JPH0515785B2 - - Google Patents

Info

Publication number
JPH0515785B2
JPH0515785B2 JP61251418A JP25141886A JPH0515785B2 JP H0515785 B2 JPH0515785 B2 JP H0515785B2 JP 61251418 A JP61251418 A JP 61251418A JP 25141886 A JP25141886 A JP 25141886A JP H0515785 B2 JPH0515785 B2 JP H0515785B2
Authority
JP
Japan
Prior art keywords
plating
layer
coating layer
less
corrosion resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61251418A
Other languages
Japanese (ja)
Other versions
JPS63105959A (en
Inventor
Yukinobu Higuchi
Toshinori Katayama
Nobuo Tsuzuki
Fumio Yamamoto
Akinori Maruta
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP25141886A priority Critical patent/JPS63105959A/en
Publication of JPS63105959A publication Critical patent/JPS63105959A/en
Publication of JPH0515785B2 publication Critical patent/JPH0515785B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Lead Frames For Integrated Circuits (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、耐食性、半田性、被覆層の密着性等
にすぐれたCu系被覆鋼板の半導体用リードフレ
ーム用表面処理鋼板に関するものである。 〔従来の技術〕 従来からIC用等のリードフレーム用素材には、
例えば「表面処理技術総覧めつき・陽極酸化編昭
和58年6月15日株式会社広信社発行」のP.683で
紹介されるように、Cu系素材としてCu−Fe−
P、Cu−Fe−Co−Sn−P、Cu−Ni−Sn系合金
等が、またFe系素材としてFe−42%Ni高合金系
素材が使用されてきた。これらのリードフレーム
用素材は、機械的強さ、電気伝導度、熱伝導度、
耐食性等にすぐれ、またリードフレーム製造時の
ハンド性、めつき性等にもすぐれている。 しかしながら、これらの素材は高いコスト問題
から、最近では安価なリードフレーム用素材とし
て冷却鋼板の使用が検討され、一部では使用され
つつある。しかしながら、このような素材は、リ
ードフレーム用素材に要求される諸性能を満足に
具備するものではなく、特に耐食性、ハンダ性、
熱伝導性を改善した、鋼素材の開発が要請されて
いる。 〔発明の解決しようとする問題点〕 一般に、Fe−42%Ni合金、冷延鋼板等のFe系
素材は次のような処理工程を経てリードフレーム
製品となる。 すなわち、リードフレーム用素材を打抜き加工
により、所定の形状に加工した後、全面にCuめ
つき後必要個所にAg部分めつき、さらにはんだ
づけをし、Agめつきを施した部分にAu線が接合
され、仕上げ剪断され製品となる。その後使用状
況に対応してパツケージされる。また、その製造
工程によつては、所定の形状に加工した後、先に
はんだつけが行なわれる場合もある。 而して、これらの工程において、Cuめつきは
素材の防錆能力の向上とAgめつきの密着性及び
被覆性を向上させるための下地処理であり、また
熱電導性、電気伝導性を付与するために行なわれ
るAgめつきは、Au線との熱接合(約200〜500
℃)のために、またはんだはICボードとの接合
部の接合性を向上するために施される。 これらの工程から考慮して、Fe系素材には (a) 所定形状に加工した後、直ちにリードフレー
ム製造工程でめつき処理される場合を除いて、
めつき処理されるまで貯蔵し保管される場合が
あり、この場合のために素材の耐錆性がすぐれ
ていること、 (b) 所定形状に加工した後でも、はんだ性がすぐ
れていること、 (c) 簡単な前処理(表面清浄化及び活性化処理)
でCuめつきが容易なこと、 (d) Cuめつき後の耐食性がすぐれていること、
特に、Cuめつきの厚さを減じても、すぐれた
耐食性を有すること、 (e) Cuめつきの密着性がすぐれ、特にAu線との
熱接合時の加熱後において密着性がすぐれてい
ること、 (f) リードフレーム製造後の熱伝導性、電気伝導
性の向上を可能ならしめること、 等が要求されている。 このような要求に対処して本発明者らは、種種
検討した結果、冷延鋼板をそのまま使用したので
は、貯蔵保管時の耐錆性、はんだ性が必ずしも充
分に優れているとは云い難い。またCuめつきし
処理した後も、鋼板に比してCu金属は電位的に
貴なため、ピンホール、めつき欠陥等からのFe
の優先腐食による赤錆発生が著しく、耐食性が不
充分である。特に、Cuめつきの劣る端面、切口
部等における耐食性は著しく劣るものがある。ま
た、ピンホール、めつき欠陥等を減少するため
に、Cuめつきを厚くしても完全にピンホール等
を減少することは困難であり、また密着性の劣化
或いは熱接合時にブリスターが発生する問題があ
る。 本発明はこれらの問題点を解決すると共に、前
記(a)〜(f)項に記載した要求の性能を満足しうる性
能、特に、耐食性、はんだ性、密着性にすぐれた
リードフレーム用素材を提供するものである。 〔問題点を解決するための手段〕 本発明の要旨は、 重量%で、C;0.30%以下、Al;0.005〜0.10
%、Si;0.6%以下、Mn;1.5以下、Cu;0.05〜
1.0%、さらに必要によつてはNi:0.05〜3.0%を
含有して残部がFeおよび不可避的不純物からな
る鋼板の表面にCu拡散層を有するCu被覆層を施
して、Cu拡散層の厚みが0.1〜3μでかつCu拡散層
とCu被覆層の厚みが0.5〜15μで構成されている
耐食性、はんだ性、密着性にすぐれたリードフレ
ーム用表面処理鋼板である。 〔作用〕 以下に本発明を詳細に説明する。 転炉、電炉等の溶解炉で溶製された溶鋼を連続
鋳造法または造塊、分塊法を経てスラブとして熱
間圧延、冷間圧延さらに焼鈍工程を経て、C;
0.3%以下でAl、Siなどの成分を少量含有するめ
つき原板を製造する。 Cは機械的強度向上元素として経済的に有利で
あり、この観点からはC含有量が多い程有効であ
るが、その含有量が増加するとCu被覆層のピン
ホール等の被覆層欠陥が増加し耐食性を劣化す
る。すなわち、Cuめつき等の被覆処理後の拡散
層の生成に対しても鋼中のセメントタイトの析出
量が多い場合には、拡散層の均一生成によるめつ
き欠陥のいんぺい効果が減少する欠点があり耐食
製を劣化する。而して、めつき原板中のC含有量
は耐食性の観点から0.30%以下、好ましくは0.15
%以下である。また、めつき原板中に不可避的に
含有される不純物成分については、特に規定され
るものではないが、主要な下記の成分については
以下の範囲が好ましい。 Alは、鋼中に残存する酸可溶Al(Sol Al)量が
0.005%未満の少含有量では、酸素性ガスによる
気泡の発生を防止する事が困難であり、鋼の表面
欠陥発生率を著しく高め鋼素材自体の耐食性劣
化、機械的性質劣化の起点となるので好ましいも
のではない。また0.10%を越える過剰な酸可溶Al
は、Al系酸化物を鋼表面に点在せしめ耐食性劣
化の起点となり、さらにCu被覆層処理に対して
均一被覆性を阻害する要因となり好ましいもので
はない。従つて、鋼中に含有されるSol Alは、
本発明が目的とする表面処理鋼板の性能が安定し
て確保できる量として、0.005〜0.10%、好まし
くは0.01〜0.08%である。 Siは、0.6%以下が好ましい。Siは機械的強度
上昇に有効であるが、Si含有量が過剰に増加する
と、Si系酸化物が鋼面に点在せしめられ、本発明
におけるCu被覆処理に対して、均一被覆性を阻
害するので、耐食性の点で好ましいものでない。
従つて、0.6%以下、好ましくは0.3%以下であ
る。 Mnは耐食性能に悪影響を及ぼすことはない
が、含有量の増加により機械的強度を上昇し、そ
の圧延加工性を劣化するので1.5%以下がよい。 その他、P、Sについては、通常の製鋼方式で
含有される範囲で0.02%以下がよい。尚、めつき
原板の加熱工程において、グラフアイト状のCが
表面に析出して、被覆層の均一被覆性が阻害され
るのを防止する目的で、0.5%以下のCrを添加し
てもよい。 さらに本発明ではCu;0.05〜1.0%の単独添加
あるいはCuとNi:0.05〜3.0%を複合添加する。
Cuの添加は、鋼板自体の耐食性を向上し、鋼板
の電位をカソーデイリク化してCu拡散層との電
位差を近接化する効果が得られ、被覆層の欠陥部
或いは端面のFe露出部の耐錆性劣化を防止する
効果が得られる。さらに、鋼板の端面部および
Fe露出部に対して、鋼中のCuが鋼板表面に析出
濃化し、Cu被覆層との電位近接効果と相俟つて、
耐食性を向上する。 このような効果は、Cu添加量が0.05%以上、好
ましくは0.10%以上で得られる。また、Cuの添加
量が1%をこえると、原板製造過程の熱延工程に
おいて、赤熱脆性による割れや鋼板表面にCuが
濃縮しスケール疵を発生するので1%以下、好ま
しくは0.5%以下に規制する。 さらに本発明においてNiとCuの複合添加は、
Cu添加に起因する赤熱脆性が防止され鋼板の耐
食性を向上する。 このようなNi添加の効果は、0.05%未満では得
られず、また3%を越えると飽和に達する。従つ
て、Niの添加量は0.05〜3.0%、好ましくは0.1〜
0.5%である。 次いで、上記の鋼成分のめつき原板に対して、
Cu拡散層を有するCu被覆層を所定厚みで設ける
必要がある。このCu系被覆層を設ける方法は、
特に規定するものではないが、以下の様な方法で
被覆層を設けるとよい。 冷間圧延材(As Cold材)或いは冷延鋼板(フ
ルフイニツシユ材)の表面を脱脂、酸洗の表面清
浄化及び活性化処理した後Cuめつき処理を施す。 このCuめつき処理の一例として、以下のよう
な条件でめつき処理が施される。 めつき浴組成K4P2O7 Cu2P2O7・3H2O NH4OH PH256g/ 64g/ 2.2g/ 8.5 電流密度 10A/dm2 めつき浴温 55℃ Cuめつき被覆処理後、本発明においては、N2
雰囲気等の非酸化性雰囲気、5%H2−N2からな
るMiXガス、75%H2−N2からなるAXガス雰囲
気等の還元性雰囲気或いは真空雰囲気下で、加熱
拡散処理が施され、Cu拡散層が鋼表面に設けら
れる。 この拡散処理条件は、本発明の製品の目的とす
るCu拡散層、Cu被覆層の各々の厚み、素材の機
械的性質に対応して、加熱拡散処理に先立つて施
されるCuめつき被覆層の厚み、加熱温度、加熱
時間が設定される。例えば、連続焼鈍方式では、
600〜850℃で30〜180秒、箱焼鈍方式では450〜
650℃で、数時間〜30時間の加熱処理が施される。
この加熱拡散処理によつて、Cu拡散層を有する
Cu被覆層を所定厚さで設ける事が、リードフレ
ーム用素材として性能のすぐれた製品を得るのに
極めて重要である。 すなわち、本発明に使用されるめつき原板に対
して、Cuめつき被覆処理のみを施した場合に比
較して、以下の様な利点が得られる。すなわち、 A Cuめつき被覆層のみではピンホール等のめ
つき欠陥が生成されやすく、ピンホール等から
の発錆を生じやすく耐食性を劣化すると共に、
打抜き加工端面等のFe露出部から赤錆を発生
する。 一方、第1図に一例を示すように、本発明で
は、めつき原板とCuめつき層の相互拡散によ
りこれらの界面にCuとFeとからなる合金拡散
層が生成され、その結果として、ピンホール等
のめつき欠陥を減少し、平面部の耐食性を向上
する。さらに、打抜き加工端面に対してもCu
拡散層が生成されているためFeの露出面積が
減少し、FeとCuメツキ層間の電位差が中間層
としてのCu−Fe合金拡散層の存在によつて緩
和されるためFeの優先腐食による赤錆発生が
著しく抑制される。 第1図a,bはCuめつき(0.5μ厚さ)の断
面濃度分析(グロー放電発光分析)結果と断面
模式図であり第1図c,dはCu拡散層を有す
るCu被覆層の同様分析結果(スパツタリング
時間1.6秒で0.1μ相当)と断面模式図である。 第2図は促進試験による平面部及び打抜き端
面部の耐食性評価結果の一例を示す。第2図は
Cu拡散層を有するCu系被覆材の貯蔵保管を対
象とした耐食性の1例を示す図で、「冷凍30分
→湿気槽60分→室内放置24時間」を1サイクル
として、3サイクルテストとしたものであり、
試験材の端面板厚は0.25mmである。 B 本発明は、Cuめつき層とめつき原板との界
面においてめつき欠陥部が少なく、またCuめ
つき層との電位差を緩和する合金拡散層が生成
されるため、リードフレーム製造工程でCuめ
つき処理を行なう場合に適用しても、第3図に
示すように、平面部及び端面部の耐食性を向上
する。 第3図はリードフレーム製造工程でCuめつ
き処理を施した場合の塩水噴霧試験による耐食
性(SST24時間)の1例を示すもので評価材
AはCu拡散層を有するCu系被覆材(厚さ1.2μ)
であり、又評価材Bは同様の厚さ2.2μを有する
被覆材である。これをスタンピング後各々2.8μ
のCuめつきを施したものである。一方比較材
A、Bは同一めつき原板をスタンピング後各々
4μ、5μのCuめつきを施しものである。従つて、
リードフレーム製造工程でのCuめつき厚さを
減少する利点も併せて得られる。 C リードフレーム製造時の必要不可欠なはんだ
付け作業に対して、特に端面部の打抜き加工貯
蔵された経時後のはんだ性に対しても、合金拡
散層の生成によるFe露出部が減少し、その効
果の向上が第4図に示すようにすぐれている。 第4図aはCu拡散層を有するCu系被覆材と
Cuめつき材の半田濡れ性を比較した図であり、
第4図bは半田の濡れ応力の測定方法を示し、
試験片にフラツクスとしてロジンアルコールを
塗布後、Sn:Pb=6:4の半田浴に浸漬し、
ソルダーチエツカー試験機を使用して図示の方
法で濡れ応力を測定し半田性を評価したもので
ある。 D Cuめつき材は、一般に鋼板との密着性が必
ずしも良好ではなく、特にCuめつき層の厚さ
が厚くなる程その傾向が大きい。しかし、本発
明のように、めつき原板とCuめつき層との界
面に強固な密着性を有するFe−Cu合金拡散層
が生成されるため、Cuめつき被覆層の密着性
が極めてすぐれる。また同時に、めつき層自体
の密着性が良好なため、熱接合時の耐熱密着性
も極めてすぐれる。 E ピンホール等のめつき欠陥が少ないため、本
発明の鋼板は、その他リードフレーム用素材に
要求される素材表面の熱伝導度、電気伝導度が
すぐれている。 等の効果が挙げられる。 而して、本発明の効果を得るためには、Cuと
Feの拡散合金層を有するCu被覆層の厚みが重要
である。 本発明はこの効果を得るために被覆層の厚さ
は、Cu拡散層の厚みが0.1〜3μでかつCu拡散層と
Cu被覆層の厚みが0.5〜15μで構成される。 すなわち、Cu拡散層の厚みが0.1μ未満では、
その上層の厚みが上記の如き厚みで構成されてい
ても、本発明の目的とする効果が得られず、特に
打抜き端面部の拡散層によるFe面の露出部被覆
効果が少なく、端面部の耐食性、はんだ性等の性
能向上効果が得られない。また、拡散層の厚みが
上記範囲で構成されていても、その上層のCu被
覆層との総和の厚さが0.5μ未満(上層Cu被覆層
自体の厚さとしては最大0.4μ未満)では端面部の
性能向上効果は得られるものの平面部のCu被覆
層の均一被覆性が劣り、Feを含有する拡散合金
層からの発錆等による耐食性劣化が生じる。 一方、拡散合金層が3μを越える厚さになると、
この合金層の硬質性から、加工による損傷を受け
クラツクを発生し、耐食性の劣化がみられる。さ
らに、上記合金層の構成範囲で上層と拡散層との
総和でCu被覆層が15μを越える場合には、このよ
うな効果が飽和するとともに、Cu被覆層とめつ
き原板界面は拡散合金層の生成により密着性は良
好であるが、拡散合金層の上層のCu被覆層自体
の密着性を劣化し、加工により部分的に剥離され
る。 従つて、本発明におけるCu拡散層を有するCu
被覆層の厚みは、Cu拡散層の厚みが0.1〜3μ、好
ましくは0.5〜2μ、Cu拡散層とCu被覆層の厚みが
0.5〜15μ、好ましくは1.5〜7.5μである。 而して、この被覆構成のCu系被覆鋼板を得る
方法は、例えば鋼板表面にCuめつき後加熱拡散
処理を行なつて、Cuめつき層の一部が拡散され、
残部がCuめつき層のまま残るように、Cuめつき
層の厚さ、加熱温度、加熱時間を各々設定して、
拡散層とCu被覆層からなる本発明の二層被覆層
を設ける方法が採用される。 また、加熱拡散処理前に施されたCuめつき層
の全部をめつき原板と相互拡散させ、拡散層を生
成させた後に、電気めつき法により拡散層の表面
層としてCuめつき被覆層を設けて、本発明の被
膜を構成してもよい。 しかしながら、製造方法の簡略化及び拡散層と
Cu被覆層自体の密着性の点から、加熱拡散処理
工程で一気に拡散層とCu被覆層を設ける方が好
ましい。 さらに、使用されるめつき原板は、冷延鋼板を
用いるより、冷間圧延のまま(As Cold材)を用
いて、その要求される機械的特性値を確保するた
め焼鈍作業と拡散処理を同時に行なうのが、冷間
圧延材の加工歪の作用により拡散が促進されるこ
と及び工程の簡略化の点で望ましい。 勿論、冷延鋼板を用いてCuめつき、拡散処理
を行なつてから、機械的性質調整のための圧延或
いはスキンパスを行なつてもよい。 特に、リードフレーム形状への打抜き成形加工
性(スタンピング性)を考慮した場合、延性の少
ない高強度材がすぐれており、またリードフレー
ム製品としては強度と曲げ加工性が要求される。 これらの観点から種々検討した結果、強度は45
〜85Kg/mm2、延び3〜90%、好ましくは55〜80
Kg/mm2、延び5〜15%の機械的性質のものが良好
である事が判つた。 本発明に使用される鋼成分の素材に対しては、
上記のAs Cold材を用いて、Cuめつき層の拡散
が可能で再結晶による軟質化の生じにくい再結晶
温度より低い温度、すなわち450〜550℃の温度範
囲での加熱拡散処理が好ましい。 また、本発明は主として被覆層を得る方法につ
いて電気Cuめつき、拡散処理による方法で説明
したが、電気Cuめつきの代りに、Cuイオン含有
する水溶液を用いた置換めつき法、さく酸銅−界
面活性剤からなる水溶液を塗布して、乾燥後に加
熱拡散処理を行なう方法を採用してもよい。しか
し、Cu被覆層の均一被覆性、厚さの調整方法の
点から、電気めつき法による方法が工業的には好
ましい。 尚、本発明の方法の鋼板、リードフレーム用素
材として、リードフレーム製造工程において、前
処理によるCu系被覆層の表面を清浄化、活性化
処理後にさらにCuめつきを行なつて使用されて
もよく、Cuめつき工程を省略してはんだづけ、
Agめつき等の作業のみを行なつて、リードフレ
ーム製品として使用されてもよい。 以上の如く、本発明の鋼板は、リードフレーム
用素材として極めてすぐれた性能特性を有する。 (実施例) 冷間圧延のままのAs Cold材或いは冷間圧延焼
鈍したフルフイニツシユ仕上材を用いて、第1表
に示す鋼成分のめつき原板を用いて、脱脂、酸洗
の表面清浄化、活性化処理を行なつてから第1表
に示す本発明におけるCu系被覆層を設けた。 尚、本発明の処理材は、As Cold材を用いて再
結晶温度以下での加熱拡散処理を施した素材は形
状調整のためのスキンパス圧延を、またAs Cold
材、フルフイニツシユ材を用いて再結晶温度以下
で加熱拡散処理材は20〜40%の圧下率で冷間圧延
を行ない、各々厚さ0.754mmの評価材を得た。こ
れらの評価材についての各種性能評価結果を第2
表に示す。 この結果、本発明の製品(実施例)は、比較材
に較べてリードフレーム用素材として安定した半
田性を示すなど極めてすぐれた性能を示す。 評価試験方法 被覆層の密着性評価 本発明のCu系被覆層について、以下の方法
及び評価基準でその評価を行なつた。 密着性評価法と評価基準 Cu系被覆鋼板に90度曲げ加工を繰り返し行
ない、その被覆層の剥離或いはクラツクの発生
状況と繰り返し回数が状況から、以下の評価基
準で評価を行なつた。 ◎…繰り返し回数10回以上で被覆層の剥離或い
はクラツクの発生なし ○…繰り返し回数6回以上〜9回で被覆層の剥
離或いはクラツク発生 △…繰り返し回数3回以上〜5回で被覆層の剥
離或いはクラツク発生 ×…繰り返し回数2回以下で被覆層の剥離或い
はクラツク発生 密着性評価法と評価基準 Au線等の加熱接合時のCu系被覆層の密着性
を評価する事を目的として、500℃に加熱、2
分間保定して急冷を行ない、この繰り返し回数
と被覆層の剥離状況或いはプリスターの発生状
況から、その密着性を以下の評価基準で評価し
た。 ◎…繰り返し回数5回以上で、被覆層の剥離
或いはプリスターの発生等の欠陥発生なし ○…繰り返し回数2回以上〜4回で、被覆層の
剥離或いはブリスターの発生等の欠陥発生な
し △…加熱1回で、被覆層にブリスター発生 ×…加熱1回で、被覆層に剥離発生 保管時の耐錆性を対象とした耐食性評価 評価材を所定のリードフレーム形状に打抜き
加工時、リードフレーム製造工程での表面処理
が施されるまでの保管時の耐錆性能の評価を以
下の促進試験法及び評価基準により、その平面
部及び打抜き端面部についての評価を行なつ
た。 リードフレーム製品の耐錆性を対象とした耐
食性評価 本発明の評価材をリードフレーム形状に打抜
き加工後、その表面処理工程において脱脂、酸
洗の前処理を行ない、厚さ3μのCuめつきを施
し、塩水噴霧試験(JIS−C−5028)により、
その耐食性を平面部及び端面部について行な
い、以下の評価基準で評価した。 平面部の耐食性 ◎…塩水噴霧試験24時間後の赤錆発生なし ○…塩水噴霧試験24時間後の赤錆発生率3%未
満 △…塩水噴霧試験24時間後の赤錆発生率3%以
上〜5%未満 ×…塩水噴霧試験24時間後の赤錆発生率5%以
上 端面部の耐食性 ◎…塩水噴霧試験24時間後24時間後の赤錆発生
率10%未満 ○…塩水噴霧試験24時間後の赤錆発生率10%以
上〜15%未満 △…塩水噴霧試験24時間後の赤錆発生率15%以
上〜20%未満 ×…塩水噴霧試験24時間後の赤錆発生率20%以
上 半田性の評価 評価材の半田性について、リードフレーム製
造工程で打抜き加工後、Cuめつき処理の前に
半田が行なわれる工程を想定して、その半田性
について、特に打抜き端面部の半田性について
の評価を行なつた、すなわち、10mm×50mmのく
けい形に剪断した評価材にロジンアルコールフ
ラツクスを塗布して、10mmの剪断面を下方にし
て、Pb−60%Sn系半田浴に垂直に浸漬した場
合の濡れ応力と濡れ時間の測定により、その半
田性を以下の評価基準により評価した。 尚、半田性の上記評価試験は、打抜き加工直
後と室内に3ケ月保管した経時後について、各
評価した。 ◎…濡れ応力450mg以上でかつ濡れ時間6秒未
満で半田の濡れ性及び濡れ速度共極めて良好 ○…濡れ応力350mg以上〜400mg未満でかつ濡れ
時間7秒未満で半田の濡れ性及び濡れ速度共
可成り良好 △…濡れ応力250mg以上〜350mg未満或いは濡れ
時間7秒以上〜8秒未満で半田の濡れ性或い
は濡れ速度のいずれかが若干劣る。 ×…濡れ応力250mg未満或いは濡れ時間8秒以
上で、半田の濡れ性或いは濡れ速度のいずれ
かが極めて劣る。 電気伝導性の評価 電位差法により、評価材の表面の電気伝導度
を測定し、以下の評価基準で評価した。尚、測
定は常温(30℃)で行なつた。 ◎…電気伝導率7×106(Ωm)-1以上 ○…電気伝導率6×106(Ωm)-1以上〜7×106
(Ωm)-1未満 △…電気伝導率5×106(Ωm)-1以上〜6×106
(Ωm)-1未満 ×…電気伝導率5×106(Ωm)-1未満 熱伝導性の評価 光交流法により、評価材の表面の熱伝導性を
測定し、以下の評価基準で評価した。尚測定は
常温(30℃)で実施。 ◎…熱伝導率が0.15(cal/sec・cm・℃)以上 ○…熱伝導率が0.10(cal/sec・cm・℃)以上
〜0.15(cal/sec・cm・℃)未満 △…熱伝導率が0.05(cal/sec・cm・℃)以上
〜0.10(cal/sec・cm・℃)未満 ×…熱伝導性が0.05(cal/sec・cm・℃)未満 リードフレーム製品の経時後の性能評価 本発明の評価材をリードフレーム形状に加工
後、その表面処理工程でCuめつき及び半田付
けを行なつたものについて、プレツシヤークツ
カーを用いて、圧力2Kg/cm2、温度120℃の沸
トウ水の中に、これら製品を封入して、500時
間の経時試験を行ない、外観々察によりその評
価を以下の評価基準で相対的に行なつた。尚、
Cuめつきは2μ実施。 ◎…表面外観の変化等なく極めて良好 △…端面に若干の錆発生 ×…平面部及び端面部に可成りの錆発生 打抜き成形性(スタンピング性) リードフレーム形状への打抜き成形性を以下
の評価基準で評価し、その成形加工性の評価を
行なつた。 ◎…打抜き端面部のかえりの発生、素材の割れ
発生等殆んどなく、打抜き成形性極めて良
好。 ○…評価材の打抜き成形性は上記と同様良好で
あるが、若干成形機のポンチ、ダイスの連続
運転により摩耗損傷が若干発生。 △…打抜き端面部にかえりが若干発生するか或
いは成形材の装置から抜け性が劣るため、打
抜き成形時に若干トラブルが発生し易い。 ×…打抜き成形によつて割れが評価材に可成り
発生するか或いはポンチ、ダイス等の摩耗が
長期連続運転によつて可成り大。
[Industrial Field of Application] The present invention relates to a surface-treated steel sheet for semiconductor lead frames, which is a Cu-based coated steel sheet with excellent corrosion resistance, solderability, adhesion of a coating layer, etc. [Conventional technology] Traditionally, materials for lead frames for ICs, etc.
For example, as introduced on page 683 of ``Surface Treatment Technology Overview/Anodizing Edition, June 15, 1980, Published by Koshinsha Co., Ltd.'', Cu-Fe-
P, Cu-Fe-Co-Sn-P, Cu-Ni-Sn alloys, etc. have been used, and Fe-42%Ni high alloy materials have been used as Fe-based materials. These lead frame materials have mechanical strength, electrical conductivity, thermal conductivity,
It has excellent corrosion resistance, and also has excellent handling properties and plating properties when manufacturing lead frames. However, due to the high cost of these materials, recently the use of cooling steel plates as an inexpensive material for lead frames has been considered and is being used in some cases. However, such materials do not satisfy the various performances required for lead frame materials, especially corrosion resistance, solderability,
There is a need to develop steel materials with improved thermal conductivity. [Problems to be Solved by the Invention] Generally, Fe-based materials such as Fe-42% Ni alloy and cold-rolled steel sheets are made into lead frame products through the following processing steps. In other words, after punching the lead frame material into a predetermined shape, the entire surface is plated with Cu, where necessary Ag is plated, and then soldered, and the Au wire is bonded to the Ag-plated areas. The product is then finished sheared. It is then packaged according to usage conditions. Further, depending on the manufacturing process, soldering may be performed first after processing into a predetermined shape. In these processes, Cu plating is a surface treatment to improve the rust prevention ability of the material and improve the adhesion and coverage of Ag plating, and also provides thermal conductivity and electrical conductivity. The Ag plating performed for this purpose is thermal bonding with the Au wire (approximately
°C), solder is applied to improve the bondability of the joint with the IC board. Considering these processes, Fe-based materials (a) are processed into a predetermined shape and then immediately plated in the lead frame manufacturing process;
(b) The material must have excellent rust resistance for this purpose; (b) It must have excellent solderability even after being processed into the specified shape; (c) Simple pretreatment (surface cleaning and activation treatment)
(d) Excellent corrosion resistance after Cu plating.
In particular, it has excellent corrosion resistance even when the thickness of Cu plating is reduced; (e) The adhesion of Cu plating is excellent, especially after heating during thermal bonding with Au wire; (f) It is required to be able to improve thermal conductivity and electrical conductivity after manufacturing lead frames. In response to these demands, the present inventors investigated various types of steel sheets and found that using cold-rolled steel sheets as they are does not necessarily provide sufficient rust resistance and solderability during storage. . In addition, even after Cu plating treatment, since Cu metal is more noble in potential than steel sheets, Fe from pinholes, plating defects, etc.
Red rust occurs significantly due to preferential corrosion, and corrosion resistance is insufficient. In particular, the corrosion resistance of end faces, cut parts, etc. with poor Cu plating may be markedly poor. In addition, even if Cu plating is thickened to reduce pinholes, plating defects, etc., it is difficult to completely reduce pinholes, etc., and adhesion may deteriorate or blisters may occur during thermal bonding. There's a problem. The present invention solves these problems and provides a lead frame material with excellent performance, particularly excellent corrosion resistance, solderability, and adhesion, that can satisfy the performance requirements described in items (a) to (f) above. This is what we provide. [Means for solving the problem] The gist of the present invention is as follows: In weight%, C: 0.30% or less, Al: 0.005 to 0.10
%, Si; 0.6% or less, Mn; 1.5 or less, Cu; 0.05~
A Cu coating layer having a Cu diffusion layer is applied to the surface of a steel plate containing 1.0% Ni and, if necessary, 0.05 to 3.0% Ni with the remainder being Fe and unavoidable impurities. This is a surface-treated steel sheet for lead frames with excellent corrosion resistance, solderability, and adhesion, with a Cu diffusion layer and a Cu coating layer having a thickness of 0.1 to 3μ and a thickness of 0.5 to 15μ. [Operation] The present invention will be explained in detail below. Molten steel produced in a melting furnace such as a converter or electric furnace is subjected to a continuous casting method, ingot making, or blooming method, and then hot rolled, cold rolled, and annealed as a slab; C;
Produces plated base plates containing small amounts of components such as Al and Si at 0.3% or less. C is economically advantageous as an element for improving mechanical strength, and from this point of view, the higher the C content, the more effective it is, but as the content increases, coating layer defects such as pinholes in the Cu coating layer increase. Deteriorates corrosion resistance. In other words, when a large amount of cementite is precipitated in the steel, even when a diffusion layer is formed after a coating treatment such as copper plating, the effect of eliminating plating defects due to the uniform formation of a diffusion layer is reduced. There is a corrosion-resistant product that deteriorates. Therefore, the C content in the plated original plate is 0.30% or less, preferably 0.15% from the viewpoint of corrosion resistance.
% or less. Further, impurity components inevitably contained in the plated original plate are not particularly defined, but the following ranges are preferable for the main components listed below. Al is the amount of acid-soluble Al (Sol Al) remaining in the steel.
If the content is less than 0.005%, it is difficult to prevent the formation of bubbles due to oxygen gas, which significantly increases the incidence of surface defects in steel and becomes the starting point for deterioration of the corrosion resistance and mechanical properties of the steel material itself. Not desirable. Also, excess acid-soluble Al exceeding 0.10%
This is not preferable because it causes Al-based oxides to be scattered on the steel surface, which becomes a starting point for deterioration of corrosion resistance, and also because it inhibits the uniform coating properties of Cu coating layer treatment. Therefore, Sol Al contained in steel is
The amount that can stably ensure the performance of the surface-treated steel sheet targeted by the present invention is 0.005 to 0.10%, preferably 0.01 to 0.08%. Si is preferably 0.6% or less. Although Si is effective in increasing mechanical strength, when the Si content increases excessively, Si-based oxides are scattered on the steel surface, which inhibits uniform coating in the Cu coating process of the present invention. Therefore, it is not preferable in terms of corrosion resistance.
Therefore, it is 0.6% or less, preferably 0.3% or less. Although Mn does not have a negative effect on corrosion resistance, an increase in Mn content increases mechanical strength and deteriorates rolling workability, so it is preferably 1.5% or less. In addition, P and S should preferably be contained in an amount of 0.02% or less within the range contained in normal steelmaking methods. In addition, in the heating process of the plated original plate, 0.5% or less of Cr may be added for the purpose of preventing graphite-like C from precipitating on the surface and inhibiting the uniform coverage of the coating layer. . Furthermore, in the present invention, Cu: 0.05 to 1.0% is added alone, or Cu and Ni: 0.05 to 3.0% are added in combination.
The addition of Cu has the effect of improving the corrosion resistance of the steel sheet itself, cathodicizing the potential of the steel sheet and bringing the potential difference with the Cu diffusion layer closer, and improving the rust resistance of defective parts of the coating layer or exposed Fe parts on the end face. The effect of preventing deterioration can be obtained. Furthermore, the end face of the steel plate and
In the Fe exposed area, Cu in the steel precipitates and concentrates on the steel plate surface, and together with the potential proximity effect with the Cu coating layer,
Improves corrosion resistance. Such an effect can be obtained when the amount of Cu added is 0.05% or more, preferably 0.10% or more. In addition, if the amount of Cu added exceeds 1%, cracks due to red hot embrittlement or scale defects may occur due to Cu concentrating on the steel sheet surface during the hot rolling process of the original sheet manufacturing process, so it should be kept below 1%, preferably below 0.5%. regulate. Furthermore, in the present invention, the combined addition of Ni and Cu is
Red brittleness caused by Cu addition is prevented and the corrosion resistance of steel sheets is improved. Such an effect of Ni addition cannot be obtained at less than 0.05%, and reaches saturation when it exceeds 3%. Therefore, the amount of Ni added is 0.05 to 3.0%, preferably 0.1 to 3.0%.
It is 0.5%. Next, for the plated original plate of the above steel composition,
It is necessary to provide a Cu coating layer having a Cu diffusion layer with a predetermined thickness. The method of providing this Cu-based coating layer is as follows:
Although not particularly specified, the coating layer may be provided by the following method. The surface of cold-rolled material (As Cold material) or cold-rolled steel plate (Full Finished material) is degreased, surface cleaned by pickling, and activated, followed by Cu plating treatment. As an example of this Cu plating process, the plating process is performed under the following conditions. Plating bath composition K 4 P 2 O 7 Cu 2 P 2 O 7・3H 2 O NH 4 OH PH256g/ 64g/ 2.2g/ 8.5 Current density 10A/dm 2Plating bath temperature 55℃ After Cu plating coating treatment, In the present invention, N 2
A heating diffusion treatment is performed in a non-oxidizing atmosphere such as an atmosphere, a reducing atmosphere such as a MiX gas atmosphere consisting of 5% H2 - N2 , an AX gas atmosphere consisting of 75% H2 - N2 , or a vacuum atmosphere, A Cu diffusion layer is provided on the steel surface. This diffusion treatment condition corresponds to the thickness of each of the Cu diffusion layer and Cu coating layer and the mechanical properties of the material, which are the objectives of the product of the present invention, and the Cu plating coating layer applied prior to the heating diffusion treatment. The thickness, heating temperature, and heating time are set. For example, in the continuous annealing method,
30-180 seconds at 600-850℃, 450-180 seconds with box annealing method
Heat treatment is performed at 650°C for several to 30 hours.
By this heating diffusion treatment, a Cu diffusion layer is formed.
Providing a Cu coating layer with a predetermined thickness is extremely important in order to obtain a product with excellent performance as a lead frame material. That is, the following advantages can be obtained compared to the case where only the Cu plating coating treatment is applied to the plated original plate used in the present invention. In other words, if only A Cu plating coating layer is used, plating defects such as pinholes are likely to occur, rusting from pinholes etc. is likely to occur, and corrosion resistance is deteriorated.
Red rust occurs from exposed Fe parts such as punched edges. On the other hand, as shown in FIG. 1, in the present invention, an alloy diffusion layer consisting of Cu and Fe is generated at the interface of the plating original plate and the Cu plating layer due to mutual diffusion between the plated original plate and the Cu plating layer. Reduces plating defects such as holes and improves corrosion resistance of flat parts. Furthermore, Cu is also applied to the punched end face.
Due to the formation of a diffusion layer, the exposed area of Fe is reduced, and the potential difference between the Fe and Cu plating layer is alleviated by the presence of the Cu-Fe alloy diffusion layer as an intermediate layer, resulting in red rust due to preferential corrosion of Fe. is significantly suppressed. Figures 1a and b are cross-sectional concentration analysis (glow discharge emission spectrometry) results and cross-sectional schematic diagrams of Cu plating (0.5μ thickness), and Figures 1c and d are similar to that of a Cu coating layer with a Cu diffusion layer. These are the analysis results (equivalent to 0.1μ with sputtering time of 1.6 seconds) and a schematic cross-sectional view. FIG. 2 shows an example of the corrosion resistance evaluation results of the flat part and the punched end face part by an accelerated test. Figure 2 is
This figure shows an example of the corrosion resistance of a Cu-based coating material with a Cu-diffusion layer for storage. A 3-cycle test was conducted, with 1 cycle being ``30 minutes of freezing → 60 minutes of humidity bath → 24 hours of leaving indoors''. It is a thing,
The end plate thickness of the test material was 0.25 mm. B The present invention has fewer plating defects at the interface between the Cu plating layer and the plating original plate, and an alloy diffusion layer that alleviates the potential difference between the Cu plating layer and the Cu plating layer is generated. Even when applied to the case where a scorching treatment is performed, the corrosion resistance of the flat portion and the end surface portion is improved, as shown in FIG. Figure 3 shows an example of corrosion resistance (SST 24 hours) by salt spray test when Cu plating treatment is applied in the lead frame manufacturing process. Evaluation material A is a Cu-based coating material with a Cu diffusion layer (thickness 1.2μ)
Evaluation material B is a covering material having a similar thickness of 2.2μ. After stamping this, each 2.8μ
It has Cu plating. On the other hand, comparative materials A and B were stamped from the same plated original plate.
It has Cu plating of 4μ and 5μ. Therefore,
This also provides the advantage of reducing the Cu plating thickness during the lead frame manufacturing process. C. For the soldering work that is essential during lead frame manufacturing, especially for the solderability after punching of the end face and storage over time, the exposed Fe part is reduced due to the formation of an alloy diffusion layer, and the effect is As shown in Fig. 4, the improvement is excellent. Figure 4a shows a Cu-based coating material with a Cu diffusion layer.
This is a diagram comparing the solder wettability of Cu-plated materials.
Figure 4b shows the method for measuring solder wetting stress.
After applying rosin alcohol as a flux to the test piece, it was immersed in a solder bath of Sn:Pb=6:4,
Solderability was evaluated by measuring wetting stress using a solder checker tester using the method shown in the figure. D Cu-plated materials generally do not necessarily have good adhesion to steel plates, and this tendency is particularly pronounced as the thickness of the Cu-plated layer increases. However, as in the present invention, since a Fe-Cu alloy diffusion layer with strong adhesion is generated at the interface between the plating original plate and the Cu plating layer, the adhesion of the Cu plating coating layer is extremely excellent. . At the same time, since the plating layer itself has good adhesion, the heat-resistant adhesion during thermal bonding is also extremely excellent. E Since there are few plating defects such as pinholes, the steel plate of the present invention has excellent thermal conductivity and electrical conductivity on the surface of the material, which are required for other materials for lead frames. The following effects can be mentioned. Therefore, in order to obtain the effects of the present invention, Cu and
The thickness of the Cu coating layer with the Fe diffusion alloy layer is important. In order to obtain this effect, the thickness of the coating layer in the present invention is such that the thickness of the Cu diffusion layer is 0.1 to 3μ and the thickness of the Cu diffusion layer is 0.1 to 3μ.
The thickness of the Cu coating layer is 0.5 to 15μ. In other words, if the thickness of the Cu diffusion layer is less than 0.1μ,
Even if the thickness of the upper layer is as described above, the desired effect of the present invention cannot be obtained, and in particular, the effect of covering the exposed portion of the Fe surface by the diffusion layer at the punched end face is small, and the corrosion resistance of the end face is , performance improvement effects such as solderability cannot be obtained. In addition, even if the thickness of the diffusion layer is within the above range, if the total thickness with the upper Cu coating layer is less than 0.5μ (maximum thickness of the upper Cu coating layer itself is less than 0.4μ), the end surface Although the effect of improving the performance of the flat part is obtained, the uniformity of the Cu coating layer on the flat part is poor, and corrosion resistance deteriorates due to rusting from the Fe-containing diffusion alloy layer. On the other hand, when the thickness of the diffusion alloy layer exceeds 3μ,
Due to the hardness of this alloy layer, it is damaged during processing, causing cracks and deterioration in corrosion resistance. Furthermore, if the total Cu coating layer of the upper layer and the diffusion layer exceeds 15μ within the composition range of the alloy layer mentioned above, this effect will be saturated and the interface between the Cu coating layer and the plating original plate will be affected by the formation of the diffusion alloy layer. Although the adhesion is good, the adhesion of the Cu coating layer itself, which is the upper layer of the diffusion alloy layer, deteriorates and is partially peeled off during processing. Therefore, in the present invention, Cu having a Cu diffusion layer
The thickness of the coating layer is such that the thickness of the Cu diffusion layer is 0.1 to 3μ, preferably 0.5 to 2μ, and the thickness of the Cu diffusion layer and the Cu coating layer is 0.1 to 3μ, preferably 0.5 to 2μ.
It is 0.5-15μ, preferably 1.5-7.5μ. Therefore, a method for obtaining a Cu-based coated steel sheet with this coating structure is, for example, by performing a heating diffusion treatment after Cu plating on the surface of the steel sheet, so that a part of the Cu plating layer is diffused.
Set the thickness, heating temperature, and heating time of the Cu plating layer so that the remaining part remains as the Cu plating layer.
The method of providing a two-layer coating layer of the present invention consisting of a diffusion layer and a Cu coating layer is adopted. In addition, after the entire Cu plating layer applied before the heating diffusion treatment is interdiffused with the plating original plate to generate a diffusion layer, a Cu plating coating layer is applied as a surface layer of the diffusion layer by electroplating. may be provided to constitute the coating of the present invention. However, the manufacturing method is simplified and the diffusion layer
From the viewpoint of the adhesion of the Cu coating layer itself, it is preferable to provide the diffusion layer and the Cu coating layer all at once in the heat diffusion treatment step. Furthermore, rather than using cold-rolled steel sheets, the plating base plates used are as-cold-rolled (As Cold materials), and are annealed and diffused at the same time to ensure the required mechanical properties. This is desirable because diffusion is promoted by the effect of processing strain on the cold-rolled material and the process is simplified. Of course, a cold-rolled steel sheet may be used to perform Cu plating and diffusion treatment, and then rolling or skin pass may be performed to adjust the mechanical properties. In particular, when considering the stamping workability into the shape of a lead frame, high-strength materials with low ductility are superior, and lead frame products are required to have strength and bending workability. As a result of various studies from these points of view, the strength was 45
~85Kg/ mm2 , elongation 3~90%, preferably 55~80
It was found that mechanical properties of Kg/mm 2 and elongation of 5 to 15% are good. Regarding the steel component materials used in the present invention,
Using the above-mentioned As Cold material, it is preferable to perform a heating diffusion treatment at a temperature lower than the recrystallization temperature, in which the Cu plating layer can be diffused and softening due to recrystallization is difficult to occur, that is, in the temperature range of 450 to 550°C. In addition, in the present invention, the method for obtaining the coating layer has been mainly explained using electric Cu plating and diffusion treatment. A method may also be adopted in which an aqueous solution of a surfactant is applied, dried, and then heated and diffused. However, from the viewpoint of uniform coverage of the Cu coating layer and method for adjusting the thickness, the method using electroplating is industrially preferable. In addition, as a material for the steel plate and lead frame in the method of the present invention, the surface of the Cu-based coating layer may be cleaned and activated by pretreatment in the lead frame manufacturing process, and then Cu plating is further performed. Often, the Cu plating process is omitted and soldering is done.
It may be used as a lead frame product by only performing work such as Ag plating. As described above, the steel plate of the present invention has extremely excellent performance characteristics as a material for lead frames. (Example) Using cold-rolled As Cold material or cold-rolled and annealed full-finish finish material, using plating base plates with steel components shown in Table 1, surface cleaning by degreasing, pickling, After the activation treatment, the Cu-based coating layer according to the present invention shown in Table 1 was provided. In addition, the treated material of the present invention is an As Cold material that has been subjected to heat diffusion treatment below the recrystallization temperature.
The heat-diffusion treated materials were cold-rolled at a reduction rate of 20 to 40% below the recrystallization temperature using full-finish materials, and evaluation materials with a thickness of 0.754 mm were obtained for each material. The results of various performance evaluations for these evaluation materials are summarized in the second
Shown in the table. As a result, the product of the present invention (Example) exhibits extremely superior performance as a lead frame material, such as stable solderability, compared to comparative materials. Evaluation test method Evaluation of adhesion of coating layer The Cu-based coating layer of the present invention was evaluated using the following method and evaluation criteria. Adhesion evaluation method and evaluation criteria A Cu-based coated steel plate was repeatedly bent at 90 degrees, and the following evaluation criteria were used to evaluate the occurrence of peeling or cracking in the coating layer and the number of repetitions. ◎...No peeling or cracking of the coating layer occurs when the number of repetitions is 10 or more ○...Peeling or cracking of the coating layer occurs when the number of repetitions is 6 or more to 9 times △...Peeling of the coating layer when the number of repetitions is 3 or more to 5 times Or cracks occur ×…Peeling of the coating layer or cracks occur after repeating less than 2 times Adhesion evaluation method and evaluation criteria For the purpose of evaluating the adhesion of a Cu-based coating layer during thermal bonding of Au wire, etc. Heat to 2
The film was held for 1 minute and then rapidly cooled, and the adhesion was evaluated based on the number of repetitions and the peeling of the coating layer or the occurrence of pristals using the following evaluation criteria. ◎...No defects such as peeling of the coating layer or generation of blisters occur when the number of repetitions is 5 or more. ○...No defects such as peeling of the coating layer or generation of blisters occur when the number of repetitions is 2 or more to 4.△...Heating Blisters occur in the coating layer after one heating. ×… Peeling occurs in the coating layer after one heating. Corrosion resistance evaluation for rust resistance during storage. When punching the evaluation material into a predetermined lead frame shape, the lead frame manufacturing process The rust resistance performance during storage until surface treatment was applied was evaluated using the following accelerated test method and evaluation criteria for flat parts and punched end faces. Corrosion resistance evaluation for rust resistance of lead frame products After punching the evaluation material of the present invention into a lead frame shape, pre-treatments such as degreasing and pickling are performed in the surface treatment process, and a 3μ thick Cu plating is applied. By applying and salt spray test (JIS-C-5028),
The corrosion resistance was evaluated on the flat surface portion and the end surface portion using the following evaluation criteria. Corrosion resistance of flat parts ◎...No red rust occurrence after 24 hours of salt spray test ○...Red rust occurrence rate less than 3% after 24 hours of salt water spray test △...Red rust occurrence rate after 24 hours of salt water spray test 3% or more to less than 5% ×... Red rust occurrence rate after 24 hours of salt spray test 5% or more Corrosion resistance of end face ◎... Red rust occurrence rate after 24 hours of salt water spray test less than 10% ○... Red rust occurrence rate after 24 hours of salt water spray test 10 % or more and less than 15% △...Incidence of red rust after 24 hours of salt spray test 15% or more and less than 20% ×...Incidence of red rust after 24 hours of salt spray test 20% or more Evaluation of Solderability About the solderability of the evaluation materials Assuming that soldering is performed after punching and before Cu plating in the lead frame manufacturing process, we evaluated the solderability, especially the solderability of the punched end face. Wetting stress and wetting time when rosin alcohol flux is applied to the evaluation material sheared into a 50 mm wedge shape and immersed vertically in a Pb-60%Sn solder bath with the 10 mm sheared surface facing downward. The solderability was evaluated using the following evaluation criteria. The above evaluation test for solderability was performed immediately after punching and after being stored indoors for 3 months. ◎...Solder wettability and wetting speed are both extremely good when wetting stress is 450mg or more and wetting time is less than 6 seconds ○...Both solder wettability and wetting speed are good when wetting stress is 350mg or more and less than 400mg and wetting time is less than 7 seconds Good quality △... Either the solder wettability or the wetting speed is slightly inferior when the wetting stress is 250 mg or more and less than 350 mg or the wetting time is 7 seconds or more and less than 8 seconds. ×: If the wetting stress is less than 250 mg or the wetting time is 8 seconds or more, either the solder wettability or the wetting speed is extremely poor. Evaluation of electrical conductivity The electrical conductivity of the surface of the evaluation material was measured by the potential difference method, and evaluated using the following evaluation criteria. Note that the measurements were performed at room temperature (30°C). ◎…Electrical conductivity 7×10 6 (Ωm) -1 or more ○…Electrical conductivity 6×10 6 (Ωm) -1 or more ~ 7×10 6
(Ωm) Less than -1 △…Electrical conductivity 5×10 6 (Ωm) -1 or more ~ 6×10 6
(Ωm) Less than -1 ×…Electrical conductivity 5×10 6 (Ωm) Less than -1 Evaluation of thermal conductivity The thermal conductivity of the surface of the evaluation material was measured by the optical alternating current method and evaluated using the following evaluation criteria. . The measurements were conducted at room temperature (30℃). ◎…Thermal conductivity is 0.15 (cal/sec・cm・℃) or more ○…Thermal conductivity is 0.10 (cal/sec・cm・℃) or more and less than 0.15 (cal/sec・cm・℃) △…Thermal conductivity Thermal conductivity is less than 0.05 (cal/sec・cm・℃) or more and less than 0.10 (cal/sec・cm・℃) ×…Thermal conductivity is less than 0.05 (cal/sec・cm・℃) Performance of lead frame products over time Evaluation After processing the evaluation material of the present invention into a lead frame shape, Cu plating and soldering were performed in the surface treatment process using a pressure maker at a pressure of 2 Kg/cm 2 and a temperature of 120°C. These products were encapsulated in boiling hot water and subjected to a 500-hour aging test, and their external appearance was evaluated based on the following evaluation criteria. still,
Cu plating was carried out at 2μ. ◎...Excellent condition with no change in surface appearance △...Slight rust on the end face ×...Significant rust on the flat and end faces Punching formability (stamping property) The following evaluations were made of the stamping formability into the shape of the lead frame. The moldability was evaluated based on the criteria. ◎...There is almost no occurrence of burrs on the punched end face or cracks in the material, and the punching formability is extremely good. ○...The punching formability of the evaluation material was as good as above, but some wear and tear occurred due to the continuous operation of the punch and die of the molding machine. △: Slight burrs occur on the punched end face, or the ability to remove the molded material from the device is poor, so some troubles tend to occur during punching. ×...A considerable amount of cracking occurs in the evaluation material due to punching and forming, or wear and tear on punches, dies, etc. is significant due to long-term continuous operation.

【表】【table】

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第1図a,bはCuめつき層の断面濃度分析
(グロー放電発行分析)結果及び断面模式図であ
り、第1図c,dはCuめつき層の断面濃度分析
(グロー放電発光分析)結果及び断面模式図、第
2図はCu拡散層を有するCu系被覆材の貯蔵保管
を対象とした耐食性の1例を示す図、第3図はリ
ードフレーム製造工程でCuめつき処理を施した
場合の塩水噴霧試験24時間後による耐食性の1例
(SST24時間)を示す図、第4図aはCu拡散層を
有するCu系被覆材とCuめつき材の半田濡れ性を
示す図、同bはaにおける濡れ応力測定方法の説
明図である。 1:鋼板、2:Cuめつき層、3:鋼板、4:
Cu被覆層。
Figures 1a and b are the results of cross-sectional concentration analysis (glow discharge emission analysis) and a schematic cross-sectional view of the Cu-plated layer, and Figures 1c and d are the cross-sectional concentration analysis (glow discharge emission analysis) of the Cu-plated layer. Results and cross-sectional schematic diagrams. Figure 2 shows an example of the corrosion resistance of a Cu-based coating material with a Cu diffusion layer for storage. Figure 3 shows the results obtained by applying Cu plating treatment during the lead frame manufacturing process. Figure 4a shows an example of corrosion resistance after 24 hours of salt spray test (24 hours SST), Figure 4a shows the solder wettability of Cu-based coating material with Cu diffusion layer and Cu plating material, Figure 4b FIG. 3 is an explanatory diagram of the wetting stress measurement method in FIG. 1: Steel plate, 2: Cu plating layer, 3: Steel plate, 4:
Cu coating layer.

Claims (1)

【特許請求の範囲】 1 重量%で、C;0.30%以下、Al;0.005〜0.10
%、Si;0.6%以下、Mn;1.5以下、Cu;0.05〜
1.0%を含有して残部がFeおよび不可避的不純物
からなる鋼板の表面にCu拡散層を有するCu被覆
層を施して、Cu拡散層の厚みが0.1〜3μでかつCu
拡散層とCu被覆層の厚みが0.5〜15μで構成され
ていることを特徴とする耐食性、はんだ性、密着
性にすぐれたリードフレーム用表面処理鋼板。 2 重量%で、C;0.30%以下、Al;0.005〜0.10
%、Si;0.6%以下、Mn;1.5以下、Cu;0.05〜
1.0%、さらにNi:0.05〜3.0%含有して残部がFe
および不可避的不純物からなる鋼板の表面にCu
拡散層を有するCu被覆層を施して、Cu拡散層の
厚みが0.1〜3μでかつCu拡散層とCu被覆層の厚み
が0.5〜15μで構成されていることを特徴とする耐
食性、はんだ性、密着性にすぐれたリードフレー
ム用表面処理鋼板。
[Claims] 1% by weight, C: 0.30% or less, Al: 0.005 to 0.10
%, Si; 0.6% or less, Mn; 1.5 or less, Cu; 0.05~
A Cu coating layer having a Cu diffusion layer is applied to the surface of a steel plate containing 1.0% Fe and unavoidable impurities, and the thickness of the Cu diffusion layer is 0.1 to 3μ and
A surface-treated steel sheet for lead frames with excellent corrosion resistance, solderability, and adhesion, characterized by a diffusion layer and a Cu coating layer having a thickness of 0.5 to 15μ. 2 In weight%, C: 0.30% or less, Al: 0.005 to 0.10
%, Si; 0.6% or less, Mn; 1.5 or less, Cu; 0.05~
1.0%, further contains Ni: 0.05 to 3.0%, and the balance is Fe.
Cu on the surface of the steel plate, which consists of
Corrosion resistance and solderability characterized by applying a Cu coating layer having a diffusion layer, the thickness of the Cu diffusion layer being 0.1 to 3μ, and the thickness of the Cu diffusion layer and the Cu coating layer being 0.5 to 15μ, Surface-treated steel plate for lead frames with excellent adhesion.
JP25141886A 1986-10-22 1986-10-22 Surface-treated steel sheet for lead frame excellent in corrosion resistance, solderability, and adhesive strength Granted JPS63105959A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25141886A JPS63105959A (en) 1986-10-22 1986-10-22 Surface-treated steel sheet for lead frame excellent in corrosion resistance, solderability, and adhesive strength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25141886A JPS63105959A (en) 1986-10-22 1986-10-22 Surface-treated steel sheet for lead frame excellent in corrosion resistance, solderability, and adhesive strength

Publications (2)

Publication Number Publication Date
JPS63105959A JPS63105959A (en) 1988-05-11
JPH0515785B2 true JPH0515785B2 (en) 1993-03-02

Family

ID=17222551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25141886A Granted JPS63105959A (en) 1986-10-22 1986-10-22 Surface-treated steel sheet for lead frame excellent in corrosion resistance, solderability, and adhesive strength

Country Status (1)

Country Link
JP (1) JPS63105959A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5126644A (en) * 1974-08-29 1976-03-05 Nippon Electric Co METSUKIHOHO
JPS5548585A (en) * 1978-09-15 1980-04-07 Cooper Ind Inc Torque response prime mover intercepting mechanism for fluid functioning tool
JPS58141547A (en) * 1982-02-18 1983-08-22 Daido Steel Co Ltd Material for lead frame

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5126644A (en) * 1974-08-29 1976-03-05 Nippon Electric Co METSUKIHOHO
JPS5548585A (en) * 1978-09-15 1980-04-07 Cooper Ind Inc Torque response prime mover intercepting mechanism for fluid functioning tool
JPS58141547A (en) * 1982-02-18 1983-08-22 Daido Steel Co Ltd Material for lead frame

Also Published As

Publication number Publication date
JPS63105959A (en) 1988-05-11

Similar Documents

Publication Publication Date Title
JP4724780B2 (en) Aluminum-plated steel sheet for rapid heating hot press, manufacturing method thereof, and rapid heating hot pressing method using the same
JP4457667B2 (en) Surface-treated steel sheet
JP2007277652A (en) Manufacturing method of galvannealed sheet steel having good workability, powdering resistance and sliding property
JP6687177B1 (en) Method for producing Al-based plated stainless steel sheet and ferritic stainless steel sheet
JP2007039735A (en) Method for producing copper alloy sheet with deformed cross section
TWI628407B (en) Copper alloy plate and coil for heat dissipation parts
JP7241283B2 (en) Aluminum-iron plated steel sheet for hot press with excellent corrosion resistance and weldability and its manufacturing method
JP2707928B2 (en) Hot-dip galvanizing method for silicon-containing steel sheet
JP4051012B2 (en) Ni-plated steel sheet for battery cans
JP3931859B2 (en) Galvanized steel for hot forming and hot forming method
JPH0515785B2 (en)
JPH0430466B2 (en)
JPH03243789A (en) Cu-coated cr-containing steel sheet excellent in corrosion resistance, solderability and adhesion
JP3383125B2 (en) Hot-dip aluminized steel sheet with excellent corrosion resistance and heat resistance, and its manufacturing method
JPS63109189A (en) Surface treated steel sheet for lead frame having superior corrosion resistance, solderability and adhesion
JPH01177315A (en) Manufacture of steel sheet for lead frame excellent in rust resistance, formability, and platability
JPH0459389B2 (en)
JP5446499B2 (en) Steel sheet with excellent delayed fracture resistance and method for producing the same
JP4131577B2 (en) Manufacturing method of plated steel sheet
JPS63111166A (en) Cu coated steel sheet having superior corrosion resistance, solderability and adhesion
JPH01165758A (en) Production of surface-treated steel sheet for lead frame having excellent corrosion resistance, platability and solderability
JPS63105992A (en) Surface treated steel sheet for lead frame having superior corrosion resistance, solderability and adhesion
JPH0288797A (en) Surface-treated steel sheet for high-performance, lead frame having excellent corrosion resistance, solderability, and platability
JPH0456117B2 (en)
JPH01165757A (en) Production of surface-treated steel sheet for lead frame having excellent corrosion resistance, platability and solderability