
について述べる。Next, the effects of each element in the present invention and reasons for limiting numerical values will be described.
CはVの炭化物を形成させ、結晶粒を微細化するだけで
なく1時効処理によりVの析出炭化物を形成させること
により耐二ローション性、強度を向上させるために必要
な元素であるが、0.9%以下では炭化物量が少ないた
めに効果が少なく、また1、7zより多いと延性、およ
び耐食性を害することから、0.9%を越え1.7%以
下とした。C is an element necessary to form V carbides and refine the crystal grains, as well as to improve the lotion resistance and strength by forming V precipitated carbides through aging treatment. If it is less than .9%, the effect will be small because the amount of carbide is small, and if it is more than 1,7z, the ductility and corrosion resistance will be impaired.
Siは脱酸剤として有効な元素であるが、2.5%を越
えてもより一層の向上効果が望めないことから、2.5
%以下とした。Although Si is an effective element as a deoxidizing agent, even if it exceeds 2.5%, no further improvement effect can be expected.
% or less.
Mnは面心立方晶のオーステナイトを安定化し、液体に
よる衝撃力で稠密六方晶のイプシロン相へマルテンサイ
ト変態させることにより衝撃力を吸収し、耐重ローショ
ン性を向上させるために必要な元素であるが、10%よ
り少ないとオーステナイトが不安定となり、衝撃力を受
ける前にフェライトまたはマルテンサイトが生成し、衝
撃力を受けたときのマルテンサイト変態量が少なくなる
ため耐エロージョン性が劣化し、また25%より多いと
、オーステナイトが安定になり過ぎるため、マルテンサ
イト変態が起こりにくくなり、耐重ローション性が劣化
することから、10〜25%とした。Mn is an element necessary to stabilize the face-centered cubic austenite, absorb the impact force by transforming it into the dense hexagonal epsilon phase due to the impact force of the liquid, and improve the heavy lotion resistance. If it is less than 10%, austenite becomes unstable, ferrite or martensite is generated before receiving impact force, and the amount of martensite transformation when subjected to impact force decreases, resulting in deterioration of erosion resistance. If it exceeds 10%, austenite becomes too stable, martensite transformation becomes difficult to occur, and heavy lotion resistance deteriorates, so it is set at 10 to 25%.
Crは耐重ローション性、耐食性を向上させるために必
要な元素であるが、6%より少ないと特に耐食性が劣化
し、また20%より多いと、フェライトまたはシグマ相
が生成しやすくなり、耐重ローション性が劣化すること
から、 6〜20%とした。Cr is an element necessary to improve heavy lotion resistance and corrosion resistance, but if it is less than 6%, the corrosion resistance will deteriorate, and if it is more than 20%, ferrite or sigma phase will be likely to be formed, which will reduce the heavy lotion resistance. It was set at 6 to 20%, since it causes deterioration.
■は、炭化物を形成することにより耐重ローション性、
強度を向上させるのに必要な元素であるが、3.7%よ
り少ないと効果が少なく、また、7%を越えると延性が
低下することから、3.7〜7%とした。■ Heavy lotion resistance by forming carbide,
It is an element necessary to improve strength, but if it is less than 3.7%, the effect will be small, and if it exceeds 7%, ductility will decrease, so it was set at 3.7 to 7%.
Nは、高Mn系合金では不純物として混入しやすい元素
であり、■と窒化物を・形成し、■の炭化物の形成を害
するだけでなく、固溶Nはオーステナイトを安定化し、
マルテンサイト変態を起こしにくくするが、0.1x以
下であれば実用上問題がないため、0.1x以下とした
。N is an element that is easily mixed as an impurity in high-Mn alloys, and not only does it form nitrides with ■ and harm the formation of carbides in ■, but solid solution N stabilizes austenite.
It makes it difficult for martensitic transformation to occur, but if it is 0.1x or less, there is no practical problem, so it was set to 0.1x or less.
Wはマトリックス中に固溶し、強度を改善するのに有効
な元素であるが、5%を越えてもより一層の向上、効果
はみられず、むしろ靭性が劣化するので5%以下とした
。W is a solid solution in the matrix and is an effective element for improving strength, but even if it exceeds 5%, no further improvement or effect is seen, and on the contrary, toughness deteriorates, so the content was set to 5% or less. .
Tiは、炭窒化物を形成し、Nを固定することでNの有
害作用を抑えるので強度改善に寄与する。Ti forms carbonitrides and fixes N, thereby suppressing the harmful effects of N and contributing to improving strength.
しかし、3%を越えるとTiの炭窒化物が多くなりすぎ
、延性を劣化させるだけでなく、■の炭化物の形成に必
要なCをも固定してVの炭化物の形成を阻害することか
ら3%以下とした。However, if it exceeds 3%, the amount of Ti carbonitrides becomes too large, which not only deteriorates ductility but also fixes C, which is necessary for the formation of carbides (3), and inhibits the formation of V carbides. % or less.
一方、特開昭61−60865号に開示された合金は、
Nを0.2〜1.0%と多く含むため、面心立方晶のオ
ーステナイトが安定になり過ぎ、稠密六方晶のイプシロ
ン相へのマルテンサイト変態を起こしにくいこと、およ
び時効処理を行なった場合に、耐エロージョン性の改善
には十分な効果をもたない■窒化物が優先的に析出する
ことなどから、耐重ローション性が十分でないものと考
えられる。On the other hand, the alloy disclosed in JP-A No. 61-60865 is
Because it contains a large amount of N (0.2 to 1.0%), the face-centered cubic austenite becomes too stable and martensitic transformation to the close-packed hexagonal epsilon phase is difficult to occur, and when subjected to aging treatment. In addition, it is considered that the heavy lotion resistance is not sufficient because (2) nitrides are preferentially precipitated, which has no sufficient effect on improving erosion resistance.
以下本発明を実施例により説明する。 The present invention will be explained below with reference to Examples.
第2表
第1表に示す組成の合金を高周波誘導溶解炉にて溶解し
、10kgのインゴットを作製した。各試料は熱間加工
により30nwn角の棒材に仕上げた。熱処理条件は1
発明合金1〜5および比較合金6〜11および従来合金
12については、11&O℃で1時間の固溶化熱処理を
行なった後、水冷し、さらに750°Cで1〜2時間の
時効処理を行なった後空冷した。An alloy having the composition shown in Table 2 and Table 1 was melted in a high frequency induction melting furnace to produce a 10 kg ingot. Each sample was finished into a 30nwn square bar by hot working. Heat treatment conditions are 1
Invention alloys 1 to 5, comparative alloys 6 to 11, and conventional alloy 12 were subjected to solution heat treatment at 11°C for 1 hour, water-cooled, and further aged at 750°C for 1 to 2 hours. It was then air cooled.
従来合金13は、1230°Cで1時間の固溶化熱処理
を行なったのち、空冷した。ここで従来合金12は、特
開昭61−60865号に開示されている組成をもつ合
金であり、13はステライトである。これらの合金につ
いて、キャビテーションエロージョン減量、および引張
特性のうち、0.2%耐力、引張強さを開学した結果を
第2表に示す。耐重ロージゴン性は、キャビテーション
エロージョン試験による減量で評価したが、試験条件は
、振動数6.5KIIZ。Conventional Alloy 13 was subjected to solution heat treatment at 1230°C for 1 hour and then air cooled. Here, the conventional alloy 12 is an alloy having a composition disclosed in JP-A No. 61-60865, and 13 is stellite. Table 2 shows the results of cavitation erosion weight loss, 0.2% yield strength, and tensile strength of these alloys. The heavy rosigon resistance was evaluated by weight loss by cavitation erosion test, and the test conditions were a frequency of 6.5 KIIZ.
振幅90μm、試験液50℃純水、試験時間4時間とし
、その他は学振法に準じた。The amplitude was 90 μm, the test liquid was pure water at 50° C., and the test time was 4 hours, and other conditions were in accordance with the JSPS method.
第2表より明らかなように、本発明合金は比較合金6〜
11および、従来合金12に比べてキャビテーションエ
ロージョン減量が少なく、耐重ローション性の非常に優
れた従来合金13のステライトと同等であることがわか
る。さらに強度についても本発明合金は従来合金に比べ
て高い0.2%耐力、引張強さを示しており、高い強度
をも兼ね備えていることがわかる。特に本発明合金を従
来合金13のステライトと比較した場合、耐重ローショ
ン性はほぼ同レベルであるが、強度が高く、かつ被ばく
性の心配があるCOを全く含まないなどの有利な特徴を
有していることがわかる。As is clear from Table 2, the alloys of the present invention are comparative alloys 6 to 6.
It can be seen that the weight loss due to cavitation erosion is smaller than that of conventional alloy 11 and conventional alloy 12, and that it is equivalent to conventional alloy 13, which has excellent heavy lotion resistance. Furthermore, regarding strength, the alloy of the present invention exhibits higher 0.2% proof stress and tensile strength than conventional alloys, indicating that it also has high strength. In particular, when comparing the present invention alloy with the conventional alloy 13 Stellite, it has almost the same level of heavy lotion resistance, but it has advantageous features such as high strength and no CO content, which is a concern for radiation exposure. You can see that
以上説明したように、本発明合金はCOを含まず、かつ
耐重ローション性、強度をもつことから、原子力発電プ
ラントのタービンブレードの二〇−ジョンシールドやバ
ルブをはじめとするエロージョンにより損耗を受けやす
い機器、部品に用いれば、被ばくの心配もなく、価格も
ステライトに比べて低く、エロージョンによる損耗も少
ないなどの工業上顕著な効果を有するものである。As explained above, since the present alloy does not contain CO and has heavy lotion resistance and strength, it is susceptible to wear and tear due to erosion, including the 20-john shields and valves of turbine blades in nuclear power plants. When used in equipment and parts, it has remarkable industrial effects, such as no risk of radiation exposure, lower price than stellite, and less wear and tear due to erosion.
