JPH02103935A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH02103935A
JPH02103935A JP25768288A JP25768288A JPH02103935A JP H02103935 A JPH02103935 A JP H02103935A JP 25768288 A JP25768288 A JP 25768288A JP 25768288 A JP25768288 A JP 25768288A JP H02103935 A JPH02103935 A JP H02103935A
Authority
JP
Japan
Prior art keywords
film
layer
insulating film
inorganic insulating
sio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25768288A
Other languages
Japanese (ja)
Other versions
JPH0691082B2 (en
Inventor
Koichi Mase
間瀬 康一
Masayasu Abe
正泰 安部
Toshihiko Katsura
桂 敏彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63257682A priority Critical patent/JPH0691082B2/en
Publication of JPH02103935A publication Critical patent/JPH02103935A/en
Publication of JPH0691082B2 publication Critical patent/JPH0691082B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To form an inorganic insulating film which is stable and high in reliability by treating it with plasma in gas atmosphere which reacts on the relatively heavy constituent element of an inorganic insulating film being formed on a semiconductor substrate and contains a relatively light constituent element. CONSTITUTION:After accumulating an Al-Si-Cu film on a semiconductor substrate 71 whereon a heat silicon oxide film is formed, wiring 72 at the first layer having a specific pattern is formed. By a plasma CVD method, a P-SiO film 73 is accumulated, and after applying positive photoresist 74, the P-SiO film 73 on the wiring 72 is etched back. After surface cleaning, a P-SiO film 75 is accumulated by plasma CVD conditions, and it is drawn up to ultimate vacuum of a plasma device, and plasma treatments by N2O are done continuously. This way, silicon surplus layer 76 existing at the surface layer of a P-SiO film 75 can be modified into a P-SiO film 76'. Next, wiring 78 at the second layer is formed and two-layer wiring structure is completed.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、半導体装置の製造方法に係り、特に多層配線
の層間絶縁膜に使用される無機絶縁膜層形成技術に関す
るものである。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Field of Application) The present invention relates to a method of manufacturing a semiconductor device, and particularly relates to a technology for forming an inorganic insulating film layer used as an interlayer insulating film of multilayer wiring. It is.

(従来の技術) 第5図を用いて、二層配線におけるプラズマ・シリコン
酸化膜の層間絶縁膜層の形成法の従来例を簡単に示す。
(Prior Art) A conventional example of a method for forming an interlayer insulating film layer of a plasma silicon oxide film in a two-layer wiring will be briefly described with reference to FIG.

第5図(a)に示すように、熱シリコン酸化膜が形成さ
れた半導体基板11に設けられた、所定のパターンを有
する1、0μm厚のAl−3i−Cuから成る第1層目
の配置9!12上に、プラズマCVD法によりプラズマ
・シリコン酸化膜(以下、P−SiO膜と称する)13
を1.5μm堆積し、2.0μm厚のポジ型フォトレジ
スト14を塗布した後、該p−5to膜13と該ポジ型
フォトレジスト14のエツチング速度が同一となるRI
E条件で、該第1層目の配線12上のP−SiO膜13
を0.2umまでエッチ・バックする。
As shown in FIG. 5(a), the arrangement of the first layer made of Al-3i-Cu having a predetermined pattern and having a thickness of 1.0 μm is provided on a semiconductor substrate 11 on which a thermal silicon oxide film is formed. 9!A plasma silicon oxide film (hereinafter referred to as P-SiO film) 13 is formed on 12 by plasma CVD method.
After depositing 1.5 μm of p-5to film 13 and coating a positive photoresist 14 with a thickness of 2.0 μm, an RI is applied so that the etching rate of the p-5to film 13 and the positive photoresist 14 are the same.
Under E condition, the P-SiO film 13 on the first layer wiring 12
Etch back to 0.2um.

表面清浄化後、第5図(b)に示すように1.0μm厚
のP−S i O膜15を再堆積し、平坦な層間絶縁膜
層を形成後、通常のフォトリソグラフィ法とRIE法に
より所定の位置にスルーホール17を形成する。この後
、通常のスパッタ法、フォトリソグラフィ法とRIE法
により、所定のパターンを有する、1.0μm厚の/I
I?−8i −Cuから成る第2層目の配線18を形成
する。
After surface cleaning, as shown in FIG. 5(b), a 1.0 μm thick P-S i O film 15 is redeposited to form a flat interlayer insulating film layer, and then normal photolithography and RIE are performed. A through hole 17 is formed at a predetermined position. After this, a 1.0 μm thick /I film having a predetermined pattern is formed by ordinary sputtering, photolithography and RIE.
I? A second layer wiring 18 made of -8i-Cu is formed.

次に、第5図(e)に示すように、トップ・パシベーシ
ョン膜19として、前述のプラズマCVD法により1.
0μm厚のP−SiO膜を堆積した後、通常のフォトリ
ソグラフィ法とRIE法により、所定のボンディング・
バッド開孔部を形成し、二層配線構造を完成する。
Next, as shown in FIG. 5(e), a top passivation film 19 is formed using the plasma CVD method described above.
After depositing a P-SiO film with a thickness of 0 μm, predetermined bonding and
A pad opening is formed to complete the two-layer wiring structure.

(発明が解決しようとする課題) 一般に、半導体装置の信頼性向上のため、多層配線の層
間絶縁膜やトップ・パシベーション膜として、P−Si
O@などの無機絶縁膜が使用されている。しかし、従来
の無機絶縁膜層形成技術には以下に示す問題点がある。
(Problem to be Solved by the Invention) Generally, in order to improve the reliability of semiconductor devices, P-Si is used as an interlayer insulating film or a top passivation film for multilayer wiring.
An inorganic insulating film such as O@ is used. However, the conventional inorganic insulating layer forming technology has the following problems.

従来例に示したプラズマCVD法(膜形成条件:S i
H4/ N 20−200 / 24008 CCM 
−1,5KW−0,4To r r−300℃)により
形成したP−SiO膜には、膜表面から0.2μm程度
の深さまでシリコン過剰層16が存在することが第6図
に示すオージェflli子分析から分かる。
Plasma CVD method (film formation conditions: Si
H4/N 20-200/24008 CCM
In the P-SiO film formed by the P-SiO film formed by the P-SiO film using the P-SiO film using the P-SiO film formed by the P-SiO film using the P-SiO film produced by the P-SiO film using the P-SiO film using the P-SiO film formed using the P-SiO film using the P-SiO film produced by the P-SiO film using the P-SiO film produced using the P-SiO film using the P-SiO film using the P-SiO film, there exists a silicon excess layer 16 up to a depth of about 0.2 μm from the film surface. This can be seen from the child analysis.

また、第7図に一例を示すが、膜形成条件、形成方法(
ブラズ7CVD、減圧CVD、常圧CVD。
An example is shown in FIG. 7, and the film formation conditions and formation method (
Blaz 7CVD, reduced pressure CVD, normal pressure CVD.

スパッタ法やECRプラズマCVD法)や装置により該
シリコン過剰層16の厚さは異なるが、はとんどの場合
、形成した膜厚の5〜35%の範囲にあることが判明し
ている。さらに、シリコン酸化膜以外のシリコン窒化膜
やシリコン炭化膜などの場合も、同様な範囲の厚さで、
該シリコン過剰層の形成されることも確認した。
Although the thickness of the silicon-excess layer 16 varies depending on the sputtering method, ECR plasma CVD method) and equipment, it has been found that in most cases, the thickness is in the range of 5 to 35% of the formed film thickness. Furthermore, in the case of silicon nitride films and silicon carbide films other than silicon oxide films, the thickness is within the same range.
It was also confirmed that the silicon-excess layer was formed.

該シリコン過剰層16は、膜厚制御のため形成反応を急
停止した際に質量の軽い原子(例:P−5iOの場合は
酸素原子)が膜表面から抜けることで形成されると考え
られ、該シリコン過剰層16における原子間の結合には
不完全あるいは弱い部分が多く存在する。このため、特
に電気特性が極めて不安定となり、従来例において以下
の問題点がある。
The silicon excess layer 16 is thought to be formed when atoms with light mass (e.g., oxygen atoms in the case of P-5iO) escape from the film surface when the formation reaction is abruptly stopped to control the film thickness. There are many incomplete or weak bonds between atoms in the silicon-excess layer 16. For this reason, the electrical characteristics in particular become extremely unstable, and the conventional example has the following problems.

■絶縁膜上の配線間リーク・レベルが極めて高い。例え
ば、第3図に示すように、P−SiO層間絶縁膜上の第
2層目の配線間のリークは、配線間隔1.5umS電界
0.5MV/amで約203p A / caと熱シリ
コン酸化膜上に形成した場合の配線リーク(0,52p
A/am)の約390倍となる。
■The level of leakage between wirings on the insulating film is extremely high. For example, as shown in Figure 3, the leakage between the second layer interconnects on the P-SiO interlayer insulating film is approximately 203 pA/ca at an interconnect spacing of 1.5 umS and an electric field of 0.5 MV/am. Wiring leakage when formed on a film (0,52p
This is approximately 390 times that of A/am).

■第4図に示すようなMIS構造による界面電荷密度N
ssとBT処理による界面電荷密度の変動量ΔNssの
レベルが高い。例えば、従来例のP−SiO膜の場合、
N s s −2,OX 10”am−2と高く、BT
処理(I M V / am −300℃−20分)後
の変動量ΔNssは、ゲート電極陽極(+BT)時でΔ
N s s ”i +1.2 X 10”cm−2の正
イオン可動型と正常な挙動を示すが、ゲート電極(−B
 T)時でΔN s s ’= + 7.581011
010aと正イオン可動形とは異なった挙動を示し、N
ss変動やvthの安定性、信頼性が低下する。尚、第
4図では、n形シリコン基板61上に、ゲート酸化膜6
2、P−8iO膜63、ゲート電極(1,0μmAN)
64が順次積層されている。
■Interfacial charge density N due to MIS structure as shown in Figure 4
The level of variation ΔNss in interfacial charge density due to ss and BT processing is high. For example, in the case of a conventional P-SiO film,
As high as N s s -2, OX 10"am-2, BT
The fluctuation amount ΔNss after the treatment (I M V / am -300°C - 20 minutes) is ΔNss when the gate electrode is anode (+BT).
Although it shows normal behavior as a positive ion movable type with N s s ”i +1.2
T) at time ΔN s s '= + 7.581011
010a and the positive ion mobile type exhibit different behavior, and N
Stability and reliability of ss fluctuation and vth deteriorate. In FIG. 4, a gate oxide film 6 is formed on an n-type silicon substrate 61.
2. P-8iO film 63, gate electrode (1.0 μm AN)
64 are sequentially stacked.

本発明は、上記の事情に鑑みてなされたものでプラズマ
CVD法などの従来法により無機絶縁膜を形成した後、
該無機絶縁膜表面から形成膜厚の5〜35%程度の厚さ
に形成されるシリコン過剰層のように、軽い構成原子が
外部拡散し、重い構成原子が過剰となった表層部を、プ
ラズマ酸化などで外部拡散した軽い構成原子を補充する
ことで、該表層部の膜質を改善し、電気的に安定で信頼
性の高い無機絶縁膜を形成し得る半導体装置の製造方法
を提供することを目的とする。
The present invention was made in view of the above circumstances, and after forming an inorganic insulating film by a conventional method such as plasma CVD method,
The surface layer where light constituent atoms diffuse outward and heavy constituent atoms become excessive, such as an excess silicon layer formed from the surface of the inorganic insulating film to a thickness of about 5 to 35% of the formed film thickness, is treated with plasma. To provide a method for manufacturing a semiconductor device that can improve the film quality of the surface layer by replenishing light constituent atoms diffused to the outside by oxidation, etc., and form an electrically stable and highly reliable inorganic insulating film. purpose.

[発明の構成] (課題を解決するための手段と作用) 本発明は、所定の構造とパターンを有する半導体基板上
に、層間絶縁膜あるいはパシベーション膜として、無機
絶縁膜を形成する場合において、プラズマCVD法など
で無機絶縁膜を形成後、該無機絶縁膜形成反応終了時に
軽い構成原子の少なくとも一部が外部拡散し、重い構成
原子が過剰となった該無機絶縁膜の表層部の膜質改善を
目的に、該重い構成原子と反応し、安定な絶縁膜形成に
必要な、少なくと1種類以上のより軽い原子例えば、酸
素、窒素、炭素などを含む雰囲気によるプラズマ処理を
行なうことを特徴とした無機絶縁膜形成技術であり、該
プラズマ処理で損失した軽い構成原子を補充し、該重い
構成原子の過剰層を改質して、電気的特性などの安定し
た、より信頼性の高い無機絶縁膜の形成を容易に実現で
きる。
[Structure of the Invention] (Means and Effects for Solving the Problems) The present invention provides a method for forming an inorganic insulating film as an interlayer insulating film or a passivation film on a semiconductor substrate having a predetermined structure and pattern. After forming an inorganic insulating film by a CVD method or the like, at least a part of the light constituent atoms diffuse to the outside at the end of the inorganic insulating film forming reaction, and the film quality of the surface layer of the inorganic insulating film is improved, where heavy constituent atoms become excessive. For this purpose, plasma treatment is performed in an atmosphere containing at least one kind of lighter atoms, such as oxygen, nitrogen, and carbon, which reacts with the heavy constituent atoms and is necessary to form a stable insulating film. This is an inorganic insulating film formation technology that replenishes the light constituent atoms lost in the plasma treatment and modifies the excess layer of heavy constituent atoms to create a more reliable inorganic insulating film with stable electrical properties. can be easily realized.

(実施例) 以下図面を参照して本発明の実施例を詳細に説明する。(Example) Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図(a) 、 (b) 、 (c) 、(d)は本
発明の一実施例を示す。即ち、第1図(a)に示すよう
に、熱シリコン酸化膜の形成された半導体基板71上に
、通常のスパッタ法で1..0μm厚のAN−Si−C
u膜を堆積した後、通常のフォトリングラフィ法とRI
E法により所定のパターンを有する第1層目の配線72
を形成した。プラズマCVD法(S I Ha / N
 x O−200/ 2400 S CCM−0,4T
o r r−1,5KW−300℃)により1.5.c
zm厚のP−3iO膜73を堆積し、ポジ系フォトレジ
スト74を2.0μm厚に塗布した後、RIE法(CH
F 3 / C2F 6/ 0□/He=10/35/
20/35SCCM−3,0Torr−550W)によ
りP−SiO膜73と該ポジ系フォトレジスト74を同
一のエツチング速度で、該第1層目の配線72上の該P
−5iO膜73の膜厚が0.2μmになるまでエッチ・
バックした。
FIGS. 1(a), (b), (c), and (d) show an embodiment of the present invention. That is, as shown in FIG. 1(a), 1. .. 0μm thick AN-Si-C
After depositing the u film, conventional photolithography method and RI
First layer wiring 72 having a predetermined pattern by E method
was formed. Plasma CVD method (SI Ha/N
x O-200/ 2400 S CCM-0,4T
1.5. c.
After depositing a P-3iO film 73 with a thickness of zm and coating a positive photoresist 74 with a thickness of 2.0 μm, RIE method (CH
F 3 / C2F 6/ 0□/He=10/35/
The P-SiO film 73 and the positive photoresist 74 are etched at the same etching speed using a 20/35 SCCM-3,0 Torr-550W).
-5iO film 73 is etched until the film thickness becomes 0.2 μm.
Backed up.

02プラズマ・アッシング法と流水水洗による表面清浄
後、第1図(b)に示すように、■、0μm厚のP−8
iO膜75を前述と同じプラズマCVD条件で堆積し、
プラズマCVD装置の到達真空度まで引き、連続してN
20によるプラズマ処理(N 20 = 2800 S
 CCM −Q 、 4Torr−1,2KW−300
℃)を行なった。
After surface cleaning by plasma ashing method and rinsing with running water, as shown in Figure 1(b), P-8 with a thickness of 0 μm was
An iO film 75 is deposited under the same plasma CVD conditions as described above,
Pull down to the ultimate vacuum level of the plasma CVD equipment and continuously apply N.
Plasma treatment with 20 (N 20 = 2800 S
CCM-Q, 4Torr-1,2KW-300
°C) was performed.

該プラズマ処理により、堆積後に該P−3iO膜75の
表層に堆積膜厚の20%に相当する0、20μm厚で存
在するシリコン過剰層76(第2図に示すようにオージ
ェ電子分析で確認)をおおむねP−3iO膜に改質した
。76′が膜質の改善された部分である。
As a result of the plasma treatment, a silicon excess layer 76 exists on the surface layer of the P-3iO film 75 after deposition with a thickness of 0.20 μm, which corresponds to 20% of the deposited film thickness (confirmed by Auger electron analysis as shown in FIG. 2). was modified into a P-3iO film. 76' is a portion with improved film quality.

次に第1図(C)に示すように、通常のフォトリソグラ
フィ法とRIE法により所定の位置にスルーホール77
を形成した後、通常のスパッタ法、フォトリソグラフィ
法とRIE法により所定のパターンを有する1、0μm
厚のAl1−3L−Cuから成る第2層目の配線78を
形成した。
Next, as shown in FIG. 1(C), a through hole 77 is formed at a predetermined position by normal photolithography and RIE.
After forming, a 1.0 μm film with a predetermined pattern is formed using the usual sputtering method, photolithography method, and RIE method.
A second layer wiring 78 made of thick Al1-3L-Cu was formed.

次に、第1図(d)に示すように、トップ・パシベーシ
ョン膜79として、前述のプラズマCVD条件による1
、Oμrn厚のP−8iO@を堆積し、該プラズマ処理
を行なった後、通常のフォトリソグラフィ法とRIE法
により所定のボンディング・バッド開孔部を形成し本発
明による二層配線構造を完成した。
Next, as shown in FIG. 1(d), a top passivation film 79 is formed under the plasma CVD conditions described above.
, Oμrn thick P-8iO@ was deposited, and after the plasma treatment, predetermined bonding pad openings were formed by normal photolithography and RIE to complete the two-layer wiring structure according to the present invention. .

尚、上記実施例では、多層配線の層間絶縁膜を例として
いるが、パシベーション膜など半導体基板上に形成され
る無機絶縁膜であれば、どの段階で適応しても良い。
In the above embodiments, an interlayer insulating film of multilayer wiring is used as an example, but any inorganic insulating film formed on a semiconductor substrate, such as a passivation film, may be applied at any stage.

又、上記実施例では、無機絶縁膜としてプラズマCVD
法によるP−3iO膜を用いたが、形成法はプラズマC
VD法以外の減圧CVD法、常圧CVD法やECRプラ
ズマCVD法などの化学気相成長法あるいはスパッタ法
などの物理成長であれば良く、形成される膜種類もシリ
コン酸化膜、シリコン窒化膜、シリコン炭火膜などのシ
リコン化合物による無機絶縁膜あるいはシリコン化合物
以外で半導体装置に適応できる無機絶縁膜であれば良い
ことは云うまでもない。
In addition, in the above embodiment, plasma CVD is used as the inorganic insulating film.
The P-3iO film was formed using a plasma C method.
Any physical growth method such as low pressure CVD method other than VD method, chemical vapor deposition method such as atmospheric pressure CVD method or ECR plasma CVD method, or sputtering method is sufficient, and the types of films formed include silicon oxide film, silicon nitride film, It goes without saying that any inorganic insulating film made of a silicon compound, such as a silicon charcoal film, or an inorganic insulating film made of a material other than silicon compounds that can be applied to semiconductor devices may be used.

更に、上記実施例で用いたP−3iO膜のようなシリコ
ン化合物では、膜表層部にシリコン過剰層が形成される
が、シリコン化合物以外でも、前述のように軽い構成原
子の外部拡散により重い構成原子の過剰層が形成される
ことは云うまでもない。
Furthermore, in the case of a silicon compound such as the P-3iO film used in the above example, an excess silicon layer is formed on the surface layer of the film, but in other materials as well, a heavy structure is formed due to the external diffusion of light constituent atoms as described above. Needless to say, an excess layer of atoms is formed.

又、本実施例では、P−SiO膜表層表層成されたシリ
コン過剰層の改質のため、N20プラズマ処理を行ない
、該シリコン過剰層を概ね正常なP−SiO膜としてい
るが、軽い構成原子の外部拡散による重い構成原子の過
剰層を安定な絶縁膜に改善することを目的としたプラズ
マ処理には、該重い構成原子と反応し、安定な絶縁膜を
形成する外部拡散した相対的に軽い元素と同種または異
種の少なくとも1種類以上のより軽い原子を含むガス雰
囲気であれば良く、重い構成原子の過剰層が改質された
膜質が安定な絶縁膜であれば、該重い原子の過剰層下に
形成された膜質と同等もしくは異なっても良い。つまり
、P−3iO膜を例にとれば、表層のシリコン過剰層の
膜質改占のため、N20以外の02 、N2 、No、
NO2、Co。
In addition, in this example, in order to modify the silicon-excess layer formed on the surface of the P-SiO film, N20 plasma treatment is performed to make the silicon-excess layer almost a normal P-SiO film, but the light constituent atoms Plasma treatment aims to improve the excess layer of heavy constituent atoms due to external diffusion into a stable insulating film. Any gas atmosphere containing at least one type of lighter atom of the same or different type as the element is sufficient, and if the excess layer of heavy constituent atoms is a modified insulating film with stable film quality, the excess layer of heavy atoms may be removed. The quality of the film formed below may be the same or different. In other words, taking a P-3iO film as an example, due to the film quality reform of the silicon-excess layer on the surface layer, 02, N2, No.
NO2, Co.

CO□、CH4、C2H8などのSi原子と反応する、
0、NSC原子を供給する少なくとも1種類以上のガス
によるプラズマ処理を行ない、改質された膜質がP−8
iO以外のP  S iN 5P−3iCあるいはこれ
らの安定な中間的絶縁物質であれば良い。
Reacts with Si atoms such as CO□, CH4, C2H8,
0. Perform plasma treatment using at least one type of gas that supplies NSC atoms, and the modified film quality will be P-8.
Any material other than iO, such as P SiN 5P-3iC or a stable intermediate insulating material thereof, may be used.

また、重い原子の過剰層の膜質改善のためのプラズマ処
理の条件は安定に絶縁膜が形成されるものなら良く、無
機絶縁膜の形成と必ずしも連続して行なう必要はない。
Furthermore, the plasma treatment conditions for improving the film quality of the excess layer of heavy atoms may be such that an insulating film can be stably formed, and it is not necessarily necessary to perform the plasma treatment continuously with the formation of an inorganic insulating film.

なお、「重い」、「軽い」と云う意味は原子量の相対的
な差を示す。
Note that the terms "heavy" and "light" refer to relative differences in atomic weight.

[発明の効果] 以上のように本発明は、プラズマCVD法などの化学気
相成長法あるいはスパッタ法などの物理成長法により形
成された無機絶縁膜表層に存在する、軽い構成原子が外
部拡散して重い構成原子が過剰となった不安定層を、該
重い構成原子と反応し、安定な絶縁膜の形成に必要な少
なくとも1種類以上の相対的に軽い原子を含むガス雰囲
気でプラズマ処理を行ない、過剰な重い原子に損失した
軽い原子と同種または異種の少なくとも一方の相対的に
軽い原子を補充し、安定な絶縁膜層にすることを特徴と
し、以下のような効果がある。
[Effects of the Invention] As described above, the present invention has the advantage that light constituent atoms existing in the surface layer of an inorganic insulating film formed by chemical vapor deposition methods such as plasma CVD methods or physical growth methods such as sputtering methods are diffused to the outside. The unstable layer in which heavy constituent atoms become excessive is subjected to plasma treatment in a gas atmosphere containing at least one type of relatively light atom necessary for reacting with the heavy constituent atoms and forming a stable insulating film. This method is characterized by replenishing at least one of the same kind or different kind of relatively light atoms as the light atoms lost to excessive heavy atoms to form a stable insulating film layer, and has the following effects.

■無機絶縁膜表面のリーク・レベルが極めて低い。実施
例におけるP−SiO層間絶縁膜上の第2層目の配線間
リークは、従来と同一測定条件(配線間隔1.5μm、
印加電界0 、 5 M V / ell )で、0.
8〜1.OpA/cmと従来例の約1/203〜1. 
/ 254と極めて低いレベルにある(第3図参照)。
■Leak level on the surface of the inorganic insulating film is extremely low. The leakage between the second layer interconnects on the P-SiO interlayer insulating film in the example was measured under the same measurement conditions as before (interconnect spacing 1.5 μm,
At an applied electric field of 0, 5 MV/ell), 0.
8-1. OpA/cm and about 1/203 to 1.
/254, which is at an extremely low level (see Figure 3).

■第4図に示すMIS構造による界面電荷密度N5s−
1,lXl0口(至)−2と従来例の約1/2であり、
BT処理(I M V / cs −300℃−20分
)後の変動量ΔNssは、ゲート電極陽極(+BT)時
でΔNs s’;+6.5X10”co+−”ゲート電
極陰極(−BT)時でΔNs sm+0.52X10”
am−”(はとんど増加なし)と正常な正イオン可動型
の挙動を示し、Nss。
■Interfacial charge density N5s- due to the MIS structure shown in Figure 4
1, lXl0 mouth (to) -2, which is about 1/2 of the conventional example,
The fluctuation amount ΔNss after BT treatment (I M V / cs -300℃-20 minutes) is ΔNs s' when the gate electrode is anode (+BT); +6.5X10"co+-" when the gate electrode is cathode (-BT) ΔNs sm+0.52X10”
am-” (almost no increase), showing normal positive ion mobile type behavior, and Nss.

