JPH02110350A - 高純度ガスの迅速分析方法 - Google Patents

高純度ガスの迅速分析方法

Info

Publication number
JPH02110350A
JPH02110350A JP26365288A JP26365288A JPH02110350A JP H02110350 A JPH02110350 A JP H02110350A JP 26365288 A JP26365288 A JP 26365288A JP 26365288 A JP26365288 A JP 26365288A JP H02110350 A JPH02110350 A JP H02110350A
Authority
JP
Japan
Prior art keywords
gas
high purity
argon gas
analysis
purity gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26365288A
Other languages
English (en)
Inventor
Tadashi Mochizuki
正 望月
Hideo Iwata
岩田 英夫
Akiko Sakashita
坂下 明子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP26365288A priority Critical patent/JPH02110350A/ja
Publication of JPH02110350A publication Critical patent/JPH02110350A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、ヘリウム、窒素等の不活性ガスやクロロシ
ラン等の原料ガスなど、高純度を要求されるガスに含ま
れる微量の不純物元素を迅速に分析する技術に関するも
のである。
[従来技術] ガス類のなかには、窒素ガスやアルゴンガス等不活性を
利用しキャリアなどに用いられたり、クロロシランのよ
うに原料として、それぞれ高い純度を要求されるものが
多い。
例えば、水素やヘリウム等のセブンナイン以上の高純度
ガスではPPb或はそれ以下の不純物が問題になり、又
半導体の材料となるシリコンの原料となるシランやクロ
ロシランでも、十億分の−の割合で含まれる不純物元素
量が注目され、その分析法は重要な技術となっている。
従来、用いられているこれら高純度ガスの分析法には、
赤外線法、ガスクロマトグラフィなどがあり、又、微量
物を取り扱う方法として、濾別分離法や吸着分離法があ
る。赤外線法では測定物質による吸収波長から測定物質
を同定し、吸収量から測定物質を定量するが、微量物で
は感度が不足しがちで、又、無機物では赤外不活性な物
質もあり、測定物が限定されるという欠点をもっている
。感度不足を補う手段として、上記の濾別分離や吸着分
離の手法があり、これらの手法は、微量の不純物を濾別
或は吸着することによってその濃度を高めるものである
が、これらの前処理には長時間を必要とし、又、濾材或
は吸着剤からの汚染の問題もつきまとう、ガスクロマト
グラフィは、物質の吸着性能の相違を利用して測定物を
分離し適当な検出器に接続して定量するもので、比較的
短時間に感度良く測定することができる。例えば、An
al  Chem、 1982.54. I)、 23
92では、トリクロロシランに0.33〜11 ppb
含まれる燐化合物を専用の吸着カラムと窒素・燐検出器
を用いて、35分間で直接測定した結果が報告されてい
る。
[発明が解決しようとする課題] しかしながらガスクロマトグラフィでは、吸着剤と検出
器に適当なものがないと測定できず、検出器が不適な場
合も多く、加えて類似の化合物ではリテンションタイム
が近似し分離困難な場合も多い、!&も不便なのは、測
定物がエアゾルとして存在する場合で、このときは測定
不能である。測定物が分解して吸着剤に作用しその吸着
性能に影響を与え、測定精度の変動をもたらす問題もあ
る。又、分析時間が短縮されたとはいえリテンションタ
イムは数分から数十分が普通であり、同時に多数の元素
を分析できないことが迅速化に限界をもたらしている。
この発明はこのような問題を解決するためになされたも
ので、容易に高い精度が維持でき、且つ同時に多数の元
素が短時間で分析できる分析技術の提供を目的とするも
のである。
[課題を解決するための手段及び作用コこの目的は、高
純度ガスをアルゴンガスで一定濃度に稀釈した混合ガス
を高周波誘導結合プラズマに直接導入し、前記高純度ガ
ス中に含まれる不純物を発光分光分析により定量するこ
とを特徴とする高純度ガスの迅速分析方法により達成さ
れる。
高周波誘導結合プラズマ(以下、ICPと称す)による
発光分光分析は近年開発された高怒度分析技術であるが
、この方法では、ドーナツ状のアルゴンプラズマで作ら
れるプラズマ炎の中を、アルゴンガスをキャリアとして
分析試料を通すことによって分析元素を励起し、励起さ
れた元素の発するスペクトルを捉えてその波長と強度と
から同定と定量とが行なわれる。このプラズマ炎は温度
が高く、又、この高温炎の中を分析試料が熱エネルギー
を吸収し易い状態で通過するので、各原子の解離も進み
効率良く励起され、したがって、微量の元素が感度良く
分析される。又、このような原理と応用した分析法であ
るため、吸光法、比色法やクロマトグラフィーでは不可
能な多元素同時分析が可能であり、しかも、数秒の発光
時間で分析値が得られる利点がある。加えて分光分析の
分解能も著しく進歩しており、最近では種々の試料への
応用が検討されている。しかし、この優れた分析手段を
活用し優れた分析方法を築くには、要求される分析精度
を実現させる工夫をしなければならない、その工夫は、
分析の対象となる試料をプラズマ炎の中にいかに安定的
に導入するかと言うことであり、例えば、最も要望の多
い溶液試料に対しては、粘性を有する酸水溶液や蒸気圧
の小さい有機溶液をアルゴンガスと均一に混ぜる霧化器
の工夫等が績み重ねられている。
この霧化器を備えた分析装置は一般に市販されているが
、この発明では霧化器を使用せずに、測定ガスを直接プ
ラズマ炎の中に導入するものである。即ち、分析試料が
気体であるため直接導入が可能となるが、この前処理を
必要としない方法は分析試料の汚染や微量成分の吸着に
よる損失等を防ぐので有効である。このほかに分析精度
を高めるためには、上記プラズマ炎が安定していて分析
元素の励起状況が変動しないこと、及びプラズマ炎に導
入される分析試料の量が正確に把握されることが極めて
重要である。このため、測定される高純度ガスはアルゴ
ンガスで一定濃度に稀釈してICP分析装置に直接導入
する。アルゴンガスで稀釈しないとプラズマ炎が不安定
となる。稀釈するアルゴンガスには超高純度の製品が市
販されており、これを更にフィルターを通すことによっ
て精製することも出来るし、又、アルゴンガスだけを一
定流量でプラズマ炎に導入することによって調べること
も出来る。実際には、このようにして調べたブランク値
を絶えずチエツクすることによって分析精度を高める。
一定濃度に稀釈するには、容器に一度溜めて混合しても
よいが、流送状態でオンラインで混合したほうが、不純
物の容器への吸着が防がれ又分析試料への汚染も少なく
精度が良い、そしてこの方法を実施するために精密流量
調整器が使用できる。精密流量調整器は近年非常に発達
し、質量流量測定方式で、再現精度0.2%のものが市
販されている。混合量を正確に把握すれば、気体同士の
場合互いの拡散が速く、直ぐに均一に混合されるので、
ICPに導入される分析試料量は正確に求まる。高純度
アルゴンガスを分析試料として分析する場合は、上記し
たように混合する必要はなく、ICPに導入する量を正
確に測定するだけでよい。
高純度ガスの場合、不純物含有率がPPbの桁あるいは
それ以下が一般的であり、これらの分析に使用する試料
の量も定量分析では0.1m/min以上使用すること
が望ましい、勿論分析目的によっては、これ以下の量で
もよいし、又、測定元素の含有率が高い場合も同様であ
る0分析試料とアルゴンガスとの混合比については、ア
ルゴンガスが多い場合は問題ないが、少な過ぎるとアル
ゴンプラズマ炎が不安定になり、甚だしいときには消え
てしまうことがある。アルゴンガス量が分析試量の二倍
以上であれば殆どのガスについて問題はない。
このようにして導入された分析試料に含まれている元素
は、上記したように、アルゴンプラズマにより解離し励
起されその結果発光する0発光分光分析装置では、これ
らの光を分光し、測定元素の必要波長の全てを同一条件
で測光できるので、同時に多数の元素が定量でき、測定
時間は数秒から十数秒である。しかも、分析感度はPP
bのオーダーで得られ、PPbからppm含まれる不純
物の分析に最適である。
更に微量含まれる不純物に対しては、高周波誘導結合プ
ラズマと質量分析とを組み合わせた高周波誘導結合プラ
ズマ・質量分析装置(以下、ICP−MS分析装置と称
す)を用いる。前記したように、プラズマ炎に導かれた
元素はここで高温状態となり励起されるが、このとき元
素のほぼ90%はイオン化している。このように優れた
イオン化炭を利用し、このイオンを質量分析に供するよ
うにしたのがICP−MS分析装置で、質量分析部では
電場を用いてイオンをその質量と電荷の比に応じて分離
測定する。この分離測定能は原子量単位の十分の−にも
達するので分解能に優れイオン種の同定は容易であり、
又感度も非常に高い0分析試料の導入はICP分析装置
の場合と同じで特に複雑な操作は必要でなく、又測定時
間も変わらない。
なお、定量値を求めるには検量線を用いるが、その作成
は定量元素を含む安定なガス状化合物を用いて行う、こ
れらガス状化合物としては、水素化物や塩素化物或は弗
化物等を用いることが出来るが、その化合形態にはこだ
わる必要はない。しかし安定性を重要視するので、標準
ガス濃度としてはlppm以上の濃度であることが望ま
しく、低濃度域の検量線を作成する場合には、使用直前
に精密流量調整器等で構成される稀釈装置を用いて、望
みの濃度まで稀釈すればよい。
[発明の実施例] 実施例1 高純度ヘリウムガス中のPの定量をICP分析装置を用
いて行った。用いた装置の概略を第1図に示す。図で、
1は分析試料の入った試料ボンベ、2a及び2bは精密
流量調整器、3はICP分析装置、4はプラズマ炎、5
は分光器、6は測光器、7は演算処理部、8は稀釈に用
いる高純度アルゴンの入ったアルゴンボンベである。
試料ボンベ1から、精密流量調整器2aで10m / 
rrirtrの流量に調整しながら、分析試料を流し、
同時に、アルゴンボンベ8から高純度アルゴンガスを、
精密流量調整器2aで1.0J/winの流量に調整し
て流し、両者を混合した。混合ガスをテフロン製の細管
を通して直接ICP分析装置3のプラズマ炎4の中に導
入した。試料中の元素をここで励起発光させ、その光を
分光器5で分光し、スペクトル強度を測光器6で捉え、
その強度と予め入力していた検量線とから演算処理部7
で分析値を算出した。
精密流量調整器2a及び2bには、精度1%以内、直線
性0.5%以内のものを使用した。又、検量線は次のよ
うにして求めた。標準ガスとしてPH3を精製超高純度
アルゴンガスで1 ppmに稀釈したものを用い、これ
を超高純度アルゴンガスで0からI PPb迄の範囲の
適当濃度に稀釈し、各々の濃度でのPの発光強度を測定
し濃度との関係を求めた。精製超高純度アルゴンガスは
超高純度アルゴンガスをフィルターに通しエアゾルを除
去したものである。求めた関係を第3図に示す。
図で横軸はPの含有率、縦軸は発光強度である。
含有率と発光強度との闇には高い一次相関が得られてい
る。
得られた分析結果はP含有率が0. l2ppbであっ
たが、6回繰り返し測定したときの再現精度はCv ”
” 4%であり十分満足できるものであった。
実施例2 窒素ガス中の不純物Bの定量をICP−MS分析装置を
用いて行った。用いた装置の概略を第2図に示す0図で
、1は分析試料の入った試料ボンベ、2a及び2bは精
密流量調整器、4はプラズマ炎、8は稀釈に用いる高純
度アルゴンの入ったアルゴンボンベ、13はICP−M
S分析装置、15はイオンレンズ、16は四重極質量分
析計、17はイオン検出器、1つはフィルターである。
試料ボンベ1から、精密流量調整器2aで0.1vtQ
 / miaの流量に調整しながら、分析試料を流し、
同時に、アルゴンボンベ8からの高純度アルゴンガスを
フィルター19で精製し、これを精密流量調整器2aで
1.Of/minの流量に調整して流し、両者を混合し
た。混合ガスをテフロン製の細管を通して直接プラズマ
炎4の中に導入した。試料中の元素をここで解離イオン
化させ、そのイオンを質量分析部13のイオンレンズ1
5を通して流れを揃え、四重極質量分析計16によって
Bイオンを選択し、イオン検出器17でそのイオン強度
を測定した。
精密流量調整器2a及び2bには、実施例1と同様、精
度1%以内、直線性0.5%以内のものを使用した。又
、検量線は次のようにして求めた。
標準ガスとして10PPI B2 Hbを用い、これを
精製超高純度アルゴンガスで0から10 ppt迄の範
囲の適当濃度に稀釈し、各々の濃度でのBのイオン強度
を測定し濃度との関係を求めた。この関係を第3図に示
す0図で横軸はBの含有率、縦軸はイオン強度である。
含有率とイオン強度との間には高い一次相関が得られて
いる。
得られた分析結果は、Bを5.2ppt含有していたが
、6回繰り返し測定したときの再現精度はCv =6%
であり十分満足できるものであった。
実施例3 モノクロロシラン及びジクロロシランに不純物として含
まれるB、Af、P、Asについて、実施例1或は実施
例2と同様にして分析を行った。
これらの結果を第1表に示す。
第1表 第1表で分析値は同一試料について日を替えて6回測定
した値の平均値であるが、これより求めた再現精度は6
%〜9%であり、極めて高いものであった0分析に際し
て、試料に複雑な前処理等を要せず操作も簡単であるこ
とが、良好な精度をもたらすものと考えられる。なお、
−回の測定に要した時間は準備も含めて5分以内であり
、測定時間は10秒であった。
[発明の効果コ 以上のように、この発明によれば、高純度ガスの分析試
料を元素励起或はイオン化能の優れたアルゴンプラズマ
に直接導入し複雑な前処理が不要であり、しかも感度及
び分解能の良い分光分析装置或は質量分析計で測定する
ので、分析誤差要因が少なく精度の高い信頼性のある分
析値が極めて短時間に得られる。このような分析技術は
、高純度ガスをキャリヤーとして用いる試験研究に役立
つだけではなく、高純度ガスを原料とする製造業の製品
品質並びに製造の管理にも大きな効果をもたらすもので
ある。

Claims (2)

    【特許請求の範囲】
  1. (1)高純度ガスをアルゴンガスで一定濃度に稀釈した
    混合ガスを高周波誘導結合プラズマに直接導入し、前記
    高純度ガス中に含まれる不純物を発光分光分析又は質量
    分析により定量することを特徴とする高純度ガスの迅速
    分析方法。
  2. (2)高周波誘導結合プラズマに導入する高純度ガスの
    量を0.1ml/mm以上とし、アルゴンガスの量を0
    .1l/mm以上且つ高純度ガスの量の二倍以上とする
    請求項1記載の高純度ガスの迅速分析方法。
JP26365288A 1988-10-19 1988-10-19 高純度ガスの迅速分析方法 Pending JPH02110350A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26365288A JPH02110350A (ja) 1988-10-19 1988-10-19 高純度ガスの迅速分析方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26365288A JPH02110350A (ja) 1988-10-19 1988-10-19 高純度ガスの迅速分析方法

Publications (1)

Publication Number Publication Date
JPH02110350A true JPH02110350A (ja) 1990-04-23

Family

ID=17392447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26365288A Pending JPH02110350A (ja) 1988-10-19 1988-10-19 高純度ガスの迅速分析方法

Country Status (1)

Country Link
JP (1) JPH02110350A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0475636A2 (en) * 1990-08-31 1992-03-18 Hitachi, Ltd. Method and apparatus for analysis of gases using plasma
JPWO2006137205A1 (ja) * 2005-06-22 2009-01-08 国立大学法人東京工業大学 液体導入プラズマシステム
JP2016180622A (ja) * 2015-03-23 2016-10-13 三菱重工業株式会社 誘導結合プラズマ発光分光分析装置
JP2017133985A (ja) * 2016-01-29 2017-08-03 アジレント・テクノロジーズ・インクAgilent Technologies, Inc. プラズマ分光分析装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0475636A2 (en) * 1990-08-31 1992-03-18 Hitachi, Ltd. Method and apparatus for analysis of gases using plasma
JPWO2006137205A1 (ja) * 2005-06-22 2009-01-08 国立大学法人東京工業大学 液体導入プラズマシステム
JP4560634B2 (ja) * 2005-06-22 2010-10-13 国立大学法人東京工業大学 液体導入プラズマシステム
JP2016180622A (ja) * 2015-03-23 2016-10-13 三菱重工業株式会社 誘導結合プラズマ発光分光分析装置
JP2017133985A (ja) * 2016-01-29 2017-08-03 アジレント・テクノロジーズ・インクAgilent Technologies, Inc. プラズマ分光分析装置

Similar Documents

Publication Publication Date Title
Prohaska et al. Precise sulfur isotope ratio measurements in trace concentration of sulfur by inductively coupled plasma double focusing sector field mass spectrometry
Li et al. Hydride generation-point discharge microplasma-optical emission spectrometry for the determination of trace As, Bi, Sb and Sn
US20030112431A1 (en) Method of using an aerosol to calibrate spectrometers
US6974951B1 (en) Automated in-process ratio mass spectrometry
EP1355728A2 (en) Automated in-process isotope and mass spectrometry
Demarcke et al. Laboratory studies in support of the detection of sesquiterpenes by proton-transfer-reaction-mass-spectrometry
Niemelä et al. Determination of trace impurities in germanium dioxide by ICP-OES, ICP-MS and ETAAS after matrix volatilization: a long-run performance of the method
JPH02110350A (ja) 高純度ガスの迅速分析方法
US11581177B2 (en) System for introducing particle-containing samples to an analytical instrument and methods of use
Camuna et al. Determination of halides by microwave induced plasma and stabilized capacitive plasma atomic emission spectrometry after on-line continuous halogen generation
Nakahara et al. Continuous-flow determination of trace iodine by atmospheric-pressure helium microwave-induced plasma atomic emission spectrometry using generation of volatile iodine from iodide
JPH01124746A (ja) 窒素含有化合物の分析方法
Van Dalen et al. The selective determination of halogens and sulphur in solution by atmospheric-pressure helium microwave-induced plasma emission spectrometry coupled to an electrothermal introduction system
US20030054561A1 (en) Method and apparatus for determining concentration of NH-containing species
Ortega et al. Determination of iodide by low power surfatron microwave induced plasma after iodine continuous generation
KR20100054937A (ko) 대기중 유해 물질의 검출 방법
Konieczka et al. Utilization of thermal decomposition of immobilized compounds for the generation of gaseous standard mixtures used in the calibration of gas analysers
ITMI20002830A1 (it) Metodo per la misura della concentrazione di impurezze in azoto idrogeno e ossigeno mediante spettroscopia di mobilita' ionica
Nakahara et al. Continuous-flow determination of aqueous sulfur by atmospheric-pressure helium microwave-induced plasma atomic emission spectrometry with gas-phase sample introduction
Melzer et al. Determination of trace amounts of lead in water by metastable transfer emission spectrometry
JPH085524A (ja) ガス中の微量金属の分析に用いる標準ガス及びそれを用いる分析方法
Gandhi et al. Atomic Absorption Spectroscopy and Flame Photometry
Fuyi et al. Use of polytetrafluoroethylene slurry for silica matrix removal in ETAAS direct determination of trace cobalt and nickel in silicon dioxide powder
Aikoh et al. Determination of mercury levels in human urine and blood by ultraviolet–visible spectrophotometry
Matsumoto et al. Determination of phosphorus by gas-phase chemiluminescence after hydride generation