出願人 工業技術院長 飯塚幸三Applicant: Director of the Agency of Industrial Science and Technology Kozo Iizuka
Claims (1)
5%以下、Mn10〜25%、Cr6〜20%、V3.
7〜7%、5%以下のWおよび3%以下のTiの1種ま
たは2種、N0.1%以下、残部実質的にFeよりなる
ことを特徴とする耐エロージョン性のすぐれた合金。1% by weight of C greater than 0.9 and less than 1.7%, Si2.
5% or less, Mn 10-25%, Cr 6-20%, V3.
An alloy with excellent erosion resistance characterized by comprising one or both of 7 to 7%, 5% or less of W and 3% or less of Ti, 0.1% or less of N, and the remainder substantially Fe.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26403788A JPH02111844A (en) | 1988-10-21 | 1988-10-21 | Alloy excellent in erosion resistance |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26403788A JPH02111844A (en) | 1988-10-21 | 1988-10-21 | Alloy excellent in erosion resistance |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02111844A true JPH02111844A (en) | 1990-04-24 |
JPH0256418B2 JPH0256418B2 (en) | 1990-11-30 |
Family
ID=17397672
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP26403788A Granted JPH02111844A (en) | 1988-10-21 | 1988-10-21 | Alloy excellent in erosion resistance |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02111844A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100414687B1 (en) * | 2001-03-31 | 2004-01-13 | 학교법인 한양학원 | Fe-based hardfacing alloy |
US7901519B2 (en) * | 2003-12-10 | 2011-03-08 | Ati Properties, Inc. | High strength martensitic stainless steel alloys, methods of forming the same, and articles formed therefrom |
US7931758B2 (en) | 2008-07-28 | 2011-04-26 | Ati Properties, Inc. | Thermal mechanical treatment of ferrous alloys, and related alloys and articles |
-
1988
- 1988-10-21 JP JP26403788A patent/JPH02111844A/en active Granted
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100414687B1 (en) * | 2001-03-31 | 2004-01-13 | 학교법인 한양학원 | Fe-based hardfacing alloy |
US7901519B2 (en) * | 2003-12-10 | 2011-03-08 | Ati Properties, Inc. | High strength martensitic stainless steel alloys, methods of forming the same, and articles formed therefrom |
US7931758B2 (en) | 2008-07-28 | 2011-04-26 | Ati Properties, Inc. | Thermal mechanical treatment of ferrous alloys, and related alloys and articles |
US8313592B2 (en) | 2008-07-28 | 2012-11-20 | Ati Properties, Inc. | Thermal mechanical treatment of martensitic stainless steel |
Also Published As
Publication number | Publication date |
---|---|
JPH0256418B2 (en) | 1990-11-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1328405C (en) | High-strength stainless steel, container and hardware made of such steel | |
CA1068132A (en) | High strength ferritic alloy | |
JPH02290950A (en) | Ferritic heat resisting steel excellent in strength at high temperature | |
JP4654440B2 (en) | Low work hardening type iron alloy | |
JP2978427B2 (en) | High Mn nonmagnetic steel for cryogenic use and manufacturing method | |
JPS58174538A (en) | Ni-based alloy member and manufacture thereof | |
US3065068A (en) | Austenitic alloy | |
JP2947913B2 (en) | Rotor shaft for high temperature steam turbine and method of manufacturing the same | |
JPH02111844A (en) | Alloy excellent in erosion resistance | |
JPH0432145B2 (en) | ||
US4751046A (en) | Austenitic stainless steel with high cavitation erosion resistance | |
JPH0312136B2 (en) | ||
US4278465A (en) | Corrosion-resistant alloys | |
JPS59136464A (en) | Boiler tube | |
JPH0377269B2 (en) | ||
JPH0770713A (en) | Heat resistant cast steel | |
CA2063329A1 (en) | Abrasion-resistant steel | |
JP2678263B2 (en) | High-strength and high-corrosion-resistant martensitic stainless steel manufacturing method and its application | |
JPS61186453A (en) | High strength and high toughness quenched and tempered low-carbon steel plate for boiler or pressure vessel having superior resistance to weld crack, erosion and creep | |
JPH09291308A (en) | Production of high chrome ferritic heat resistant steel | |
US5096664A (en) | Alloys having excellent erosion resistance and stress corrosion cracking resistance | |
JPS61104056A (en) | High-strength and high-toughness low-carbon cr-mo steel plate having excellent creep-resisting property as well as superior resistance to weld crack and erosion | |
JPS60110847A (en) | Material for rotor of steam turbine | |
JPH0726351A (en) | Ferritic heat resistant steel excellent in high temperature strength | |
JPS62199752A (en) | Heat resistant austenitic steel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |