JPH02101156A - Production of copper-based material for vacuum vapor deposition - Google Patents

Production of copper-based material for vacuum vapor deposition

Info

Publication number
JPH02101156A
JPH02101156A JP25115688A JP25115688A JPH02101156A JP H02101156 A JPH02101156 A JP H02101156A JP 25115688 A JP25115688 A JP 25115688A JP 25115688 A JP25115688 A JP 25115688A JP H02101156 A JPH02101156 A JP H02101156A
Authority
JP
Japan
Prior art keywords
copper
casting
vacuum
atmosphere
gaseous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25115688A
Other languages
Japanese (ja)
Inventor
Akito Kurosaka
昭人 黒坂
Haruo Tominaga
晴夫 冨永
Kazuhiko Tomomatsu
友松 和彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP25115688A priority Critical patent/JPH02101156A/en
Publication of JPH02101156A publication Critical patent/JPH02101156A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To produce the high-quality copper-based material which forms a vapor deposited copper surface having no surface defects by vacuum vapor deposition by forming a casting in a reducing gaseous atmosphere by using high purity copper, and subjecting the casting to an annealing treatment at a specific temp. in a reducing gaseous atmosphere after working, then vacuum packing the casting. CONSTITUTION:The copper having >=99.99% purity is used as a raw material and the casting of copper is formed by casting in the reducing gaseous atmosphere of gaseous CO, gaseous H2, etc., or in a vacuum atmosphere. After this casting is subjected to working, the casting is subjected to the annealing treatment by heating to >=300 deg.C in the reducing gaseous atmosphere of the gaseous CO, the gaseous N2, etc., then slow cooling. This molding is immediately vacuum packed in a resin sheet. The copper base material which stably forms the vapor deposited copper surface having no surface detects by vacuum vapor deposition is produced in this way and the quality thereof is maintained over a long period of time.

Description

【発明の詳細な説明】 1−産業上の利用分野」 本発明方法は、真空蒸着用として用られる銅薄膜形成用
銅基材の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION 1-Field of Industrial Application The method of the present invention relates to a method for producing a copper substrate for forming a copper thin film, which is used for vacuum deposition.

1−従来の技術」 最近、電子デバイスの電極用として銅薄膜を使用する傾
向が強まっているが、この種の銅薄膜を真空蒸着法によ
って製造することが一般的になされている。この真空蒸
着法による銅薄膜の形成工程では、蒸着面上に種々の表
面欠陥、特に突起状の表面欠陥が生じることがあり、こ
の表面欠陥の発生が原因となって形成工程における補修
率の増加あるいは歩留りの低下が著しくなるという問題
点があった。
1-Prior Art Recently, there has been a growing trend to use copper thin films for electrodes of electronic devices, and this type of copper thin film is generally manufactured by a vacuum evaporation method. In the process of forming a copper thin film using this vacuum evaporation method, various surface defects, especially protrusions, may occur on the evaporation surface, and the occurrence of these surface defects causes an increase in the repair rate during the formation process. Alternatively, there is a problem in that the yield is significantly reduced.

この表面欠陥の発生を阻止するためには、不純物元素の
含有量が少ない高純度銅から銅基材を形成することが効
果的であり、特に、酸素含有量を低減することが効果的
である。
In order to prevent the occurrence of surface defects, it is effective to form the copper base material from high-purity copper with a low content of impurity elements, and in particular, it is effective to reduce the oxygen content. .

そこで従来、真空蒸着用銅基材の製造方法においては、
酸素含有量を低くするために、還元性ガス雰囲気中ある
いは真空雰囲気中で銅を溶解し鋳造する方法が実施され
ている。
Therefore, conventionally, in the manufacturing method of copper base material for vacuum deposition,
In order to reduce the oxygen content, methods have been implemented in which copper is melted and cast in a reducing gas atmosphere or a vacuum atmosphere.

「発明が解決しようとする課題」 しかしながら、溶解して鋳造した段階で酸素含有量が少
なくても、鋳造後に加工を行うと、最終形状までの加工
工程中において、しばしば銅基材の表面が酸化して酸化
銅(Cu x O)が生し、この酸化銅の発生が原因と
なって真空蒸着による銅薄膜形成工程において突起状の
表面欠陥が生じろという問題点があった。更に、前記問
題点を解決するために、酸化した銅基材の表面部分を切
削して除去すると高純度銅を使用している銅基材の歩留
りが悪化して製造コストが著しく向」ニする問題点かあ
る。また、酸化した表面部分を切削除去した銅基材にお
いても、切削後に大気中に放置しておくと、再度、表面
に酸化銅を生しる問題かある。
``Problem to be solved by the invention'' However, even if the oxygen content is low at the stage of melting and casting, when processing is performed after casting, the surface of the copper base material often becomes oxidized during the processing process to the final shape. There is a problem in that copper oxide (Cu x O) is produced, and the production of copper oxide causes protruding surface defects in the step of forming a copper thin film by vacuum evaporation. Furthermore, in order to solve the above problem, if the oxidized surface portion of the copper base material is removed by cutting, the yield of the copper base material using high-purity copper will deteriorate and the manufacturing cost will increase significantly. There are some problems. Further, even in the case of a copper base material whose oxidized surface portion has been removed, if it is left in the atmosphere after cutting, there is a problem in that copper oxide is generated on the surface again.

以」二説明したような問題が生しているので本発明者ら
は無酸素銅チップを長期間大気中で放置し、酸化銅の生
成によって変色した銅基材について、その表面を切削す
ることなしに還元性ガス雰囲気中で焼鈍したところ酸化
銅が消失し銅色光沢の銅基材が得られ、しかも、この基
材によって形成された蒸着膜に表面欠陥が生じないこと
を知見した。
Because of the problems described above, the present inventors left oxygen-free copper chips in the atmosphere for a long period of time, and then cut the surface of the copper base material, which was discolored due to the formation of copper oxide. When the copper oxide was annealed in a reducing gas atmosphere, the copper oxide disappeared and a copper base material with copper-colored luster was obtained.Moreover, it was found that the deposited film formed from this base material had no surface defects.

また、酸素含有量が多いタフピッチ銅について還元性ガ
ス雰囲気で焼鈍して基材を得、この基材を用いた真空蒸
着により形成した蒸着膜には表面欠陥を生じることを知
見し、以」−の知見を柄に本発明に至った。
In addition, we obtained a base material by annealing tough pitch copper with a high oxygen content in a reducing gas atmosphere, and found that surface defects occur in the deposited film formed by vacuum evaporation using this base material. The present invention was developed based on this knowledge.

本発明は、前記知見に括いてなされたもので、真空蒸着
に用いた場合に表面欠陥を生じない銅蒸着表面を安定し
て得ることができる真空蒸着用銅板材を提供することを
目的とする。
The present invention has been made based on the above findings, and an object of the present invention is to provide a copper plate material for vacuum evaporation that can stably obtain a copper evaporation surface that does not cause surface defects when used for vacuum evaporation. .

「課題を解決するだめの手段」 本発明は、前記課題を解決するために、純度9999%
以」−の銅を原料として、COガス、H。
"Means for Solving the Problems" In order to solve the problems mentioned above, the present invention has a purity of 9999%.
Using copper as raw material, CO gas, H.

ガスなどの還元性ガス雰囲気中あるいは真空雰囲気中に
おける鋳造によって銅の鋳造品を形成し、この鋳造品を
加工した後に、この加工品にCOガス、H2ガスなどの
還元性ガス雰囲気中において300°C以]二に加熱し
た後に冷却する熱処理を施し、この処理品に真空パンク
処理を施すものである。
A copper casting is formed by casting in a reducing gas atmosphere such as gas or a vacuum atmosphere, and after processing this casting, the processed product is heated at 300° in a reducing gas atmosphere such as CO gas or H2 gas. [C and above] Second, heat treatment is performed by heating and then cooling, and this treated product is subjected to vacuum puncture treatment.

この発明で出発原料の銅の純度を99.99%以」二と
したのは、純度か9999%未満であると、酸素以外の
不純物が多ずぎて本発明の方法を行って銅材を形成して
も、その銅材により形成される蒸着膜に表面欠陥を生し
るためである。また、熱処理温度を300℃未満にする
と還元ガスによる酸化銅の還元効果が不十分になるので
好ましくない。また、真空パック処理とは、プラスチッ
クフィルムを処理品に被せ、内部を真空ポンプにより真
空引きして処理品にプラスデックフィルムを密着させて
プラスデックフィルムの端部を溶着−弗化して処理品を
完全包装する処理である。
In this invention, the purity of the copper starting material is set to 99.99% or more.If the purity is less than 9999%, there will be too many impurities other than oxygen, so the copper material cannot be processed by the method of the invention. This is because even if the copper material is formed, surface defects will occur in the deposited film formed from the copper material. Further, if the heat treatment temperature is lower than 300° C., the effect of reducing copper oxide by the reducing gas becomes insufficient, which is not preferable. Vacuum packing processing involves covering the processed product with a plastic film, evacuating the inside with a vacuum pump, bringing the PlusDeck film into close contact with the processed product, and welding and fluorinating the edges of the PlusDEC film to seal the processed product. This is a complete packaging process.

「作用 」 純度9999%以」二の銅をB’H7料とすることによ
り不純物が少なくなって高品質の銅基材が得られる。ま
た、熱処理温度を300℃以」二にすると銅錫造品から
作成した加工品の表面に形成された酸化銅が十分に還元
される。更に真空パック処理によって高品質の銅基材が
長期間、酸化することなく保存される。
By using copper with a purity of 9999% or higher as the B'H7 material, impurities are reduced and a high quality copper base material can be obtained. Further, when the heat treatment temperature is set to 300° C. or higher, the copper oxide formed on the surface of the processed product made from the copper-tin product is sufficiently reduced. Furthermore, the vacuum packing process preserves the high quality copper substrate for a long period of time without oxidation.

「実施例」 純度99.99%の電解銅を出発原料とし、到達真空度
I X I O−’Torrの雰囲気中において黒鉛る
つぼを用いて溶解するとともに鋳造して酸素含有量8 
ppmの無酸素銅ロッド(直径20mmX長さ300 
mm)を得た。
"Example" Using electrolytic copper with a purity of 99.99% as a starting material, it was melted and cast using a graphite crucible in an atmosphere with an ultimate vacuum level of I
ppm oxygen-free copper rod (diameter 20mm x length 300mm)
mm) was obtained.

次にこの無酸素銅ロットにスウエージングなどの機械加
工を施して直径10mm、長さ10mmのチップ を 
得 ノこ 。
Next, this oxygen-free copper lot is subjected to machining such as swaging to produce chips with a diameter of 10 mm and a length of 10 mm.
Tokunoko.

次にこのチップを02ガス雰囲気中で300°Cで2時
間加熱した後に徐冷する焼鈍処理を行った。
Next, this chip was annealed by heating it at 300° C. for 2 hours in an O2 gas atmosphere and then slowly cooling it.

この焼鈍処理後に処理品を直ちに樹脂ソートで真空パッ
クする処理を施して90日間、室温の大気中に放置し、
放置後に取り出して試料とした。
After this annealing treatment, the treated product was immediately vacuum packed with resin sorting and left in the air at room temperature for 90 days.
After being left standing, it was taken out and used as a sample.

以上の如く得られた試料を銅基材として用い、A 12
03基板」―に到達真空度I X I O−’Torr
の条件下で真空蒸着による銅薄膜を彩成し、この蒸着面
について顕微鏡観察を行い、突起状(1μm以」二の凸
部)の表面欠陥の有無を調べた。なお、以下の比較例1
〜5で製造した試料も併せて同等の試験を行い、後述の
第1表にその結果を記載した。
Using the sample obtained as above as a copper base material, A 12
03 substrate'' - reached vacuum level I X I O-'Torr
A copper thin film was vacuum-deposited under these conditions, and the deposited surface was observed under a microscope to examine the presence or absence of protrusion-like surface defects (projections of 1 μm or larger). In addition, the following Comparative Example 1
Similar tests were also conducted on the samples manufactured in steps 5 to 5, and the results are listed in Table 1 below.

「比較例1」 出発原料の銅と焼鈍処理は前記実施例と同等に設定した
が、焼鈍後に真空パック処理を行わずに、焼鈍後そのま
まの状態で室温の大気中に90日間放置したものを試料
とした。
"Comparative Example 1" The copper starting material and the annealing treatment were set to be the same as in the previous example, but the annealing was left in the air at room temperature for 90 days without being vacuum packed. It was used as a sample.

「比較例2」 出発原料の銅は前記実施例と同等の純度のものを用い、
直径10mm、長さ10mmの無酸素銅デツプに加工す
るまでは前記実施例ど同等の処理を行い、その後還元ガ
スでの焼鈍処理を行わずに得た処理品を試料とした。
"Comparative Example 2" The starting raw material copper was of the same purity as in the above example,
The same treatment as in the above example was performed until processing into an oxygen-free copper depth having a diameter of 10 mm and a length of 10 mm, and then the treated product obtained without annealing with a reducing gas was used as a sample.

「比較例3」 出発原料の銅は前記実施例と同等の純度のものを用い、
直径10mm、長さ10mmの無酸素銅デツプに加工す
るまでは前記実施例と同等の処理を行い、その後[I2
ガス雰囲気中において200℃で2時間加熱した後に徐
冷する焼鈍処理を行って得た処理品を試料とした。
"Comparative Example 3" The starting raw material copper was of the same purity as in the above example,
The same treatment as in the previous example was carried out until processing into an oxygen-free copper depth of 10 mm in diameter and 10 mm in length, and then [I2
The sample was a treated product obtained by performing an annealing treatment in which the sample was heated at 200° C. for 2 hours in a gas atmosphere and then slowly cooled.

「比較例4」 純度999%の銅を出発原料として用い、各処理は実施
例と同じ処理を行って得た処理品を試料とした。
"Comparative Example 4" Using copper with a purity of 999% as a starting material, each treatment was performed in the same manner as in the example, and a treated product obtained was used as a sample.

「比較例5」 酸素含有量350 ppmのタフピッチ銅ロット(直径
20mm、長さ300 mm)を真空鋳造してから直径
10mm長さ10mmの銅デツプへ加工した後に、実施
例と同等の処理を行った処理品を試料とした。
"Comparative Example 5" A tough pitch copper lot (diameter 20 mm, length 300 mm) with an oxygen content of 350 ppm was vacuum cast, processed into a copper depth of 10 mm in diameter and 10 mm in length, and then treated in the same manner as in the example. The processed product was used as a sample.

第1表 第1表から明らかなにうに、本発明を実施することによ
り、表面欠陥を生じさせることなく銅薄膜を真空蒸着す
ることができる優れた銅基材を製造できることが判明し
た。
As is clear from Table 1, it has been found that by implementing the present invention, an excellent copper base material on which a copper thin film can be vacuum-deposited without producing surface defects can be produced.

「発明の効果」 以」二説明したように本発明によれば、純度99゜99
%以上の不純物の少ない銅を原料とし、鋳造工程におい
ての酸化を防止し、加工品の表面を還元性ガス雰囲気に
おいて300℃以上で還元して加工品の表面を十分に還
元するので、真空蒸着を行った場合に表面欠陥の無い銅
蒸着表面を形成できる高品質の銅基材を得ることができ
る効果がある。なお、純度9999%以」二の銅を原料
とずることにより不純物の悪影響が取り除かれるととも
に、還元性ガス雰囲気中において300°C以」二で熱
処理することにより加工品の表面に形成されている酸化
銅が十分に除去されて最終的に高品質の銅基材が得られ
る。また、以上のように得られた高品質の銅基材は真空
バック処理によって酸化することなく長期間にわたりそ
の品質を維持することができる。
"Effects of the Invention" As explained below, according to the present invention, the purity is 99°99.
Vacuum evaporation uses copper as a raw material with less impurities than %, prevents oxidation during the casting process, and sufficiently reduces the surface of the processed product by reducing the surface of the processed product at 300°C or higher in a reducing gas atmosphere. When carried out, it is possible to obtain a high-quality copper base material on which a copper vapor-deposited surface without surface defects can be formed. In addition, by using copper with a purity of 9999% or higher as the raw material, the negative effects of impurities are removed, and the copper is formed on the surface of the processed product by heat treatment at 300°C or higher in a reducing gas atmosphere. Copper oxide is sufficiently removed to finally obtain a high quality copper substrate. Further, the high quality copper base material obtained as described above can maintain its quality for a long period of time without being oxidized by vacuum back treatment.

Claims (1)

【特許請求の範囲】[Claims] 純度99.99%以上の銅を原料として、COガス、H
_2ガスなどの還元性ガス雰囲気中あるいは真空雰囲気
中における鋳造によって銅の鋳造品を形成し、この鋳造
品を加工した後に、前記加工品にCOガス、H_2ガス
などの還元性ガス雰囲気中において300℃以上に加熱
した後に冷却する処理を施し、この処理品に真空パック
処理を施すことを特徴とする真空蒸着用銅基材の製造方
法。
CO gas, H
A copper casting is formed by casting in a reducing gas atmosphere such as _2 gas or in a vacuum atmosphere, and after processing this casting, the processed product is heated for 300 min in a reducing gas atmosphere such as CO gas or H_2 gas. 1. A method for producing a copper base material for vacuum evaporation, which comprises heating to a temperature above 0.degree. C. and then cooling it, and vacuum-packing the treated product.
JP25115688A 1988-10-05 1988-10-05 Production of copper-based material for vacuum vapor deposition Pending JPH02101156A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25115688A JPH02101156A (en) 1988-10-05 1988-10-05 Production of copper-based material for vacuum vapor deposition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25115688A JPH02101156A (en) 1988-10-05 1988-10-05 Production of copper-based material for vacuum vapor deposition

Publications (1)

Publication Number Publication Date
JPH02101156A true JPH02101156A (en) 1990-04-12

Family

ID=17218508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25115688A Pending JPH02101156A (en) 1988-10-05 1988-10-05 Production of copper-based material for vacuum vapor deposition

Country Status (1)

Country Link
JP (1) JPH02101156A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002073687A3 (en) * 2001-03-12 2003-11-13 Motorola Inc Method of removing oxide from copper bond pads

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002073687A3 (en) * 2001-03-12 2003-11-13 Motorola Inc Method of removing oxide from copper bond pads
US6693020B2 (en) 2001-03-12 2004-02-17 Motorola, Inc. Method of preparing copper metallization die for wirebonding

Similar Documents

Publication Publication Date Title
US3697255A (en) Scrap tantalum reclamation process
JPH03150356A (en) Tungsten or molybdenum target and production thereof
JPH05214519A (en) Titanium sputtering target
JPH02101156A (en) Production of copper-based material for vacuum vapor deposition
US3895671A (en) Method of manufacturing a thin sheet of beryllium or an alloy thereof
US8668895B2 (en) Purifying method for metallic silicon and manufacturing method of silicon ingot
JPH02101157A (en) Production of copper-based material for vacuum vapor deposition
JPS62103335A (en) Ultra-high-purity metallic niobium
JPH07201673A (en) Manufacture of aluminum material for electrolytic capacitor electrode
JP3228660B2 (en) Method for producing high-purity metal material for semiconductor element formation
JPH0617159A (en) Production of low oxygen high purity ti material
JPH08337493A (en) High-purity graphite member for pulling up single crystal and its production
JPH0559462A (en) Production of high purity copper for high vacuum device
JPH04259359A (en) Manufacture of high purity copper wire constituted of coarse crystalline grain
KR102531089B1 (en) High-quality ferro-titanium casting technology using titanium scrap
JPH02129364A (en) Manufacture of copper base material for vacuum vapor deposition
JPH0813141A (en) Sputtering target and its production
JPH1161392A (en) Production of sputtering target for forming ru thin film
JPS6328987B2 (en)
JPH0254742A (en) Manufacture of copper base material for vacuum vapor deposition
JP2004137580A (en) Method for producing iridium sputtering target, and target obtained by the method
JPH02133557A (en) Manufacture of copper base material for vacuum vapor deposition
CN115928014A (en) Beta-phase gallium oxide film and preparation and doping methods thereof
JPH11302837A (en) High purity iridium material for thin film formation, and its manufacture
JPH0337109A (en) Graphite material