八Nssのレベルは共に低く、安定性、信頼性の向上を
示している。
The 8Nss levels were both low, indicating improved stability and reliability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の形成工程を示す断面図、第
2図は本発明によるシリコン過剰層膜質改善効果を示す
オージェ電子分析の結果の一例を示す特性図、第3図は
本発明及び従来による無機絶縁膜上配線間リークa11
定結果の一例を示す特性図、第4図はM!S構造半導体
装置の一例を示す断面図、第5図は従来の無機絶縁膜の
形成工程を示す断面図、第6図は従来のP−SiO膜表
層表層リコン過剰層の存在を示すオージェ電子分析の結
果を示す特性図、第7図は従来のシリコン過剰層のプラ
ズマCVD条件依存性の一例を示す特性図である。 71・・・半導体基板、72・・・第1層目の配線、7
3・・・P−SiOM、74・・・ポジ型フォトレジス
ト、75・・・P−3iO膜、76・・・シリコン過剰
層。 77・・・スルーホール、78・・・第2層目の配線、
79・・・トップ・パシベーション膜。 出願人代理人  弁理士 鈴江武彦 79:)−/アtVシベーシ1刃畷 ′瘤 シ・11 ビ シS艮ざ ωm1 第2 図 第 図 第4図
FIG. 1 is a cross-sectional view showing the formation process of an embodiment of the present invention, FIG. 2 is a characteristic diagram showing an example of the results of Auger electron analysis showing the effect of improving the film quality of an excess silicon layer according to the present invention, and FIG. Leakage between wiring on inorganic insulating film according to invention and conventional technology a11
A characteristic diagram showing an example of the constant results, Figure 4 is M! A cross-sectional view showing an example of an S-structure semiconductor device, FIG. 5 is a cross-sectional view showing a conventional inorganic insulating film formation process, and FIG. 6 is an Auger electron analysis showing the presence of an excess silicon layer on the surface of a conventional P-SiO film. FIG. 7 is a characteristic diagram showing an example of the dependence of a conventional silicon-excess layer on plasma CVD conditions. 71... Semiconductor substrate, 72... First layer wiring, 7
3...P-SiOM, 74...Positive photoresist, 75...P-3iO film, 76...Silicon excess layer. 77... Through hole, 78... Second layer wiring,
79...Top passivation film. Applicant's agent Patent attorney Takehiko Suzue 79:)-/AtV Shibeshi 1 Blade's bulges 11 BishiS 艮zaωm1 Figure 2 Figure 4

Claims (4)

【特許請求の範囲】[Claims] (1)半導体基板上に無機絶縁膜を形成する半導体装置
の製造方法において、半導体基板上に無機絶縁膜を形成
する工程と、この工程により形成された無機絶縁膜の相
対的に重い構成元素と反応し、安定な絶縁膜の形成に必
要な少なくとも1種類以上の相対的に軽い構成元素を含
むガス雰囲気でのプラズマ処理を行う工程とを具備した
ことを特徴とする半導体装置の製造方法。
(1) In a method for manufacturing a semiconductor device in which an inorganic insulating film is formed on a semiconductor substrate, there is a step of forming an inorganic insulating film on a semiconductor substrate, and a relatively heavy constituent element of the inorganic insulating film formed by this step. 1. A method of manufacturing a semiconductor device, comprising the step of performing plasma treatment in a gas atmosphere containing at least one relatively light constituent element necessary for forming a reactive and stable insulating film.
(2)無機絶縁膜を形成する工程とプラズマ処理を行う
工程が、半導体基板を大気に晒すことなく連続的に行な
われることを特徴とする請求項1記載の半導体装置の製
造方法。
(2) The method of manufacturing a semiconductor device according to claim 1, wherein the step of forming an inorganic insulating film and the step of performing plasma treatment are performed continuously without exposing the semiconductor substrate to the atmosphere.
(3)重い構成元素として少なくともSiを含むことを
特徴とする請求項1記載の半導体装置の製造方法。
(3) The method for manufacturing a semiconductor device according to claim 1, wherein the heavy constituent element includes at least Si.
(4)相対的に軽い構成元素としてO、N、Cの中の少
なくとも1種類以上を含むことを特徴とする請求項1記
載の半導体装置の製造方法。
(4) The method for manufacturing a semiconductor device according to claim 1, wherein the relatively light constituent element includes at least one of O, N, and C.
JP63257682A 1988-10-13 1988-10-13 Method for manufacturing semiconductor device Expired - Fee Related JPH0691082B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63257682A JPH0691082B2 (en) 1988-10-13 1988-10-13 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63257682A JPH0691082B2 (en) 1988-10-13 1988-10-13 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPH02103935A true JPH02103935A (en) 1990-04-17
JPH0691082B2 JPH0691082B2 (en) 1994-11-14

Family

ID=17309643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63257682A Expired - Fee Related JPH0691082B2 (en) 1988-10-13 1988-10-13 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JPH0691082B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03214627A (en) * 1990-01-18 1991-09-19 Mitsubishi Electric Corp Semiconductor device and its manufacture
JPH08195635A (en) * 1995-01-18 1996-07-30 Nec Corp Manufacture of surface acoustic wave device
JP2001257206A (en) * 1999-12-07 2001-09-21 Applied Materials Inc Method and apparatus for reducing fixed charge in a semiconductor device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS542070A (en) * 1977-06-07 1979-01-09 Toshiba Corp Manufacture for semiconductor element
JPS55113335A (en) * 1979-02-23 1980-09-01 Fujitsu Ltd Manufacture of semiconductor device
JPS6054469A (en) * 1983-09-05 1985-03-28 Oki Electric Ind Co Ltd Manufacture of semiconductor integrated circuit device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS542070A (en) * 1977-06-07 1979-01-09 Toshiba Corp Manufacture for semiconductor element
JPS55113335A (en) * 1979-02-23 1980-09-01 Fujitsu Ltd Manufacture of semiconductor device
JPS6054469A (en) * 1983-09-05 1985-03-28 Oki Electric Ind Co Ltd Manufacture of semiconductor integrated circuit device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03214627A (en) * 1990-01-18 1991-09-19 Mitsubishi Electric Corp Semiconductor device and its manufacture
JPH08195635A (en) * 1995-01-18 1996-07-30 Nec Corp Manufacture of surface acoustic wave device
JP2001257206A (en) * 1999-12-07 2001-09-21 Applied Materials Inc Method and apparatus for reducing fixed charge in a semiconductor device

Also Published As

Publication number Publication date
JPH0691082B2 (en) 1994-11-14

Similar Documents

Publication Publication Date Title
JP2978748B2 (en) Method for manufacturing semiconductor device
JPH08153784A (en) Manufacture of semiconductor device
US5500380A (en) Method for fabricating thin film transistor
JPH0577327B2 (en)
JPH02103935A (en) Manufacture of semiconductor device
JPS58201362A (en) Manufacture of semiconductor device
US5723371A (en) Method for fabricating a thin film transistor having a taper-etched semiconductor film
JPH04100221A (en) Manufacture of semiconductor device
JPH08255770A (en) Method of manufacturing semiconductor device
US3825455A (en) Method of producing insulated-gate field-effect semiconductor device having a channel stopper region
JPH09260372A (en) Manufacture of insulating film of semiconductor device
JP3064575B2 (en) Multilayer wiring formation method
JPH1032334A (en) Gate electrode and its forming method
JPH04186675A (en) Semiconductor device
JPH07221092A (en) Manufacture of semiconductor device
KR100267770B1 (en) method for forming oxidation film of semiconductor device
JPH05291179A (en) Manufacture of semiconductor device
JPH0817762A (en) Manufacture of semiconductor device
JPH08153708A (en) Method and device for etching
JP3184042B2 (en) Method for manufacturing semiconductor device
JPS59119763A (en) Formation of thin film metal insulator semiconductor transistor
JPS5856970B2 (en) Processing method for semiconductor devices with nitride film
JPS605566A (en) Manufacture of semiconductor device
JPH05129288A (en) Silicon nitride film
JP2001068471A (en) Semiconductor device and its manufacture

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees