JPH02104655A - Production of surface treated steel sheet for high-efficiency lead frame excellent in corrosion resistance, plating suitability, and solderability - Google Patents

Production of surface treated steel sheet for high-efficiency lead frame excellent in corrosion resistance, plating suitability, and solderability

Info

Publication number
JPH02104655A
JPH02104655A JP25544288A JP25544288A JPH02104655A JP H02104655 A JPH02104655 A JP H02104655A JP 25544288 A JP25544288 A JP 25544288A JP 25544288 A JP25544288 A JP 25544288A JP H02104655 A JPH02104655 A JP H02104655A
Authority
JP
Japan
Prior art keywords
plating
lead frame
steel sheet
less
corrosion resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25544288A
Other languages
Japanese (ja)
Inventor
Toshinori Katayama
片山 俊則
Yukinobu Higuchi
樋口 征順
Nobuo Tsuzuki
都築 信男
Fumio Yamamoto
山本 二三夫
Hirobumi Nakano
寛文 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP25544288A priority Critical patent/JPH02104655A/en
Publication of JPH02104655A publication Critical patent/JPH02104655A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

PURPOSE:To produce a surface treated steel sheet for high-efficiency lead frame excellent in corrosion resistance, plating suitability, and solderability by coating a Cr- containing cold rolled steel sheet having a specific composition with Ni or Co by a specific coating weight and then applying specific homogenizing treatment to the above sheet. CONSTITUTION:A Cr-containing steel sheet which has a composition consisting of, by weight, <=0.01% C, 0.005-0.10% acid-soluble Al, 4-10.5% Cr, 0.0003-0.005% B, and the balance Fe with inevitable impurities and further containing, if necessary, one or more kinds among 0.05-1% Cu, 0.05-3% Ni, and 0.05-0.5% Mo is cold rolled. A coating layer of Ni, Co, or alloy of both in which coating weight per side is regulated to 100-3000mg/m<2> is provided to the surface of the above cold rolled steel sheet. Subsequently, the above steel sheet is subjected to homogenizing treatment at a temp. in the range between 450 deg.C and the recrystallization temp. for <=180sec in a nonoxidizing atmosphere. By this method, the surface treated steel sheet for high-efficiency lead frame excellent in various properties, such as stamping property and corrosion resistance, can be obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、耐食性にすぐれるとともに、リードフレーム
製造工程における打抜き加工性(スタンピング性)に必
要な材質性能、めフき性能或いははんだ性能にすぐれた
リードフレーム用表面処理鋼板の製造法に関するもので
ある。
Detailed Description of the Invention (Field of Industrial Application) The present invention has excellent corrosion resistance, and also has excellent material performance, metallization performance, or solder performance necessary for punching workability (stamping performance) in the lead frame manufacturing process. The present invention relates to a method for producing an excellent surface-treated steel sheet for lead frames.

(従来の技術) 近時、エレクトロニクス分野において、集積回路(I 
C)の需要が著しく増大し、リードフレーム材料の需要
も増加し、諸性能にすぐれたリードフレーム材料の開発
が強く望まれている。
(Prior Art) Recently, in the field of electronics, integrated circuits (I
The demand for C) has increased significantly, and the demand for lead frame materials has also increased, and there is a strong desire to develop lead frame materials with excellent performance.

一般にこれらリードフレーム材は、帯材とした後、裁断
、打抜き加工を施こし、その表面にCuめつき或いはけ
んだめりき(浸漬はんだ或いは電気はんだめっき)を施
こし、これにAg、Au等がめりきされ、さらにシリコ
ンチップを結合(ワイヤーボンディング)してIC素材
として使用される。
In general, these lead frame materials are made into strips, then cut and punched, and then Cu plating or solder plating (immersion soldering or electric solder plating) is applied to the surface, and then Ag, Au, etc. are plated on the surface. It is then bonded to a silicon chip (wire bonding) and used as an IC material.

従って、これらリードフレーム材料は、打抜き成形加工
性が良好である事、めっき性がすぐれている事、はんだ
性がすぐれている事が要求される。中でもリードフレー
ムの端子部がIC基盤等にはんだづけされるために、す
ぐれたはんだ性を有することが重要である。
Therefore, these lead frame materials are required to have good punching and forming processability, excellent plating properties, and excellent solderability. In particular, since the terminal portion of the lead frame is soldered to an IC board or the like, it is important to have excellent solderability.

さらには素材は、上記のようなめつき等が行なわれる以
前の貯蔵時の耐錆性、さらには処理が行なわれた後の製
品の耐錆性がすぐれている事も要求される。
Furthermore, the material is required to have excellent rust resistance during storage before being subjected to the above-mentioned plating, etc., and furthermore, the product after the treatment is required to have excellent rust resistance.

(発明が解決しようとする課題) 従来、リードフレーム材料としては、強度と熱膨張特性
からFa−42%Ni合金が主として使用されており、
またコストと導電性の利点から銅合金も使用されている
。しかしこの銅合金も、導電性及び熱放散性の点では優
れているが、Fe −42%N1合金に比べ強度が不足
するため、ICの自動組立工程においてアクタ−リード
を部材に差込む際折れ曲がるという不都合があった。
(Problems to be Solved by the Invention) Conventionally, Fa-42%Ni alloy has been mainly used as a lead frame material due to its strength and thermal expansion characteristics.
Copper alloys are also used due to their cost and conductivity advantages. However, although this copper alloy has excellent conductivity and heat dissipation, it lacks strength compared to Fe-42%N1 alloy, so it may bend when inserting the actor lead into a component during the automatic IC assembly process. There was this inconvenience.

さらには、最近ICの小型化の点から、リードフレーム
素材も極薄化の傾向にあり、高い強度が要求されている
Furthermore, in view of the recent miniaturization of ICs, lead frame materials are also becoming extremely thin, and high strength is required.

コストの点からは低炭素鋼が最も有効であるが、錆を発
生し易い問題から使用することができない、一方耐食性
及び強度に優れたステンレス鋼は、多量のCrを含有す
るためにめっき性及びはんだ性に問題がある。このよう
な問題を改善するリードフレーム用素材としては、例え
ば特開昭57−50457号、特開昭59−9149号
、特開昭80−103158号等の各公報で紹介されて
いる。これらは基本成分として4〜11%のCrを含有
し、その他にNi、 Mo、 Cu、 Tl、 Nb、
 V、 ’Zr等を数%以下含有せしめてリードフレー
ム用素材に必要な耐錆性を向上せしめ、またステンレス
鋼の欠点とするめっき性、はんだ性を改善せしめたリー
ドフレーム用素材である。
Low carbon steel is the most effective in terms of cost, but cannot be used because it easily rusts.On the other hand, stainless steel, which has excellent corrosion resistance and strength, has poor plating properties and poor plating properties because it contains a large amount of Cr. There is a problem with solderability. Materials for lead frames that can solve these problems are introduced in, for example, Japanese Patent Laid-Open Nos. 57-50457, 59-9149, and 80-103158. These contain 4 to 11% Cr as a basic component, and also include Ni, Mo, Cu, Tl, Nb,
This is a lead frame material that contains V, Zr, etc. in a few percent or less to improve the rust resistance required for lead frame materials, and also improves the plating and solderability, which are disadvantages of stainless steel.

これら素材は、それなりの性能向上効果が得られるもの
の必ずしもリードフレーム用素材として充分な性能が得
られていない、すなわちCuめつきのめりき密着性が充
分でなく、特にワイヤーボンディング時の加熱工程にお
いて、Cuめつき層にブリスター(めりき層の部分的な
膨れ)を発生する欠点がみられた。またエレクトロニク
ス分野で多く使用されるCfL−イオンのようなハロゲ
ンイオ、ンを含有しないノンハロゲンタイプのフラック
スを用いたはんだづけ作業において、はんだが充分に付
かない問題があった。
Although these materials have a certain performance improvement effect, they do not necessarily have sufficient performance as lead frame materials.In other words, the adhesion of Cu plating is not sufficient, especially in the heating process during wire bonding. A defect was observed in which blisters (partial swelling of the plated layer) occurred in the Cu plated layer. Further, in soldering work using a non-halogen type flux that does not contain halogen ions, such as CfL- ions, which are often used in the electronics field, there is a problem that the solder does not adhere sufficiently.

さらにまた、上記した公知の鋼成分の鋼板に、Ni或い
は旧合金めつき、またはCu或いはCu合金のめフきを
施こしたリードフレーム用素材が特開昭61−2849
48号公報で紹介されている。該素材はFa−Cr系合
金鋼板、すなわち重量%でOr;  5.0〜10.5
%、C,0,10%以下、51;2.0%以下、Mn;
2.0%以下、八f 、 0.10%以下の基本成分の
他に、必要に応じてNi;  3.0%以下、 Cu;
  2.0%以下、 Mo:  4.0%以下のうち1
種又は2種以上、或いはNb、 TI、 Ta、 Zr
のうち1種又は2種以上を0.6%以下添加し、残部実
質的にFeよりなる鋼板に、Ni或いはNi合金のめつ
き、またはCu或いはCu合金めっきの3〜5μの被覆
層を施こし、冷間圧延した鋼板である。
Furthermore, a lead frame material in which a steel plate having the above-mentioned known steel components is plated with Ni or an old alloy, or plated with Cu or a Cu alloy is disclosed in Japanese Patent Application Laid-Open No. 61-2849.
It is introduced in Publication No. 48. The material is a Fa-Cr alloy steel plate, that is, Or; 5.0 to 10.5 in weight%.
%, C, 0, 10% or less, 51; 2.0% or less, Mn;
In addition to the basic components of 2.0% or less, 0.10% or less, Ni; 3.0% or less, Cu;
2.0% or less, Mo: 1 out of 4.0% or less
species or two or more species, or Nb, TI, Ta, Zr
One or more of these are added in an amount of 0.6% or less, and a 3-5 μm coating layer of Ni or Ni alloy plating, or Cu or Cu alloy plating is applied to a steel plate with the remainder substantially consisting of Fe. It is a strained and cold rolled steel plate.

該鋼板は、冷間圧延されたまま或いは歪み取り焼鈍をし
、リードフレーム用素材として使用されるが、Au又は
Agのめっき性或いははんだづけ性が、Fa−11:r
系ベース材のまま使用される場合に比してかなり改善さ
れる。
The steel plate is used as a material for lead frames either as cold rolled or after annealing to remove strain, but the Au or Ag plating or soldering properties are Fa-11:r.
This is a considerable improvement over the case where the base material is used as is.

しかしながら該鋼板は、めっき後の冷間圧延時にめっき
金属が圧延ロールに付着するため、外観の平滑良好な製
品を得るのに煩雑な手入れを要するなど、製造面で問題
が多い。
However, this steel plate has many problems in terms of manufacturing, such as the fact that the plated metal adheres to the rolling roll during cold rolling after plating, requiring complicated maintenance to obtain a product with a smooth appearance.

また、性能面に対しても、次の様な問題点がある。すな
わちNi或いはNi合金めつき層を施こした素材はめっ
き性或いははんだ性が向上するものの、浸漬はんだを行
なった場合、はんだ組成中のSn金属とNi金属が拡散
反応を生じ、硬くて脆いNi−5n系合金を生成する。
Furthermore, in terms of performance, there are the following problems. In other words, materials coated with a Ni or Ni alloy plating layer have improved plating and solderability, but when immersion soldering is performed, a diffusion reaction occurs between Sn metal and Ni metal in the solder composition, and the hard and brittle Ni -5n alloy is produced.

その生成量が多くなると、はんだ層が脆くなって衝撃或
いは曲げ加工を受けた場合に破壊され易い欠点(所謂、
はんだ脆性)がある、特にこの欠点はワイヤーボンディ
ング時に加熱を受けたり、Ni或いはNi合金のめつき
層が厚くなったりした場合に発生し易い傾向にある。
When the amount of solder generated increases, the solder layer becomes brittle and easily breaks when subjected to impact or bending (so-called
(solder brittleness), and this drawback tends to occur especially when heated during wire bonding or when the plated layer of Ni or Ni alloy becomes thick.

またCu或いはCu合金が施こされた場合には、Cu或
いはCu合金は、ベースに使用されるFe−Cr系組成
の鋼板に比較して著しく責な金属或いは合金であるため
に、湿潤環境或いはC1−イオン等の腐食因子が存在す
る腐食環境において、ベースの鋼板が優先腐食され、赤
錆発生成いは穿孔腐食がめつき層のピンホール部或いは
加工時の疵付き部から生じる場合がみられる。この傾向
は、Ni或いはNi合金のめフき層が施こされる場合も
、Fe−Cr系鋼板の鋼組成によっては同様の原因によ
る耐食性不良を生じる問題がある。
In addition, when Cu or Cu alloy is applied, it is a metal or alloy that is significantly more sensitive than the Fe-Cr based steel sheet used for the base, so it cannot be used in a humid environment or In a corrosive environment where corrosive factors such as C1- ions are present, the base steel plate is preferentially corroded, and red rust or perforation corrosion may occur from pinholes in the plating layer or from flawed areas during processing. This tendency also poses a problem in that even when a Ni or Ni alloy facing layer is applied, poor corrosion resistance may occur due to the same cause depending on the steel composition of the Fe--Cr steel sheet.

本発明は、上記問題点に鑑みなされたもので、耐食性、
めっき性及びはんだ性にすぐれたリードフレーム用表面
処理鋼板の製造法を提供する。
The present invention was made in view of the above problems, and has corrosion resistance,
Provided is a method for manufacturing a surface-treated steel sheet for lead frames with excellent plating and solderability.

(課題を解決するための手段) 本発明は、重量%で、C、0,01%以下、酸可溶AJ
2 ;  0.005〜0.10%、 Cr; 4〜1
0.5%、B;0.0003〜0.005%を含有し、
或いはさらにCu;0.05〜1%、 Ni ; 0.
05〜3%、Mo;0.05〜0,5%の1種又は21
11以上を含有し、残部Fe及び不可避的不純物からな
るCr含有鋼板を冷間圧延後、その表面に付着量が10
0〜3000mg/m”のNi、 Co或いはNiとC
oの合金の被覆層を設け、次いで非酸化、性雰囲気中の
450℃〜再結晶温度の温度範囲で180秒以下の加熱
拡散処理を施こす耐食性、めっき性及びはんだ性にすぐ
れた高性能リードフレーム周表面m理鋼板の製造法であ
る。
(Means for Solving the Problems) The present invention provides, in weight percent, C, 0.01% or less, acid-soluble AJ
2; 0.005-0.10%, Cr; 4-1
Contains 0.5%, B; 0.0003 to 0.005%,
Or further Cu; 0.05-1%, Ni; 0.
05-3%, Mo; 0.05-0.5% or 21
After cold rolling a Cr-containing steel plate containing 11 or more and the balance consisting of Fe and unavoidable impurities, the amount of adhesion on the surface is 10
0~3000mg/m'' of Ni, Co or Ni and C
A high-performance lead with excellent corrosion resistance, plating properties, and solderability, which is coated with a coating layer of alloy o and then subjected to heat diffusion treatment for 180 seconds or less in a temperature range of 450°C to recrystallization temperature in a non-oxidizing, neutral atmosphere. This is a method for manufacturing a steel plate on the peripheral surface of a frame.

以上の如く本発明は、冷間圧延後の前記組成の鋼板表面
に、適正厚さのNi、 Co或いはN1−Cu合金の被
覆層を施こし、加熱拡散処理を施こすものである。
As described above, in the present invention, a coating layer of Ni, Co, or N1-Cu alloy of an appropriate thickness is applied to the surface of a cold-rolled steel sheet having the above composition, and a heating diffusion treatment is performed.

本発明は耐食性の向上及び強度特性の向上などの観点か
ら、鋼中に適正量のCrを含有させる。
In the present invention, an appropriate amount of Cr is contained in steel from the viewpoint of improving corrosion resistance and strength characteristics.

しかしCrを含有する綱板は、加熱処理において、非酸
化性雰囲気を厳重に調整しても、雰囲気中に含まれる微
量の酸素によりCr、03を含む緻密で安定した酸化膜
を生成する。この酸化膜は一般に、酸洗等の表面活性化
処理によって均一に除去・活性化する事は困難であり、
リードフレーム製造工程のめっき性或いははんだ性を阻
害する原因となる。従って、Cr含有鋼板の加熱処理に
おいて酸化膜の生成、成長を極力抑制する事が重要であ
る。
However, even if the non-oxidizing atmosphere is strictly controlled in the heat treatment of the steel plate containing Cr, a dense and stable oxide film containing Cr and 03 is generated due to the trace amount of oxygen contained in the atmosphere. Generally, it is difficult to uniformly remove and activate this oxide film by surface activation treatment such as pickling.
This may impede plating or solderability in the lead frame manufacturing process. Therefore, it is important to suppress the formation and growth of oxide films as much as possible during heat treatment of Cr-containing steel sheets.

このため、本発明においては、 Cr含有鋼板自体の酸
化膜の生成・成長速度を抑制するため鋼にBを添加し、
また加熱処理における加熱温度、加熱時間を夫々設定す
る事によって、リードフレーム用素材に要求される特性
を満足する製造方法を開発したものである。
Therefore, in the present invention, B is added to the steel in order to suppress the formation and growth rate of the oxide film on the Cr-containing steel sheet itself,
Furthermore, we have developed a manufacturing method that satisfies the characteristics required for lead frame materials by setting the heating temperature and heating time in the heat treatment.

鋼中へBを添加することにより、同一加熱雰囲気でCr
含有鋼板の酸化速度が抑制される。この理由を本発明者
らは次のように考えている。
By adding B to steel, Cr can be added in the same heating atmosphere.
The oxidation rate of the contained steel plate is suppressed. The present inventors believe that the reason for this is as follows.

Cr含有鋼板が酸化されて生成する(:r203  (
P型(Po5itive型)酸化物〕には格子欠陥とし
て金属イオンが欠けた陽イオン空孔とその電気的中性を
保つための陽イオン空孔に相当する数の正孔が生成され
ている。
Cr-containing steel plate is oxidized and generated (:r203 (
In the P-type (Po5itive type) oxide], cation vacancies lacking metal ions as lattice defects and holes corresponding to the number of cation vacancies for maintaining electrical neutrality are generated.

このP型酸化物の酸化速度は加熱雰囲気の酸素分圧が同
じ場合、陽イオン空孔の移動に支配される。
The oxidation rate of this P-type oxide is dominated by the movement of cation vacancies when the oxygen partial pressure of the heating atmosphere is the same.

従って、Cr含有鋼にBを添加せしめる事によフて、C
r2Q3の格子に対して3価のCr30の代りに1価の
B9に一部を置換させると電気的中性を保つために正孔
の濃度が大きくなり、陽イオン空孔の濃度を減少するこ
ととなり、その結果として、陽イオン空孔の移動による
酸化速度が減少せしめられる。
Therefore, by adding B to Cr-containing steel, C
When a part of the r2Q3 lattice is replaced with monovalent B9 instead of trivalent Cr30, the hole concentration increases to maintain electrical neutrality, and the cation vacancy concentration decreases. As a result, the oxidation rate due to the movement of cation vacancies is reduced.

また、Bは本発明のように極低C鋼の場合、結晶粒界に
析出する事によって結晶粒界を強化し、ワイヤーボンデ
ィング加熱時の熱影響部の結晶粒の成長、粗大化を防止
し、リードフレーム製品の強度低下を防止する。
In addition, in the case of ultra-low C steel as in the present invention, B strengthens the grain boundaries by precipitating at the grain boundaries and prevents the growth and coarsening of grains in the heat affected zone during wire bonding heating. , prevent the strength of lead frame products from decreasing.

このようなCr−B含有鋼板に被覆処理後加熱拡散処理
を行なう事によって、Ni、 Co、 N1−Co合金
被覆層と鋼素材の相互拡散によりFeを含有するNi−
Fe、 Co−Fe、或いは(Ni+ Co) −Fe
を主体とする拡散層が生成される、その結果拡散被覆層
は、N1−Co、 N1−Co金合金各単独被覆層より
もさらに素地鋼板との電位差が小さく近接されるため、
めっき欠陥部の素地鋼板の腐食や、赤錆発生を防止する
効果を有すると共に、Ni −Fe。
By subjecting such a Cr-B-containing steel plate to a heating diffusion treatment after coating, Ni- containing Fe is formed through mutual diffusion between the Ni, Co, and N1-Co alloy coating layers and the steel material.
Fe, Co-Fe, or (Ni+Co)-Fe
A diffusion layer mainly composed of N1-Co and N1-Co gold alloys is generated, and as a result, the diffusion coating layer has a smaller potential difference with the base steel sheet than the individual coating layers of N1-Co and N1-Co gold alloys, so
Ni-Fe has the effect of preventing corrosion of the base steel plate in plating defects and the occurrence of red rust.

Co −Fe、  (Ni+ Co) −Fe拡散合金
層自体の耐食性もすぐれていることから、下地鋼素材を
防食し、耐錆性能を主体とした耐食性が向上する。特に
、該拡散処理層は、Ni −Fe合金を被覆処理した鋼
板に比べ、耐錆性能を著しく向上させる。
Since the Co-Fe, (Ni+Co)-Fe diffusion alloy layer itself has excellent corrosion resistance, it protects the base steel material from corrosion and improves corrosion resistance mainly due to rust resistance. In particular, the diffusion treated layer significantly improves the rust resistance compared to a steel plate coated with a Ni-Fe alloy.

また拡散被覆層は、Crを含有する素地鋼板に比較して
、リードフレーム製造工程においてCuめつき等のめフ
き処理に先立って施こされる酸洗浴により容易に活性化
され、さらに拡散条件を適正に選択する事によって、め
っき密着性及び均一被覆性にすぐれためつき性能が得ら
れる。
In addition, compared to a base steel sheet containing Cr, the diffusion coating layer is easily activated by the pickling bath applied prior to the polishing treatment such as Cu plating in the lead frame manufacturing process, and is further activated under the diffusion conditions. By appropriately selecting , it is possible to obtain excellent plating adhesion and uniform coverage.

さらにこれら拡散合金被覆層は、Pb−5%組成からな
る浸漬はんだに対して、ハロゲンイオンを含有しないフ
ランクスを使用しても、はんだ濡れ性、拡がり性がCr
含有鋼板に比較して極めてすぐれており、またFeが合
金化されているために、N1等の単独層に比較してこれ
ら拡散被N層とSnとの間に生成される合金層が少なく
なり、さらには長期に経時或いはワイヤーボンディング
時に加熱を受けても、その生長が抑制され、はんだ性が
向上する。
Furthermore, these diffusion alloy coating layers have solder wettability and spreadability of Cr even when Franks, which does not contain halogen ions, is used for immersion solder consisting of Pb-5% composition.
It is extremely superior to steel sheets containing Sn, and since Fe is alloyed, less alloy layer is formed between these diffused N layers and Sn compared to a single layer of N1 etc. Moreover, even if it is heated over a long period of time or during wire bonding, its growth is suppressed and the solderability is improved.

第1図は7%Crを含有するFe−Cr系鋼板にNi 
−Fe系拡散被覆層、及び旧めっき層800 mg/m
2を各々施こした場合のはんだ濡れ性と、はんだ付着後
に長期経過時の密着性を対象とする加熱促進試験を行な
った場合のはんだ密着性を評価した一例を示す。
Figure 1 shows a Fe-Cr steel plate containing 7% Cr containing Ni.
-Fe-based diffusion coating layer and old plating layer 800 mg/m
An example of evaluation of solder wettability when applying each of 2 and solder adhesion when conducting a heating acceleration test targeting adhesion over a long period of time after solder adhesion is shown below.

以上の如く本発明は、Fe−Cr系合金鋼板に被覆層を
施こす事によって、リードフレーム用素材に要求される
性能特性、すなわち耐食性、めっき性及びはんだ性にす
ぐれた性能特性が得られる事によってなされたものであ
る。
As described above, the present invention provides performance characteristics required for lead frame materials, that is, excellent performance characteristics in corrosion resistance, plating performance, and solderability, by applying a coating layer to a Fe-Cr alloy steel plate. This was done by

(作 用) 以下に本発明について詳細に説明する。(for production) The present invention will be explained in detail below.

転炉、電炉等の溶解炉で溶製された溶鋼を連続鋳造また
は造塊、分塊法を経てスラブとし、熱間圧延、酸洗、冷
間圧延の工程を経てC; 0.01%以下、酸可溶Af
L、  0.005〜0.10%、Cr;4〜10.5
%を含有する鋼板を製造する。
Molten steel melted in a melting furnace such as a converter or electric furnace is made into a slab through continuous casting, ingot making, or a blooming method, and then subjected to hot rolling, pickling, and cold rolling to reduce C; 0.01% or less. , acid-soluble Af
L, 0.005-0.10%, Cr; 4-10.5
Produce a steel plate containing %.

Cは機械的強度向上元素として経済的に有利であるが、
含有量が増加しすぎるとNi、 Co、 N1−G。
Although C is economically advantageous as an element for improving mechanical strength,
If the content increases too much, Ni, Co, N1-G.

合金の被覆層のピンホール、被覆層欠陥等を増加し、ま
た加熱拡散処理に対しても均一拡散が損なわれ、耐食性
、リードフレーム製造工程でのめつき性、はんだ性が劣
化する。すなわち、素地鋼板の表面にセメンタイト或い
はクロムカーバイド等の析出量が多くなり、Ni、 C
o等の被覆層の均一被覆性とめっき密着性等が劣化し、
また加熱拡散処理に対してはこれらが拡散阻害要因とな
って均一拡散を阻害し、均一な性能をもつ良好な拡散被
覆層が得られない、従って素地鋼板中のC含有量は、耐
食性、均一拡散被覆層の生成の観点から0.01%以下
、好ましくはo、ooa%以下である。
This increases pinholes and defects in the alloy coating layer, and also impairs uniform diffusion during heat diffusion treatment, resulting in deterioration of corrosion resistance, plating properties, and solderability in the lead frame manufacturing process. In other words, the amount of precipitation of cementite or chromium carbide on the surface of the base steel sheet increases, and Ni, C
The uniform coverage and plating adhesion of coating layers such as o etc. deteriorate,
In addition, for heat diffusion treatment, these become diffusion inhibiting factors and inhibit uniform diffusion, making it impossible to obtain a good diffusion coating layer with uniform performance. From the viewpoint of forming a diffusion coating layer, the content is 0.01% or less, preferably o, ooa% or less.

Aiは、鋼中に残存する酸可溶AIt(Soi。Ai is acid-soluble AIt (Soi) remaining in the steel.

Aλ)量が0.005%未満の少食有量では、酸素性ガ
スによる気泡の発生を防止する事が困難であり、鋼の表
面欠陥発生率を著しく高め、鋼素材自体の耐食性劣化、
機械的性買劣化の起点となるので好ましいものでない。
If the amount of Aλ) is less than 0.005%, it is difficult to prevent the formation of bubbles due to oxygen gas, which significantly increases the rate of occurrence of surface defects in the steel, and deteriorates the corrosion resistance of the steel material itself.
This is not desirable because it becomes the starting point for mechanical deterioration.

0.10%を越える過剰な酸可溶Ailは、へ1系酸化
物を鋼表面に点在せしめて耐食性劣化の起点と、なり、
さらに被覆層処理に対して均一被覆性を阻害する要因と
なり好ましいものでない、従って、鋼中に含有されるS
oi、八uは、表面処理鋼板の性能が安定して確保でき
る量として 0.005〜0.10%、好ましくは0.
01〜0.08%である。
Excessive acid-soluble Ail exceeding 0.10% causes helium-based oxides to be scattered on the steel surface, becoming a starting point for deterioration of corrosion resistance.
Furthermore, S contained in steel is not preferable because it becomes a factor that inhibits uniform coating properties in coating layer treatment.
oi and 8u are 0.005 to 0.10%, preferably 0.005 to 0.10%, as amounts that can ensure stable performance of the surface-treated steel sheet.
01-0.08%.

Crは、本発明においてめっき原板の耐食性と強度を向
上する元素として添加するものである。
Cr is added in the present invention as an element that improves the corrosion resistance and strength of the plated original plate.

に、腐食環境においてNi−Fe系、Co−Fe系或い
は(Ni+ Co) −Fe系の拡散被覆層の電位に近
接化される。その結果、鋼板自体の耐食性向上効果、被
覆層による耐食性向上効果及び鋼板と被覆層の複合相乗
効果などからすぐれた耐錆性、耐食性が得られる。
In a corrosive environment, the potential is brought close to that of a Ni-Fe based, Co-Fe based, or (Ni+Co)-Fe based diffusion coating layer. As a result, excellent rust resistance and corrosion resistance can be obtained from the corrosion resistance improvement effect of the steel plate itself, the corrosion resistance improvement effect of the coating layer, and the combined synergistic effect of the steel plate and the coating layer.

また、鋼中にCrを含有することによりて、機械的強度
が耐食性と共に併せ得られる。本発明においてCr含有
量が4%未満では、目的とする耐食性、強度が得られな
い、また、Cr含有量が10.5%を越える場合は次の
様な欠点を有する。すなわち、拡散処理に先立って施こ
されるNi被覆処理には、密着性の良好な被覆層を得る
のに活性化前処理が必要である。また拡散処理後におい
ても、素地鋼板のCr含有量が増加すると、拡散被覆層
表面にCrの拡散量が増加し、その表面Crを含有する
Ml−Cr−Fe系、或いはCo −Cr −Fe系等
の前処理酸洗等による活性化処理が困難な被覆層が形成
され易くなる。そのために、リードフレーム製造工程で
均一被覆性にすぐれためフぎ層或いはめっき密着性の良
好なめっき層が得られにくくなり、はんだ濡れ性、拡が
り性等も著しく劣化してはんだ性能を低下させる。さら
には、リードフレーム素材に要求される電気伝導性、熱
伝導性の点からも、Crの含有量が少ない方が好ましい
。従ってCr含有量の範囲は、4〜10.5%、好まし
くは6〜10%である。
Furthermore, by containing Cr in the steel, mechanical strength and corrosion resistance can be obtained. In the present invention, if the Cr content is less than 4%, the desired corrosion resistance and strength cannot be obtained, and if the Cr content exceeds 10.5%, the following drawbacks occur. That is, the Ni coating treatment performed prior to the diffusion treatment requires a pre-activation treatment to obtain a coating layer with good adhesion. Furthermore, even after the diffusion treatment, when the Cr content of the base steel sheet increases, the amount of Cr diffused onto the surface of the diffusion coating layer increases, and the surface Cr-containing Ml-Cr-Fe system or Co-Cr-Fe system A coating layer that is difficult to activate by pretreatment such as pickling or the like is likely to be formed. Therefore, in the lead frame manufacturing process, it becomes difficult to obtain a cover layer or a plating layer with good plating adhesion due to excellent uniform coverage, and the solder wettability, spreadability, etc. are also significantly deteriorated, resulting in a decrease in solder performance. Furthermore, from the viewpoint of the electrical conductivity and thermal conductivity required for the lead frame material, it is preferable that the Cr content be small. Therefore, the Cr content ranges from 4 to 10.5%, preferably from 6 to 10%.

Bは鋼板の加熱時の酸化速度の減少、″特にCr2O3
系酸化物の生成速度の減少及び鋼板の強度とワイヤーヒ
ートボンディング時の高温強度を向上するために添加さ
れる。これらの効果を得るためにはBの添加量は0.0
003%以上、好ましくはo、ooos%以上とする。
B is a decrease in the oxidation rate during heating of the steel plate, ``especially Cr2O3
It is added to reduce the production rate of system oxides and improve the strength of steel sheets and high-temperature strength during wire heat bonding. In order to obtain these effects, the amount of B added should be 0.0
003% or more, preferably o,oos% or more.

一方、Bは添加量が増加すると、効果が飽和するととも
に、熱間圧延時に鋼板に割れを発生する。従って、本発
明では、Bの添加量の上限はO,005%、好ましくは
0.002%とする。
On the other hand, when the amount of B added increases, the effect becomes saturated and cracks occur in the steel sheet during hot rolling. Therefore, in the present invention, the upper limit of the amount of B added is O.005%, preferably 0.002%.

また、めっき原板中の不可避的不純物元素については、
特に規定されるものではないが、以下に述べるような含
有量が好ましい。
Regarding unavoidable impurity elements in the plating original plate,
Although not particularly specified, the content as described below is preferable.

S【は0.6%以下が好ましい、siは機械的強度上昇
に有効であるが、S1含有量が過剰に増加すると、Sl
系酸化物が鋼表面に点在し、本発明における合金めっき
被覆処理に対して、均一被覆性を阻害するので、耐食性
の点で好ましいものでない。
S [ is preferably 0.6% or less. Si is effective in increasing mechanical strength, but if the S1 content increases excessively,
This is not preferable in terms of corrosion resistance, since the system oxides are scattered on the steel surface and impede uniform coating properties in the alloy plating treatment of the present invention.

従って、 066%以下好ましくは0.15%以下であ
る。
Therefore, it is 0.066% or less, preferably 0.15% or less.

Mnは、耐食性に悪影響を及ぼすことはないが、含有量
の増加により機械的強度が上昇し、圧延加工性を劣化す
るので1.5%以下がよい。
Although Mn does not adversely affect corrosion resistance, an increase in Mn content increases mechanical strength and deteriorates rolling workability, so it is preferably 1.5% or less.

その他、P、Sについては、通常の製鋼方式で含有され
る範囲で0.02%以下がよい。特に、端面等原板素材
が露出される部分の耐錆性を向上せしめるためには、S
はo、ooa%以下が好ましい。
In addition, P and S are preferably contained within the range of 0.02% or less in a normal steel manufacturing method. In particular, in order to improve the rust resistance of parts such as end faces where the original plate material is exposed, S
is preferably o, ooa% or less.

さらに、第2の本発明においては、上記の成分で構成さ
れるめっぎ原板にCu、 Nf、 Moの1ffl又は
2種以上を含有せしめる。これら元素は、鋼板自体の耐
錆性、耐食性を向上するとともに、腐食環境においては
前記したようにCrとの複合添加によって電位が責(カ
ソーデイック)になり、拡散被覆層との電位差が近接化
され、Feの優先腐食による耐錆性、耐食性能の劣化が
一段と防止される。
Furthermore, in the second aspect of the present invention, the plating base plate composed of the above components contains 1 ffl or two or more of Cu, Nf, and Mo. These elements improve the rust resistance and corrosion resistance of the steel sheet itself, and in a corrosive environment, as mentioned above, when combined with Cr, the potential becomes cathodic, and the potential difference with the diffusion coating layer is brought closer. , deterioration of rust resistance and corrosion resistance due to preferential corrosion of Fe is further prevented.

而して、これら元素の添加は、Cuが0.05〜L、0
%、Niが0.05〜3.0%、Moが0.05〜0.
5%である。 Cuの添加量が0.05%未満では、上
記の耐食性効果が得られず、また1、0%を越える場合
は原板製造時の熱延工程において赤錆脆性による割れや
鋼表面にCuが濃縮し、スケール疵を発生し易くなる。
Therefore, the addition of these elements is such that Cu is 0.05~L, 0
%, Ni 0.05-3.0%, Mo 0.05-0.
It is 5%. If the amount of Cu added is less than 0.05%, the above-mentioned corrosion resistance effect cannot be obtained, and if it exceeds 1.0%, Cu may cause cracking due to red rust brittleness or concentrate on the steel surface during the hot rolling process during the production of the original sheet. , scale defects are more likely to occur.

従って、Cuは0.05〜1.0%、好ましくは0.1
〜0.5%である。
Therefore, Cu is 0.05 to 1.0%, preferably 0.1%
~0.5%.

Niは、添加量が0.05%未満では、耐食性効果が得
られず、また、3.0%を越える場合は、耐食性の向上
効果が飽和するとともに、Crとの共存効果によって被
覆層のすぐれた密着性を得るための鋼表面の前処理作業
が煩雑となる。従ってその添加量は0.05〜3.0%
、好ましくは0.1〜1.5%である。
If the amount of Ni added is less than 0.05%, no corrosion resistance effect will be obtained, and if it exceeds 3.0%, the corrosion resistance improvement effect will be saturated, and the coexistence effect with Cr will reduce the quality of the coating layer. Pretreatment of the steel surface to obtain good adhesion becomes complicated. Therefore, the amount added is 0.05 to 3.0%
, preferably 0.1 to 1.5%.

Moの添加量が0.05%未満では、耐食性向上効果が
得られず、また0、5%を越える場合はその効果が飽和
するとともに材質が硬質化し、リードフレ−ムのような
薄手材を得るための圧延加工が困難となる。従って、そ
の添加量は0.05〜0.50%、好ましくは0.1〜
0.3%である。
If the amount of Mo added is less than 0.05%, the effect of improving corrosion resistance cannot be obtained, and if it exceeds 0.5%, the effect is saturated and the material becomes hard, resulting in a thin material such as a lead frame. This makes rolling processing difficult. Therefore, the amount added is 0.05 to 0.50%, preferably 0.1 to 0.50%.
It is 0.3%.

さらに上記のような成分組成の鋼板(めっき原板)をそ
のまま使用したのでは、耐錆性等の耐食性、リードフレ
ーム製造工程でのCu、 Pb−5n合金等のめつき性
、或いははんだ性がリードフレーム用素材として不充分
であり、従ってN1−Fe系。
Furthermore, if a steel plate (plated original plate) with the above-mentioned composition is used as is, corrosion resistance such as rust resistance, plating properties such as Cu and Pb-5n alloy in the lead frame manufacturing process, or solderability will be poor. N1-Fe is insufficient as a frame material.

Co−Fe系或いは(Ni+ Co) −Fe系の拡散
被覆層が設けられる。
A Co-Fe-based or (Ni+Co)-Fe-based diffusion coating layer is provided.

本発明においては冷間圧延後の上記素地鋼板に対して、
所定の厚さのNi、 Co、 N1−Co合金が被覆さ
れる。この被覆処理に先立ち、素材表面は先ず浸漬或い
は電解等の方法による脱脂及び酸溶液を用いた活性化処
理が行なわれる。この活性化処理には、浸漬、スプレィ
等による酸洗処理或いは電解酸洗処理が行なわれるが、
Cr含有鋼板特有の表面の酸化膜の除去、還元を均一に
行なうためには、電解酸洗処理が望ましい。
In the present invention, for the base steel plate after cold rolling,
A predetermined thickness of Ni, Co, and N1-Co alloy is coated. Prior to this coating treatment, the surface of the material is first degreased by a method such as immersion or electrolysis, and activated using an acid solution. This activation treatment includes pickling treatment by dipping, spraying, etc., or electrolytic pickling treatment.
In order to uniformly remove and reduce the oxide film on the surface peculiar to Cr-containing steel sheets, electrolytic pickling treatment is desirable.

すなわち、酸洗浴中での鋼素材を陰極にした陰極電解酸
洗の酸化膜還元による活性化処理、鋼素材を陽極にした
陽極電解酸洗の酸化膜の溶解除去による活性化処理、或
いは陽極電解により酸化膜溶解除去後に更に陰極電解に
よって表面の活性化処理を組み合わせた方法等が採用さ
れる。
In other words, activation treatment is performed by reducing the oxide film by cathodic electrolytic pickling using a steel material as the cathode in a pickling bath, activation treatment is performed by dissolving and removing the oxide film in anodic electrolytic pickling using the steel material as the anode, or anodic electrolysis Therefore, a method is adopted in which the surface is further activated by cathodic electrolysis after the oxide film is dissolved and removed.

これらのうち、特に陽極電解処理後にさらに陰極電解処
理を組み合わせる方法が、Cr含有鋼特有の焼鈍過程等
において形成された強固な酸化被膜を除去、還元せしめ
て、表面を活性化するのに好ましい。これらの電解酸洗
を行なう方法としては、例えばH2SO4浴、)12s
O4浴にF−イオンを含有せしめた浴等を用い、電流密
度10〜6゜A、/dm’ 、温度が常温〜80℃、電
解時間0.5〜10秒の範囲がよい。
Among these, a method in which cathodic electrolytic treatment is further performed after anodic electrolytic treatment is particularly preferable for removing and reducing the strong oxide film formed during the annealing process peculiar to Cr-containing steel and activating the surface. Methods for performing these electrolytic pickling include, for example, H2SO4 bath, ) 12s
It is preferable to use an O4 bath containing F- ions, a current density of 10 to 6°A/dm', a temperature of room temperature to 80°C, and an electrolysis time of 0.5 to 10 seconds.

続いて行なわれるNi、 Co、 Ni−Co合金の被
覆処理方法については、例えば次のような条件の電気め
っき法によって被覆処理を行なうとよい。
Regarding the subsequent coating treatment method of Ni, Co, and Ni-Co alloy, it is preferable to perform the coating treatment by, for example, an electroplating method under the following conditions.

(a) Niめっき めりき浴組成の一例 硫酸ニッケル   240 g/JZ 塩化ニッケル    45g/jZ ホウ酸      40g/u 電流密度       7.5A/dm2めりき浴温 
      40℃ (b)  Coめっき めっき浴組成の一例 硫酸コバルト    75g/u 塩化コバルト   140g/f1 ホウ酸       25g/A 電流密度       50A/d+++2めっき浴温
      55℃ (c) N1−Co合金めっき めっき浴組成の一例 硫酸ニッケル    50g/j2 硫酸コバルト    25g/l 塩化ニッケル   100 g/11 塩化コバルト    50 g/jQ ホウ酸       30g/IL 電流密度       30A/di2めっき浴温  
    65℃ の如き条件で電気めっき法による被覆処理を行なう。
(a) Example of Ni plating plating bath composition Nickel sulfate 240 g/JZ Nickel chloride 45 g/jZ Boric acid 40 g/u Current density 7.5 A/dm2 Plating bath temperature
40℃ (b) Example of Co plating bath composition Cobalt sulfate 75g/u Cobalt chloride 140g/f1 Boric acid 25g/A Current density 50A/d+++2 plating bath temperature 55℃ (c) Example of N1-Co alloy plating bath composition Nickel sulfate 50g/j2 Cobalt sulfate 25g/l Nickel chloride 100g/11 Cobalt chloride 50g/jQ Boric acid 30g/IL Current density 30A/di2 plating bath temperature
The coating treatment is carried out by electroplating under conditions such as 65°C.

次いで本発明においては、リードフレーム用素材に要求
される機械的性質を確保し、耐食性、リードフレーム製
造工程でのめワき性或いははんだ性にすぐれた性能を有
する拡散被覆層を得るための加熱拡散処理が行なわれる
Next, in the present invention, heating is carried out to obtain a diffusion coating layer that secures the mechanical properties required for the lead frame material and has excellent corrosion resistance, and excellent performance in waxing and solderability in the lead frame manufacturing process. Diffusion processing is performed.

すなわち上記成分の素地鋼板を冷間圧延後、脱脂、酸洗
等の前処理、活性化処理を施こした後、100〜300
0111g/l112の範囲の付着量(片面当り)のN
i、 Co、 Nf−Co合金の被覆処理を行ない、次
いで450℃より高温でかつ再結晶温度より低い温度の
非酸化性雰囲気中で180秒以下の加熱処理を施こす。
That is, after cold-rolling a base steel sheet with the above components and subjecting it to pretreatment such as degreasing and pickling, and activation treatment,
Coating amount (per one side) N in the range of 0111g/l112
Co, Nf--Co alloy coating treatment is performed, and then heat treatment is performed for 180 seconds or less in a non-oxidizing atmosphere at a temperature higher than 450° C. and lower than the recrystallization temperature.

このような被覆層を施こす事によって、加熱時に鋼板の
酸化が防止される。その結果として、加熱雰囲気、加熱
時間等の点で加熱処理が鋼板のままに比して有利となる
By applying such a coating layer, oxidation of the steel plate is prevented during heating. As a result, heat treatment is more advantageous than using a steel plate as is in terms of heating atmosphere, heating time, etc.

このような処理により、高強度材買でかつ曲げ加工性に
必要な延性を有し、さらに素材鋼板と拡散被覆層との複
合効果によって、耐錆性を中心とした耐食性、めっき性
、はんだ性能の向上が可能なリードフレーム用素材を効
率よく製造する事が可能となる。
Through this treatment, the material has high strength and has the necessary ductility for bending workability, and the combined effect of the material steel plate and the diffusion coating layer improves corrosion resistance, mainly rust resistance, plating performance, and solder performance. It becomes possible to efficiently manufacture lead frame materials that can improve the performance.

この加熱条件は、性能にすぐれた拡散被覆層を得るため
に、Ni、 Co、 N1−Co金合金被覆層量の規制
が重要である。すなわちこれらの被覆層量が100 m
g/la’未満の場合では、被覆層のピンホール等の被
膜欠陥が多く生成されるため、加熱拡散処理後も均一な
拡散被覆層が生成され難く、加熱処理時に欠陥部からの
素材鋼板の酸化も生じ易い。そのため素材鋼板の露出部
分の面積の増加等によって、耐食性向上効果、めっ幹性
或いははんだ性の向上効果が得られにくい。
Regarding the heating conditions, it is important to control the amount of the Ni, Co, and N1-Co gold alloy coating layer in order to obtain a diffusion coating layer with excellent performance. That is, the amount of these coating layers is 100 m
If it is less than g/la', many coating defects such as pinholes in the coating layer will be generated, making it difficult to produce a uniform diffusion coating layer even after heating and diffusion treatment, and the material steel sheet will be removed from the defective areas during the heating treatment. Oxidation also occurs easily. Therefore, due to an increase in the area of the exposed portion of the material steel plate, etc., it is difficult to obtain an effect of improving corrosion resistance, plating property, or solderability.

また、その被覆層量が3000mg/m”を越える場合
は、これらの被膜を設けた後加熱拡散処理を施こした素
材の耐食性、めっき性、はんだ性等の向上効果が飽和す
るとともに、剪断加工等の加工を受けた場合に、被膜に
クラックが生成されたり、或いは部分的な剥離を生じる
現象が起こる。
In addition, if the amount of the coating layer exceeds 3000 mg/m'', the effects of improving corrosion resistance, plating properties, solderability, etc. of the material subjected to heat diffusion treatment after forming these coatings are saturated, and the shearing process When subjected to such processing, cracks are generated in the coating, or phenomena such as partial peeling occur.

さらに被膜量が上記のように多くなると、充分に拡散処
理が行なわれ難く、各々表面拡散被覆層にNi、 Co
或いはNiとCoのFeに対する含有比率の大なる、例
えば各々の濃度が90%をこえるような拡散被覆層が形
成される。その結果として被膜自体の耐食性、はんだ濡
れ性等の向上効果は得られるものの、Ni、 Co等が
多くなると電位が責な方向に6行するため、原板素材と
の電位差が拡大し、被膜欠陥部等から原板素材の優先腐
食による赤錆発生が生じ易くなり、耐食性を劣化する傾
向になる。
Furthermore, when the amount of coating increases as described above, it is difficult to perform the diffusion treatment sufficiently, and Ni and Co are added to each surface diffusion coating layer.
Alternatively, a diffusion coating layer is formed in which the content ratio of Ni and Co to Fe is large, for example, the concentration of each exceeds 90%. As a result, the corrosion resistance and solder wettability of the coating itself can be improved, but as the amount of Ni, Co, etc. increases, the potential moves in the negative direction, increasing the potential difference with the original plate material and causing defects in the coating. As a result, red rust is likely to occur due to preferential corrosion of the original plate material, and corrosion resistance tends to deteriorate.

また、Ni、 Coは安定した緻密な酸化膜を生成する
ため、これらの含有率が大なる拡散被覆層は、リードフ
レーム製造工程でのめっき(Cu或いはPb−5n電気
はんだめっき等)に先立つ酸洗活性化処理を困難にする
傾向があるので、均一なめっき被覆性及びめフき密着性
を得るためには好ましいものではない。
Furthermore, since Ni and Co form a stable and dense oxide film, a diffusion coating layer with a large content of Ni and Co should be treated with acid prior to plating (Cu or Pb-5n electric solder plating, etc.) in the lead frame manufacturing process. Since it tends to make washing and activation treatment difficult, it is not preferable in order to obtain uniform plating coverage and wipe adhesion.

さらに最も重要な問題は、Feに対する拡散合金化元素
が高濃度の場合(例えば90%を越えた場合)には、溶
融Pb−5nはんだの濡れ性、拡がり性等の効果が飽和
するとともに、はんだ中のSn金属とこれら合金化元素
との反応或いは拡散によるNt−5n、 Co−5n合
金の生成量が多くなり、これらの硬くて脆い合金層の生
成によってはんだづけ部が衝撃或いは曲げ加工等を受け
た場合に破壊され易すくなる。従フて、はんだ脆性防止
の観点から、加熱処理に先立フて施こされるNi、 C
o、 NiとCoの合金の被覆層量は300hg/m’
以下である。従って加熱拡散処理に先立ちNi、 Co
或いはNiとCOの合金の被覆層量は、t OO〜30
QQmg/m2.好ましくは300〜2000mg/m
’である。
Furthermore, the most important problem is that when the concentration of diffusion alloying elements for Fe is high (for example, exceeding 90%), the wettability, spreadability, etc. effects of molten Pb-5n solder are saturated, and the solder The amount of Nt-5n and Co-5n alloys produced by reaction or diffusion between the Sn metal inside and these alloying elements increases, and the formation of these hard and brittle alloy layers may cause the soldered part to be subjected to impact or bending. They are more likely to be destroyed if Therefore, from the viewpoint of preventing solder brittleness, Ni and C are applied prior to heat treatment.
o, The amount of coating layer of Ni and Co alloy is 300hg/m'
It is as follows. Therefore, prior to heating and diffusion treatment, Ni, Co
Alternatively, the amount of coating layer of Ni and CO alloy is t OO ~ 30
QQmg/m2. Preferably 300-2000mg/m
'is.

次いでリードフレーム用素材に要求される機械的性質及
び必要性能(耐食性、リードフレーム工程でのめっき性
、はんだ性)を得るために加熱処理が施こされる。加熱
処理条件は次のような理由から規制される。すなわち、
鋼成分の素地鋼板を冷間圧延後、脱脂、酸洗の前処理・
活性化処理後N1等の被覆層を設け、加熱処理が施こさ
れる。
Next, heat treatment is performed to obtain the mechanical properties and required performance (corrosion resistance, plating properties in the lead frame process, solderability) required for the lead frame material. Heat treatment conditions are regulated for the following reasons. That is,
After cold-rolling the base steel sheet, pre-treatments such as degreasing and pickling are applied.
After the activation treatment, a coating layer such as N1 is provided, and a heat treatment is performed.

リードフレーム用素材に要求される機械的性質は、リー
ドフレーム形状への打抜き成形加工性を考慮した場合、
延性の少ない高強度材がすぐれており、またリードフレ
ーム製品には強度と同時に、折れ曲げ加工性が要求され
る。
The mechanical properties required for the lead frame material are as follows, considering the punching processability into the lead frame shape.
High-strength materials with low ductility are excellent, and lead frame products require both strength and bending workability.

これらの観点から種々検討した結果、強度は45〜85
 kg/+m2好ましくは55〜80 kg/mm2、
伸びは3〜20%好ましくは5〜15%の機械的性質の
ものが良好である。すなわち、強度が45kg/lll
112未満の場合は、素材の硬度が低く、軟質のために
、打抜き成形機のポンチ或いはダイスからの加工材の抜
は性が悪く、打抜き成形速度に悪影響を及ぼす、また強
度が85 kg/aha2を越える場合は、素材の硬度
が高くなり、打抜き成形時素材に割れを発生し、成形機
のポンチ、ダイスに損耗が生じ易くなる。従って素材の
強度は45〜85 kg/am2、好ましくは55〜8
0 kg/m+a2である。
As a result of various studies from these points of view, the strength was 45 to 85.
kg/+m2, preferably 55-80 kg/mm2,
Good mechanical properties are elongation of 3 to 20%, preferably 5 to 15%. In other words, the strength is 45kg/lll
If it is less than 112, the hardness of the material is low and soft, so it is difficult to extract the processed material from the punch or die of the punching machine, which has a negative effect on the punching speed, and the strength is 85 kg/aha2. If it exceeds the hardness of the material, the hardness of the material increases, causing cracks in the material during punching and forming, and wear and tear on the punch and die of the forming machine. Therefore, the strength of the material is 45-85 kg/am2, preferably 55-8
0 kg/m+a2.

またリードフレーム製品は、曲げ加工された足部分の強
度と同時に、曲げ加工時の繰り返し曲げ加工に充分たえ
ることが必要である。従って、素材の伸び率が3%未満
の場合は、折り曲げ加工によって素材の割れが発生する
。また伸び率が20%を越える場合は、曲げ加工性は良
好であるが、高強度が得られ難く、リードフレーム製品
の強度が不足するとともに、又打抜き成形性に対しても
好ましくない、従って、伸びは3%〜20%、好ましく
は5〜15%である。
In addition, the lead frame product needs to have sufficient strength in the bent leg portion and to withstand repeated bending during bending. Therefore, if the elongation rate of the material is less than 3%, the material will crack during bending. If the elongation rate exceeds 20%, bending workability is good, but it is difficult to obtain high strength, and the strength of the lead frame product is insufficient, and it is also unfavorable for punching formability. The elongation is between 3% and 20%, preferably between 5 and 15%.

而して、本発明に使用される鋼成分の素材に被N層を設
けた素材を用いて、これらの機械的性質を確保するとと
もに、リードフレーム用素材に要求される耐食性、めっ
き性或いははんだ性の優れた性能を得る事が可能な製造
方法として加熱拡散処理を行なう。
Therefore, by using a material provided with an N layer in the steel component material used in the present invention, these mechanical properties are ensured, and the corrosion resistance, plating properties, and solderability required for lead frame materials are achieved. A heating diffusion treatment is used as a manufacturing method that can provide excellent properties.

リードフレーム用素材として上記の機械的性質及び各種
性能を向上せしめるためには、加熱温度450℃以上で
かつ再結晶温度より低い温度で加熱処理温度と拡散処理
を同時に、非酸化性雰囲気において、保定時間180秒
以下の加熱処理を行なう。
In order to improve the above-mentioned mechanical properties and various performances as a material for lead frames, it is necessary to simultaneously perform heat treatment and diffusion treatment at a heating temperature of 450°C or higher and lower than the recrystallization temperature, and to hold the material in a non-oxidizing atmosphere. Heat treatment is performed for a time of 180 seconds or less.

加熱温度が450℃より低い温度で、かつ保定時間18
0秒以下の加熱処理では、曲げ加工に耐える機械的性質
を得るのに素地鋼板の成分が限定される問題があり、N
i、 Co等の被覆層の拡散処理が充分に行なわれ難い
問題がある。従って前記した素材鋼成分の全組成範囲に
互ってリードフレーム用素材として好ましい機械的性質
を得るのが困難であり、また拡散被覆層はNi、 Co
等の濃度の大なる被覆層或いは表面はNi、 Co層の
まま残存するために、耐食性、或いはリードフレーム製
造工程でのめつき性、はんだ脆性等の点で本発明の目的
とする効果が得られない。
The heating temperature is lower than 450℃ and the retention time is 18
Heat treatment for less than 0 seconds has the problem that the composition of the base steel sheet is limited in order to obtain mechanical properties that can withstand bending.
There is a problem in that it is difficult to sufficiently diffuse the coating layer such as i, Co, etc. Therefore, it is difficult to obtain desirable mechanical properties as a material for a lead frame over the entire composition range of the steel material components mentioned above, and the diffusion coating layer is made of Ni, Co, etc.
Since the coating layer or surface with a high concentration of Ni or Co remains as a Ni or Co layer, the desired effects of the present invention cannot be achieved in terms of corrosion resistance, plating properties in the lead frame manufacturing process, solder brittleness, etc. I can't.

加熱温度が再結晶温度を越える場合には、素地鋼板の強
度が軟質化して上記の目的とする機械的強度が得られに
くい。さらに加熱温度が高温になるとCrの拡散量が多
くなり、また加熱処理を非酸化性雰囲気といえども拡散
被覆層表面が高温のため酸化され、緻密で強固な酸化膜
が生成して、リードフレーム製造工程のめっき性、はん
だ性を阻害する。従ってこれらの観点から、加熱温度は
450℃より高い温度で、かつ再結晶温度より低い温度
の範囲が採用される。尚素地鋼板の再結晶温度は、鋼成
分及び圧下率の程度によって若干のばらつきがあるが、
概そ580℃程度であり、本発明では475〜550℃
の範囲で加熱処理が施こされるのが好ましい。
When the heating temperature exceeds the recrystallization temperature, the strength of the base steel sheet becomes soft, making it difficult to obtain the desired mechanical strength. Furthermore, when the heating temperature becomes high, the amount of Cr diffused increases, and even if the heat treatment is performed in a non-oxidizing atmosphere, the surface of the diffusion coating layer is oxidized due to the high temperature, forming a dense and strong oxide film, which leads to the formation of a lead frame. Impairs plating and solderability in the manufacturing process. Therefore, from these viewpoints, the heating temperature is higher than 450° C. and lower than the recrystallization temperature. The recrystallization temperature of the base steel sheet varies slightly depending on the steel composition and degree of reduction, but
It is approximately 580°C, and in the present invention, it is 475 to 550°C.
It is preferable that the heat treatment is performed within the range of .

また加熱時間が180秒を越える場合は、上記の加熱温
度の範囲での処理によって素地鋼板からの被覆層への拡
散によるFe以外にCr等の添加元素の拡散量が多くな
り、前記した如く加熱雰囲気の調整を可成り厳格に行な
っても、拡散層表面に強固で緻密な酸化膜が生成され易
すくなる。その結果として、リードフレーム製造工程で
のめつき作業において、前処理・活性化処理が極めて困
難となり、均一被覆性とめつき密着性のすぐれたCuめ
っき或いは電気Pb−5口はんだめっき等を得るのが難
しくなり、また浸漬はんだに対してその濡れ性、はんだ
拡がり性を劣化する。
In addition, if the heating time exceeds 180 seconds, the amount of diffusion of additional elements such as Cr in addition to Fe due to diffusion from the base steel sheet to the coating layer increases due to treatment within the above heating temperature range, and as described above, heating Even if the atmosphere is adjusted quite strictly, a strong and dense oxide film is likely to be formed on the surface of the diffusion layer. As a result, pretreatment and activation treatments during plating work in the lead frame manufacturing process become extremely difficult, making it difficult to obtain Cu plating or electric Pb-5-hole solder plating with excellent uniform coverage and plating adhesion. This makes it difficult to solder, and also deteriorates the wettability and solder spreadability of immersion solder.

また、保定時間の下限は特に規定しないが、拡散処理を
均一に行なわしめるために10秒以上、好ましくは20
秒以上がよい、さらに、このような加熱処理の加熱雰囲
気は、非酸化性雰囲気が採用され、N2ガス、アンモニ
ア分解ガス(AXガス)、5%)12−N2系Mixガ
スが用いられる。
In addition, the lower limit of the retention time is not particularly specified, but in order to perform the diffusion treatment uniformly, it is 10 seconds or more, preferably 20 seconds or more.
It is preferable to heat the heating for more than a second.Furthermore, a non-oxidizing atmosphere is used as the heating atmosphere for such heat treatment, and N2 gas, ammonia decomposition gas (AX gas), and 5%) 12-N2-based Mix gas are used.

尚加熱!A理を行なった後、形状修正のための軽圧下処
理を施してもよく、またNi等の被覆処理を施こす過程
において、めっき浴或いは電極等から不可避的に含有さ
れる不純物、例えばS、B等が少量(約1%未満)含有
されても、本発明に支障をきたすものではない。
Still heating up! After performing A process, a light pressure treatment may be performed to correct the shape, and in the process of coating with Ni etc., impurities inevitably contained from the plating bath or electrodes, such as S, Even if a small amount (less than about 1%) of B or the like is contained, this does not pose a problem to the present invention.

以上の如く鋼成分に、N1. Co等の被覆層を設け、
前記の加熱処理方法で製造された鋼板素材は、その複合
効果によってリードフレーム用素材として、耐錆性、打
抜き成形加工性、リードフレーム製造工程でのめつき被
膜の均一処理性、密着性、はんだ性能等にすぐれた効果
を発揮する。
As mentioned above, N1. Provide a coating layer such as Co,
Due to its combined effects, the steel plate material manufactured by the above heat treatment method has excellent rust resistance, punching processability, uniformity of plating film in the lead frame manufacturing process, adhesion, and solderability. Demonstrates excellent effects on performance, etc.

(実施例) 第1表に示す鋼成分の素材鋼板を冷間圧延後、脱脂、酸
洗による表面活性化処理を行なってから、被覆処理及び
加熱処理を行なってリードフレーム用素材を製造した。
(Example) A raw steel plate having the steel components shown in Table 1 was cold rolled, subjected to surface activation treatment by degreasing and pickling, and then subjected to coating treatment and heat treatment to produce a lead frame material.

該評価材に対して、リードフレーム製品に要求される主
要性能について、各々以下の性能評価試験を実施して、
その性能評価を第2表に示す。
The following performance evaluation tests were conducted on the evaluation materials regarding the main performances required for lead frame products.
The performance evaluation is shown in Table 2.

尚、評価材については、熱延において各橿原さに評価材
を調整して、冷間圧下率を変化させて、厚さ0.254
111mの評価材を得た。又、比較に使用した冷間圧延
材は、被覆層を設けない状態で、同一の熱処理を施こし
た。
Regarding the evaluation material, the evaluation material was adjusted to each Kashihara during hot rolling, and the cold rolling reduction rate was changed to obtain a thickness of 0.254.
111 m of evaluation material was obtained. Further, the cold rolled material used for comparison was subjected to the same heat treatment without providing a coating layer.

この結果、本発明の製造法による鋼板は、比較材に比べ
て、リードフレーム用素材として極めてすぐれた性能を
示す。
As a result, the steel plate manufactured by the manufacturing method of the present invention exhibits extremely superior performance as a lead frame material compared to comparative materials.

〔評価試験方法〕[Evaluation test method]

■ 本発明の拡散被覆層の密着性 Ni、 Co或いはNiとCOの合金の被覆層を設け、
加熱処理を行なった本評価材について、曲率半径が板厚
と同一の繰り返し曲げ加工を行ない、その後セロファン
テープを貼布、剥離して、被覆層の剥離程度を調査した
■ Adhesion of the diffusion coating layer of the present invention Providing a coating layer of Ni, Co or an alloy of Ni and CO,
The heat-treated evaluation material was repeatedly bent so that the radius of curvature was the same as the plate thickness, and then cellophane tape was applied and peeled off to investigate the degree of peeling of the coating layer.

尚、評価基準は以下の方法によって行なった。The evaluation criteria were as follows.

◎・・・繰り返し回数11回以上、めっき被覆層の剥離
なし ○・・・繰り返し回数8回以上〜10回でめっき被覆層
の剥離なし △・・・繰り返し回数4回以上〜7回でめっき被覆層の
剥離なし X・・・繰り返し回数3回以下でめっき被覆層の剥離発
生 ■ 打抜き成形加工性(スタンピング性)評価材に対し
て48ビン型のリードフレーム形状に連続スタンピング
を行ない、リードフレーム形状への打抜き成形性を以下
の評価基準で評価し、その成形加工性の評価を行なった
◎... No peeling of the plating coating layer after 11 or more repetitions ○... No peeling of the plating coating layer after 8 or more to 10 repetitions △... No peeling of the plating coating after 4 or more repeats to 7 times No peeling of layer The punching formability was evaluated using the following evaluation criteria, and the molding processability was evaluated.

◎・・・打抜き端面部のかえりの発生、素材の割れ発生
等殆んどなく、打抜縫成形性極めて良好 O・・・評価材の打抜き成形性は上記と同様良好である
が、若干成形機のポンチ、ダイスの連続運転による摩耗
損傷が発生 △・・・打抜き端面部にかえりが若干発生するか、或い
は成形材の装置からの抜は性が劣るため、打抜き成形時
にトラブルが発生し易い ×・・・打抜き成形によって割れが評価材に可成り発生
するか、或いはポンチ、ダイス等の摩耗が長期連続運転
によって可成り大 ■ 耐食性能 (a)評価法A 評価材の保管貯蔵時の耐錆性能を評価するために、評価
材を所定のリードフレーム形状(48ビン型形状)に打
抜き加工後、リードフレーム製造工程での表面処理が施
こされるまでの保管時の耐錆性能の評価を以下の促進試
験法及び評価基準により、その平面部及び打抜き端面部
についての評価を行なった。
◎...There is almost no occurrence of burrs on the punched end face or cracks in the material, and the punching and sewing formability is extremely good.O...The punching and sewing formability of the evaluation material is as good as above, but there is some molding. Abrasion damage occurs due to continuous operation of punches and dies of the machine △... Some burrs may occur on the punching end face, or the ability to remove the molded material from the device is poor, so troubles are likely to occur during punching and forming. ×...Cracks occur considerably in the evaluation material due to punching, or the wear of punches, dies, etc. is considerably large due to long-term continuous operation■ Corrosion resistance (a) Evaluation method A The resistance of the evaluation material during storage In order to evaluate rust performance, after punching the evaluation material into a predetermined lead frame shape (48 bottle shape), rust resistance performance was evaluated during storage until surface treatment was applied in the lead frame manufacturing process. The plane part and punched end face part were evaluated using the following accelerated test method and evaluation criteria.

(60分冷凍・結露(−5℃)−90分高温湿潤(49
℃、湿度≧98%)→24時間・室内放置(30℃))
を1サイクルとして7サイクル評価試験を実施して、以
下の評価基準で耐錆性能を相対評価した。
(60 minutes freezing/condensation (-5℃) - 90 minutes high temperature and humidity (49℃)
℃, humidity ≧98%) → 24 hours, left indoors (30℃))
A 7-cycle evaluation test was conducted with 1 cycle as 1 cycle, and the rust resistance performance was relatively evaluated using the following evaluation criteria.

平面部の耐錆性評価基準 ◎・・・赤錆発生率5%以下 ○・・・  〃  5%超〜10%以下Δ・・・  〃
  10%超〜20%以下X・・・  n   20%
超 端面部の耐錆性評価基準 ◎・・・赤錆発生率10%以下 ○・・・  〃  10%超〜20%以下Δ・・・  
〃  20%超〜40%以下X・・・  〃  40%
超 (b)評価法B リードフレーム製品の耐錆性を対象とした評価試験とし
て、リードフレーム形状(48ピンの形状)に打抜き加
工後、脱脂、浸漬酸洗を行なって、厚さ2μのCuめっ
きを施こし、塩水噴霧試験(JIS−C−5028)に
より、その耐食性を平面部及び端面部において赤錆発生
状況を観察、以下の評価基準により評価を行なった。
Rust resistance evaluation criteria for flat parts ◎... Red rust occurrence rate 5% or less ○... 〃 More than 5% to 10% or less Δ... 〃
More than 10% to less than 20% X... n 20%
Rust resistance evaluation criteria for super end face ◎... Red rust occurrence rate 10% or less ○... 〃 More than 10% to 20% or less Δ...
〃 More than 20% ~ 40% or less X... 〃 40%
Super (b) evaluation method B As an evaluation test for the rust resistance of lead frame products, after punching into a lead frame shape (48 pin shape), degreasing and immersion pickling were performed, and a 2μ thick Cu After plating was applied, the corrosion resistance was evaluated using a salt spray test (JIS-C-5028) by observing the occurrence of red rust on the flat surface and end surfaces, and using the following evaluation criteria.

O・・・塩水噴霧試験24時間後の赤錆発生率1%未満 0・・・      〃     赤錆発生率1%以上
〜5%未満 △・・・      〃     赤錆発生率5%以上
〜10%未満 ×・・・      〃     赤錆発生率10%以
上 ■ めっき性能 リードフレーム製造工程でのめっき性能を評価するため
に、以下の方法によりCuめっき及びPb−5n合金電
気はんだめっきを行ない、そのめっき性能を評価した。
O... Red rust occurrence rate after 24 hours of salt spray test less than 1% 0... Red rust occurrence rate 1% or more to less than 5% △... Red rust occurrence rate 5% or more to less than 10% ×...・〃 Red rust occurrence rate of 10% or more ■ Plating performance In order to evaluate the plating performance in the lead frame manufacturing process, Cu plating and Pb-5n alloy electro-solder plating were performed by the following method, and the plating performance was evaluated.

(a)評価法A 評価材をリードフレーム形状に打抜き加工後、脱脂(リ
ン酸ソーダ系電解脱脂)後に、10%H2SO4浴を用
いて、30℃で5秒間の浸漬酸洗を行ない、シアンCu
めりき浴を用いて電流密度7.5A/di”で厚さ3μ
のめっきを施こし、Cuめっき後の外観調査及び以下の
方法による曲げ加工試験を行なってその密着性を併せ検
討した。
(a) Evaluation method A After punching the evaluation material into a lead frame shape and degreasing (soda phosphate electrolytic degreasing), immersion pickling was performed at 30°C for 5 seconds in a 10% H2SO4 bath.
3μ thick at a current density of 7.5A/di” using a gilding bath.
After Cu plating, the appearance was examined and a bending test was conducted using the following method to examine the adhesion.

すなわち曲げ加工試験は、板幅0.5mmのアウターリ
ード部について、長さ15IIIffiに剪断後、MI
L STD 883C/2004に従い、一端を試験治
具に固定し、試料を垂直にぶら下げ、もう一端に230
gのおもりを付けて試験治具を90℃に折り曲げ後、も
とにもどすという工程を繰り返し実施し、Cuめっき密
着性の評価を行なった。
In other words, in the bending test, the outer lead part with a plate width of 0.5 mm was sheared to a length of 15IIIffi, and then MI
According to L STD 883C/2004, one end is fixed to the test fixture, the sample is suspended vertically, and the other end is
The process of bending the test jig to 90° C. with a weight of g and then returning it to its original position was repeated to evaluate the adhesion of the Cu plating.

尚、評価は以下の評価基準で行なった。Note that the evaluation was performed based on the following evaluation criteria.

◎・・・Cuめっき面は均一平滑でめっき欠陥存在せず
、繰り返し曲げ回数10回以上でCuめつき層の剥iな
し ○・・・Cuめっき面は均一平滑でめっき欠陥存在せず
、繰り返し曲げ回数6回以上でCuめつき層の剥離なし △・・・Cuめっき面に部分的に明瞭なめつき欠陥が若
干発生するも、繰り返し曲げ回数6回以上でCuめっき
層の剥離なし ×・・・Cuめっき面にめっき欠陥が明瞭に発生すると
ともに、繰り返し曲げ回数5回以下でCuめっき層の剥
離発生 (b)評価法B 評価法Aと同様のCuめっき後に、ワイヤーボンディン
グ時の加熱を受ける場合を想定して、400℃で5分間
の加熱処理を行なった場合のCuめっき面に発生するブ
リスター(Cuめつき層の微細な膨み)の発生状況を調
査してそのCuめつき層の密着性を評価し、以下の評価
基準でそのめつぎ性能の評価を行なった。
◎...The Cu plating surface is uniform and smooth, with no plating defects, and the Cu plating layer does not peel off even after repeated bending for 10 times or more. No peeling of Cu plating layer after bending 6 times or more △... Although some clear plating defects occur partially on the Cu plating surface, no peeling of Cu plating layer after bending 6 times or more ×...・Plating defects clearly occur on the Cu-plated surface, and peeling of the Cu-plating layer occurs when repeated bending is repeated 5 times or less (b) Evaluation method B After Cu plating as in evaluation method A, heat is applied during wire bonding. We investigated the occurrence of blisters (fine swelling of the Cu-plated layer) on the Cu-plated surface when heat treatment was performed at 400°C for 5 minutes. Adhesion was evaluated, and the mating performance was evaluated using the following evaluation criteria.

◎・・・ブリスターの発生なし Δ・・・ブリスターが5×5CI!12面積当りに換算
して5点以下発生 X・・・ブリスターが5 X 5 cm’面積当りに換
算して6点以上発生 (c)評価法C 前記と同様の脱脂、酸洗の前処理を施こした後、アルカ
ノスルフォン酸系のPb−50%Sn電%はんだめフき
浴を用い、そのめっき性の評価を行なった。電気はんだ
めっき条件としては、めっき浴温50℃、電流密度! 
OA/da+’で厚さ8μのめっきを施こした。
◎... No blisters occur Δ... Blisters are 5 x 5 CI! 12 Points or less occur when calculated per area. After the plating, the plating properties were evaluated using an alkanosulfonic acid-based Pb-50%Sn soldering bath. The conditions for electric solder plating are a plating bath temperature of 50°C and a current density!
Plating with a thickness of 8 μm was performed using OA/da+′.

評価方法は、衝撃加工(評価面に直径12.5mm。The evaluation method was impact processing (diameter 12.5 mm on the evaluation surface.

高さ9ffia+の半球を2 a+/secの速度で衝
撃荷重を加えて押し込み加工)後、テープ貼布、剥離し
てそのめつぎ層の密着性を評価した。
After pressing a hemisphere with a height of 9 ffia+ by applying an impact load at a speed of 2 a+/sec, the tape was applied and peeled off, and the adhesion of the abutment layer was evaluated.

評価基準は以下の方法により行なった。The evaluation criteria were as follows.

◎・・・めっき層の剥離なし O・・・めっき層の剥離面積10%未満△・・・  〃
  剥離面積10%以上〜30%未満X・・・  〃 
 剥離面積30%以上■ はんだ性能 (a)評価法A 評価材のはんだ性について、リードフレーム製造工程で
打抜ぎ加工後、Cuめっき処理の前にはんだが行なわれ
る工程を想定して、そのはんだ性について、特に打抜き
端面部のはんだ性についての評価を行なった。すなわち
、1011IIIl×50111I11のくけい形に剪
断した評価材にロジンアルコールフラックスを塗布して
10mmの剪断面を下方にし、pb−63%Sn系はん
だ浴に垂直に浸漬した場合の濡れ応力と濡れ時間の測定
により、そのはんだ性を以下の評価基準により評価した
◎... No peeling of the plating layer O... Peeling area of the plating layer is less than 10% △... 〃
Peeling area 10% or more to less than 30%
Peeling area of 30% or more ■ Solder performance (a) Evaluation method A Regarding the solderability of the evaluation material, we assumed that solder is applied after punching in the lead frame manufacturing process and before Cu plating. In particular, the solderability of the punched end face was evaluated. That is, the wetting stress and wetting time were obtained when the evaluation material was sheared into a wedge shape of 1011III1×50111I11, coated with rosin alcohol flux, with the 10 mm shear plane facing downward, and immersed vertically in a PB-63% Sn solder bath. The solderability was evaluated using the following evaluation criteria.

尚、はんだ性の上記評価試験は、打抜き加工直後と室内
に1.5月間保管した経時後について、各々評価した。
The above evaluation test for solderability was performed immediately after punching and after being stored indoors for 1.5 months.

◎・・・濡れ応力450mg以上かつ濡れ時間7秒未満
で、はんだの濡れ性及び濡れ速度共極めて良好 O・・・濡れ応力300mg以上〜450mg未満かつ
濡れ時間8秒未満で、はんだの濡れ性及び濡れ速度共可
成り良好 △・・・濡れ応力250 mg以上〜300mg未満或
いは濡れ時間8秒以上〜10秒未満で、はんだの濡れ性
或いは濡れ速度のいずれかが若干劣る X・・・濡れ応力250 mg未満或いは濡れ時間10
秒以上で、はんだの濡れ性或いは濡れ速度のいずれかが
極めて劣る 尚上記の濡れ応力及び濡れ時間の測定は、レスカ式のは
んだ濡れ性評価試験機を用い、フラックスを塗布した評
価材を溶融した温度350t:のはんだ浴中に一定速度
(4mm/5ec)で浸漬し、浸漬深さ4mmで30秒
間浸漬を行ない、第2図に示すように、その際のメニス
コグラフ測定により、濡れ応力、濡れ時間の評価を実施
した。
◎... Wetting stress of 450 mg or more and wetting time of less than 7 seconds, both solder wettability and wetting speed are very good O... Wetting stress of 300 mg or more and less than 450 mg and wetting time of less than 8 seconds, solder wettability and Fairly good wetting speed △... Wetting stress 250 mg or more to less than 300 mg or wetting time 8 seconds or more to less than 10 seconds, either solder wettability or wetting speed is slightly poor X... Wetting stress 250 Less than mg or wet time 10
The wetting stress and wetting time described above were measured using a Resca-type solder wettability evaluation tester, and the evaluation material coated with flux was melted. It was immersed in a solder bath at a temperature of 350 t at a constant speed (4 mm/5 ec) and immersed for 30 seconds at a depth of 4 mm. As shown in Figure 2, the wetting stress and wetting time were measured by meniscograph measurement. An evaluation was conducted.

(b)評価法B 評価材を幅30III11×長さ100m+aのくけい
状に剪断後、評価材に27%ロジンアルコール・フラッ
クスを塗布し、はんだ組成Pb−83%Sn浴に端面部
から長さ50mm深さまで浸漬、温度360’eで10
秒間浸漬してはんだを付着せしめたこのあとワイヤーボ
ンディング時の加熱処理を想定するとともに、併せ経時
に対する促進試験をも兼ねて、200℃で120分間の
加熱処理を行なった場合のはんだの密着性を評価した。
(b) Evaluation method B After shearing the evaluation material into a wedge shape of width 30III11 x length 100m + a, 27% rosin alcohol flux was applied to the evaluation material, and the length from the end surface was applied to the solder composition Pb-83% Sn bath. Immersed to a depth of 50 mm, at a temperature of 360'e for 10
The adhesion of the solder was evaluated when heat treatment was performed at 200℃ for 120 minutes to simulate heat treatment during wire bonding after dipping for seconds to adhere the solder, and also as an acceleration test for aging. evaluated.

密着性評価法としては、曲率半径0.25ma+ (板
厚と同厚み)の繰り返し曲げ加工テストを行ない、はん
だの剥離状況を調査してそのはんだ性能を評価した。
As an adhesion evaluation method, a repeated bending test with a radius of curvature of 0.25 ma+ (same thickness as the plate thickness) was performed, and the solder peeling state was investigated to evaluate the solder performance.

◎・・・繰り返し曲げ回数1o回以上で、はんだの剥離
及びはんだ層にクラック生成なし O・・・繰り返し曲げ回数6回以上で、はんだの剥離及
びはんだ層にクラック生成なし Δ・・・繰り返し曲げ回数3回以上で、はんだの剥×・
・・繰り返し曲げ回数2回以下で、はんだの剥離及びは
んだ層にクラック生成 ■ リードフレーム製品の経時後の性能評価本発明の評
価材をリードフレーム形状に加工後、その表面処理工程
でCuめっき及び半田付けを行なったものについて、プ
レッシャークツカーを用いて、圧力2 kg/cm”、
温度120℃、相対湿度−85%中に、これら製品を封
入して、1000時間の経時試験を行ない、外観観察に
よりその評価を以下の評価基準で相対的に行なった。尚
、Cuめっきは3.5μ実施した。
◎...No peeling of solder or cracks in the solder layer after repeated bending 10 times or more O...No peeling of solder or cracks in the solder layer after repeated bending 6 or more timesΔ...No peeling of solder or cracks in the solder layer after repeated bending 6 times or more Peel the solder more than 3 times.
・・Solder peels off and cracks occur in the solder layer when the number of repeated bending is 2 times or less ■ Performance evaluation of lead frame products after time After processing the evaluation material of the present invention into a lead frame shape, Cu plating and For items that have been soldered, apply a pressure of 2 kg/cm" using a pressure solder.
These products were sealed in a temperature of 120 DEG C. and a relative humidity of -85% and subjected to a 1000 hour aging test, and their appearance was observed and evaluated relatively based on the following evaluation criteria. Note that Cu plating was performed to a thickness of 3.5μ.

O・・・表面外観の変化等なく極めて良好○・・・端面
に僅少の錆発生 Δ・・・Cuめフき面にブリスター発生×・・・平面部
及び端面部に可成りの錆発生第1図は浸漬はんだのはん
だ性及びはんだ密着性評価結果を示すグラフであり、 (注)1は評価材のはんだ性について、10mm×50
III11のくけい形に剪断した評価材にロジンアルコ
ールフラックスを塗布して、10mmの剪断面を下方に
して、Pb−63%Sn系はんだ浴に垂直に浸漬した場
合の濡れ応力と濡れ時間の測定により、そのはんだ性を
以下の評価基準により評価した。
0...Excellent condition with no change in surface appearance ○...Small rust on the end face Δ...Blisters on the Cu-plated surface ×...Significant rust on the flat surface and end face Figure 1 is a graph showing the solderability and solder adhesion evaluation results of immersion solder. (Note) 1 is a graph showing the solderability of the evaluation material.
Measurement of wetting stress and wetting time when applying rosin alcohol flux to the evaluation material sheared into a wedge shape of III11 and immersing it vertically in a Pb-63%Sn solder bath with the 10 mm shear plane facing downward. The solderability was evaluated according to the following evaluation criteria.

尚、はんだ性の上記評価試験は、打抜き加工直後と室内
に 1.5月間保管した経時後について、各々評価した
。その評価基準は以下のとおりである。
The above evaluation test for solderability was conducted immediately after punching and after being stored indoors for 1.5 months. The evaluation criteria are as follows.

O・・・濡れ応力450mg以上でかつ濡れ時間7秒未
満ではんだの濡れ性及び濡れ速度共極めて良好 O・・・濡れ応力300mg以上〜450mg未満でか
つ濡れ時間8秒未満ではんだの濡れ性及び濡れ速度弁可
成り良好 △・・・濡れ応力250mg以上〜300a+g未満、
或いは濡れ時間8秒以上〜10秒未満ではんだの濡れ性
或いは濡れ速度のいずれかが若干劣る ×・・・濡れ応力250mg未満或いは濡れ時間10秒
以上で、はんだの濡れ性或いは濡れ速度のいずれかが極
めて劣る。
O...Solder wettability and wetting speed are extremely good when wetting stress is 450 mg or more and wetting time is less than 7 seconds O...Solder wettability and wetting speed are extremely good when wetting stress is 300 mg or more and less than 450 mg and wetting time is less than 8 seconds. Wetting speed valve fairly good △... Wetting stress 250mg or more - less than 300a+g,
Or, if the wetting time is 8 seconds or more and less than 10 seconds, either the solder wettability or the wetting speed is slightly inferior. Wetting stress is less than 250 mg or the wetting time is 10 seconds or more, and either the solder wettability or the wetting speed is slightly inferior. is extremely inferior.

尚、前記の濡れ応力及び濡れ時間の測定は、レスカ式の
はんだ濡れ性評価試験機を用い、フラックスを塗布した
評価材を溶融した温度350℃のはんだ洛中に一定速度
(4mm/5ec)で浸漬し、浸漬深さ4■で、30秒
間浸漬を行ない、第2図に示すように、その際のメニス
コグラフ測定により濡れ応力、濡れ時間の評価を実施し
た。
The above wetting stress and wetting time were measured using a Resca-type solder wettability evaluation tester, and the evaluation material coated with flux was immersed at a constant speed (4 mm/5 ec) into a melted solder ball at a temperature of 350°C. The samples were immersed for 30 seconds at a depth of 4 cm, and as shown in FIG. 2, the wetting stress and wetting time were evaluated by meniscograph measurements.

(注)2は各評価材にノンハロゲンタイプ・フラックス
(イソプロピルアルコールに13%のロジンを含有せし
めたフラックス)を塗布して230℃のpb−a o%
Snはんだ浴に浸漬し、引き上げ後エアブロ−ではんだ
付着厚さ8μ目標に施こした。該評価材を長期経時後の
密着性を想定して100℃で60分加熱処理し、衝撃加
工(評価面に直径12.5mm、高さ9mmの半球を2
 m/secの速度でaj撃荷重を加えて押し込み加工
)後、テープ貼付剥離して、その密着性を以下の評価基
準で評価する。
(Note) 2: Non-halogen type flux (flux containing 13% rosin in isopropyl alcohol) was applied to each evaluation material and PB-A o% was applied at 230℃.
It was immersed in a Sn solder bath, pulled up, and then air blown to achieve a solder adhesion thickness of 8 μm. The evaluation material was heat-treated at 100°C for 60 minutes assuming adhesion after long-term aging, and impact-treated (two hemispheres with a diameter of 12.5 mm and a height of 9 mm were placed on the evaluation surface).
After applying an impact load at a speed of m/sec to indentation), the tape was applied and peeled off, and its adhesion was evaluated using the following evaluation criteria.

◎:はんだの剥離なし O:はんだの剥離面積10%未満 △:はんだの剥離面積が10%以上30%未満×:はん
だの剥離面積が30%以上で極めて大(発明の効果) 以上説明したごとく本発明の製造法によれば、集積回路
などに使用するリードフレーム材料として、拡散被覆層
の密着性やスタンピング性とともに、耐食性、めっき性
、はんだ性に優れた高性能リードフレーム用表面処理鋼
板を得ることができる。
◎: No solder peeling O: Solder peeled area is less than 10% △: Solder peeled area is 10% or more and less than 30% ×: Solder peeled area is 30% or more, extremely large (effects of the invention) As explained above. According to the manufacturing method of the present invention, a high-performance surface-treated steel sheet for lead frames, which has excellent corrosion resistance, plating properties, and solderability, as well as adhesion and stamping properties of the diffusion coating layer, can be used as lead frame materials for integrated circuits, etc. Obtainable.

【図面の簡単な説明】[Brief explanation of the drawing]

る濡れ応力、濡れ時間の測定方法を説明する図面である
。 代 理 人  弁理士 秋 沢 政 光他1名
FIG. Agent: Patent attorney Masamitsu Akizawa and 1 other person

Claims (2)

【特許請求の範囲】[Claims] (1)重量%で、C;0.01%以下、酸可溶Al;0
.005〜0.10%、Cr;4〜10.5%、B;0
.0003〜0.005%を含有し、残部Fe及び不可
避的不純物からなるCr含有鋼板を冷間圧延後、その表
面に片面当りの付着量が100〜3000mg/m^2
のNi、Co或いはNiとCoの合金被覆層を設け、次
いで非酸化性雰囲気中の450℃〜再結晶温度の温度範
囲で180秒以下の加熱拡散処理を施こす事を特徴とす
る耐食性、めっき性及びはんだ性にすぐれた高性能リー
ドフレーム用表面処理鋼板の製造法。
(1) In weight%, C: 0.01% or less, acid-soluble Al: 0
.. 005-0.10%, Cr; 4-10.5%, B; 0
.. After cold rolling a Cr-containing steel plate containing 0003 to 0.005% and the balance consisting of Fe and unavoidable impurities, the amount of adhesion per side on the surface is 100 to 3000 mg/m^2
Corrosion-resistant plating characterized by providing a coating layer of Ni, Co, or an alloy of Ni and Co, and then subjecting it to a heat diffusion treatment in a non-oxidizing atmosphere at a temperature range of 450°C to the recrystallization temperature for 180 seconds or less. A method for manufacturing surface-treated steel sheets for high-performance lead frames with excellent solderability and solderability.
(2)重量%で、C;0.01%以下、酸可溶Al;0
.005〜0.10%、Cr;4〜10.5%、B;0
.0003〜0.005%を含有し、さらにCu;0.
05〜1%、Ni;0.05〜3%、Mo;0.05〜
0.5%の1種又は2種以上を含有し、残部Fe及び不
可避的不純物からなるCr含有鋼板を冷間圧延後、その
表面に付着量が100〜3000mg/m^2のNi、
Co成いはNiとCoの合金の被覆層を設け、次いで非
酸化性雰囲気中の450℃〜再結晶温度の温度範囲で1
80秒以下の加熱拡散処理を施こす事を特徴とする耐食
性、めっき性及びはんだ性にすぐれた高性能リードフレ
ーム用表面処理鋼板の製造法。
(2) In weight%, C: 0.01% or less, acid-soluble Al: 0
.. 005-0.10%, Cr; 4-10.5%, B; 0
.. 0003 to 0.005%, and further contains Cu; 0.005%.
05~1%, Ni; 0.05~3%, Mo; 0.05~
After cold-rolling a Cr-containing steel plate containing 0.5% of one or more of the following, the balance consisting of Fe and unavoidable impurities, the amount of Ni deposited on the surface is 100 to 3000 mg/m^2,
For Co, a coating layer of an alloy of Ni and Co is provided, and then 1
A method for producing a high-performance surface-treated steel sheet for lead frames with excellent corrosion resistance, plating properties, and solderability, characterized by applying heat diffusion treatment for 80 seconds or less.
JP25544288A 1988-10-11 1988-10-11 Production of surface treated steel sheet for high-efficiency lead frame excellent in corrosion resistance, plating suitability, and solderability Pending JPH02104655A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25544288A JPH02104655A (en) 1988-10-11 1988-10-11 Production of surface treated steel sheet for high-efficiency lead frame excellent in corrosion resistance, plating suitability, and solderability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25544288A JPH02104655A (en) 1988-10-11 1988-10-11 Production of surface treated steel sheet for high-efficiency lead frame excellent in corrosion resistance, plating suitability, and solderability

Publications (1)

Publication Number Publication Date
JPH02104655A true JPH02104655A (en) 1990-04-17

Family

ID=17278828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25544288A Pending JPH02104655A (en) 1988-10-11 1988-10-11 Production of surface treated steel sheet for high-efficiency lead frame excellent in corrosion resistance, plating suitability, and solderability

Country Status (1)

Country Link
JP (1) JPH02104655A (en)

Similar Documents

Publication Publication Date Title
US7946022B2 (en) Copper alloy for electronic machinery and tools and method of producing the same
JP5365194B2 (en) Steel sheet having high {222} plane integration and method for producing the same
JP4439447B2 (en) Manufacturing method of irregular cross-section copper alloy sheet
JPH09104956A (en) Production of high strength and high electric conductivity copper alloy
JP4197718B2 (en) High strength copper alloy sheet with excellent oxide film adhesion
JP5772486B2 (en) Stainless steel and its manufacturing method
JP3729733B2 (en) Copper alloy plate for lead frame
JPH10265874A (en) Copper alloy for electrical/electronic parts and its production
JPH02104655A (en) Production of surface treated steel sheet for high-efficiency lead frame excellent in corrosion resistance, plating suitability, and solderability
JPH0288797A (en) Surface-treated steel sheet for high-performance, lead frame having excellent corrosion resistance, solderability, and platability
JPH02104654A (en) Production of surface treated steel sheet for high-effeiciency lead frame excellent in corrosion resistance, plating suitability, and solderability
JPH01165757A (en) Production of surface-treated steel sheet for lead frame having excellent corrosion resistance, platability and solderability
JPH01165758A (en) Production of surface-treated steel sheet for lead frame having excellent corrosion resistance, platability and solderability
JPH03243789A (en) Cu-coated cr-containing steel sheet excellent in corrosion resistance, solderability and adhesion
JPH01165788A (en) Surface-treated steel sheet for high-performance lead frame having excellent corrosion resistance and solderability
JPH01177315A (en) Manufacture of steel sheet for lead frame excellent in rust resistance, formability, and platability
JPH0288796A (en) Surface-treated steel sheet for high-performance lead frame having excellent corrosion resistance, solderability, and platability
JPH1136028A (en) Lead frame for semiconductor device
JPH01165789A (en) Surface-treated steel sheet for high-performance lead frame having excellent corrosion resistance and solderability
JPS63109189A (en) Surface treated steel sheet for lead frame having superior corrosion resistance, solderability and adhesion
JPH01177316A (en) Manufacture of steel sheet for lead frame excellent in rust resistance, formability, and platability
JPS61113774A (en) Lead-tin alloy plated steel sheet having superior corrosion resistance
JP3704323B2 (en) Manufacturing method of Ni-plated steel sheet for battery can
JPH0430466B2 (en)
JPH0515785B2 (en)