JPH11302837A - High purity iridium material for thin film formation, and its manufacture - Google Patents

High purity iridium material for thin film formation, and its manufacture

Info

Publication number
JPH11302837A
JPH11302837A JP11295898A JP11295898A JPH11302837A JP H11302837 A JPH11302837 A JP H11302837A JP 11295898 A JP11295898 A JP 11295898A JP 11295898 A JP11295898 A JP 11295898A JP H11302837 A JPH11302837 A JP H11302837A
Authority
JP
Japan
Prior art keywords
alloy
thin film
content
purity
ppm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11295898A
Other languages
Japanese (ja)
Other versions
JP3411212B2 (en
Inventor
Yuichiro Shindo
裕一朗 新藤
Tsuneo Suzuki
恒男 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Japan Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Energy Corp filed Critical Japan Energy Corp
Priority to JP11295898A priority Critical patent/JP3411212B2/en
Publication of JPH11302837A publication Critical patent/JPH11302837A/en
Application granted granted Critical
Publication of JP3411212B2 publication Critical patent/JP3411212B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

PROBLEM TO BE SOLVED: To provide a high purity Ir material suitably used for a high purity Ir thin film forming material such as sputtering target and reduced in the occurrence of particles at the time of sputtering. SOLUTION: Relating to the high purity Ir material for thin film formation, the content of an alkali metal element is <=1 ppm, and the contents of radioactive elements are <=10 ppb, respectively, and further, the contents of carbon and gas component elements are <=100 ppm. This material can be manufactured by adding a metal which forms an alloy together with Ir and dissolves in acid to an Ir raw material to produce an Ir alloy, leaching the Ir alloy with acid or acid and alkali to remove the components other than Ir by dissolution, and subjecting the resultant Ir residue to degassing treatment and then to electron beam melting.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、MOS−ULSI
の強誘電体キャパシタの上部または下部電極材料等の薄
膜形成用として用いることのできる高純度Ir材料およ
びその製造方法に関するものである。
The present invention relates to a MOS-ULSI
High-purity Ir material which can be used for forming a thin film such as an upper or lower electrode material of a ferroelectric capacitor and a method for producing the same.

【0002】[0002]

【従来技術および問題点】近年、半導体メモリーの製造
において、半導体素子となるシリコン等のウエハ上に、
BaTi複合酸化物、SrTi複合酸化物、あるいはB
aSrTi複合酸化物等の強誘電体の薄膜をキャパシタ
として用いることが研究されている。このような強誘電
体キャパシタ薄膜の上部または下部電極材料としスパッ
タリングによりIr薄膜を形成することが研究されてい
る。スパッタリングにより形成される半導体部材に対し
て、信頼性のある半導体動作性能を保証するためには、
半導体デバイスに有害な不純物が最小限しか含まれてい
ないことが重要である。つまり、 (1)Na,K等のアルカリ金属元素 (2)U,Th等の放射性元素 (3)Fe,Niなどの重金属元素 等の不純物を極力除く必要がある。Na,K等のアルカ
リ金属元素は絶縁膜中を容易に移動し、MOS−ULS
I界面特性の劣化の原因となる。U,Th等の放射性元
素はこれらの元素から放出するα線によって素子のソフ
トエラーの原因となる。また、Fe,Ni等の重金属も
また界面接合部のトラブルの原因となる。
2. Description of the Related Art In recent years, in the manufacture of semiconductor memories, a semiconductor device such as silicon has
BaTi composite oxide, SrTi composite oxide, or B
It has been studied to use a ferroelectric thin film such as aSrTi composite oxide as a capacitor. Studies have been made on forming an Ir thin film by sputtering as a material for the upper or lower electrode of such a ferroelectric capacitor thin film. For semiconductor members formed by sputtering, in order to guarantee reliable semiconductor operation performance,
It is important that semiconductor devices contain minimal harmful impurities. That is, it is necessary to remove impurities such as (1) alkali metal elements such as Na and K, (2) radioactive elements such as U and Th, and (3) heavy metal elements such as Fe and Ni. Alkali metal elements such as Na and K easily move in the insulating film, and MOS-ULS
It causes deterioration of I interface characteristics. Radioactive elements such as U and Th cause α-rays emitted from these elements to cause soft errors in the element. In addition, heavy metals such as Fe and Ni also cause troubles at the interface joint.

【0003】一般に、Irの工業的製造方法としては例
えばアルカリ融解法などにより溶液化したIrを溶媒抽
出法などによって精製する方法が用いられている。しか
し、このような方法で製造されている市販のIr粉末に
は、Na,K等のアルカリ金属やU,Th等の放射性元
素が多く含有されており、強誘電体キャパシタ用電極材
料としては不満足であった。また、例えば、特開平9−
41131号には、Ir原料を電子ビーム溶解し、得ら
れたIrインゴットを金属容器に入れて熱間圧延するこ
とを特徴とする高純度Irスパッタリングターゲットの
製造方法が記載されている。ところが、上記の方法では
アルカリ金属元素やFe,Ni,Crなどの重金属元素
は低減できるものの、U,Thなどの放射性元素は十分
に低減できないという問題があった。さらに、半導体薄
膜配線の高密度化に伴い、スパッタリングによって薄膜
を形成する際のパーティクルの発生が大きな問題となっ
ているが、従来の方法によって得られたIrターゲット
ではパーティクル発生を低減することはできなかった。
[0003] In general, as an industrial production method of Ir, for example, a method of purifying Ir, which is made into a solution by an alkali melting method or the like, by a solvent extraction method or the like is used. However, the commercially available Ir powder manufactured by such a method contains a large amount of alkali metals such as Na and K and radioactive elements such as U and Th, and is unsatisfactory as an electrode material for a ferroelectric capacitor. Met. In addition, for example, Japanese Patent Application Laid-Open
No. 41131 describes a method for producing a high-purity Ir sputtering target, which comprises subjecting an Ir raw material to electron beam melting, placing the obtained Ir ingot in a metal container, and performing hot rolling. However, although the above method can reduce the amount of alkali metal elements and heavy metal elements such as Fe, Ni, and Cr, it has a problem that radioactive elements such as U and Th cannot be sufficiently reduced. Furthermore, with the increase in the density of semiconductor thin film wiring, generation of particles when forming a thin film by sputtering has become a major problem. However, particle generation can be reduced with an Ir target obtained by a conventional method. Did not.

【0004】[0004]

【発明が解決しようとする課題】本発明の目的は、スパ
ッタリングターゲットなどの高純度Ir薄膜形成用材料
の用途に適した、Na,K等のアルカリ金属、U,Th
等の放射性元素の含有率の低い高純度Irの製造方法を
開発することである。さらに、スパッタリングの際のパ
ーティクルの発生を低減することも目的とした。
SUMMARY OF THE INVENTION An object of the present invention is to provide an alkali metal such as Na or K, U or Th suitable for use as a material for forming a high-purity Ir thin film such as a sputtering target.
It is an object of the present invention to develop a method of producing high-purity Ir having a low content of radioactive elements such as Ir. Further, it is also an object to reduce the generation of particles at the time of sputtering.

【0005】[0005]

【課題を解決するための手段】本発明者らは、上記の課
題を解決するために鋭意研究を行った結果、酸浸出処
理、脱ガス処理、電子ビーム溶解とを組み合わせること
によって、これらの不純物を大幅に低減できることを見
いだした。さらに、これによって得られる高純度Irス
パッタリングターゲットは、従来から問題とされていた
金属不純物成分の含有量が低いのみならず、ガス成分含
有量も十分低減されたものであり、そのためスパッタ時
のパーティクル発生も低減し得ることを見い出した。
The present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, by combining acid leaching treatment, degassing treatment, and electron beam melting, these impurities have been obtained. Has been found to be significantly reduced. Furthermore, the high-purity Ir sputtering target obtained thereby not only has a low content of metal impurity components, which has been a problem in the past, but also has a sufficiently reduced content of gas components. It has been found that the occurrence can also be reduced.

【0006】これらの知見に基き、本発明は、 1.アルカリ金属元素含有率1ppm以下、放射性元素
含有率各10ppb以下でありさらに炭素及びガス成分
元素含有率が100ppm以下であることを特徴とする
薄膜形成用高純度Ir材料
Based on these findings, the present invention provides: A high-purity Ir material for forming a thin film, wherein the content of an alkali metal element is 1 ppm or less, the content of a radioactive element is 10 ppb or less, and the content of carbon and gas component elements is 100 ppm or less.

【0007】2.アルカリ金属元素含有率各0.1pp
m以下、放射性元素含有率各1ppb以下でありさらに
炭素及びガス成分含有率が10ppm以下であることを
特徴とする薄膜形成用高純度Ir材料
[0007] 2. 0.1pp for each alkali metal element content
m, a radioactive element content of 1 ppb or less, respectively, and a carbon and gas component content of 10 ppm or less.

【0008】3.白金族以外の遷移金属不純物元素含有
率各10ppm以下であることを特徴とする上記1また
は2に記載の薄膜形成用高純度Ir材料
[0008] 3. 3. The high-purity Ir material for forming a thin film according to the above item 1 or 2, wherein the content of each of transition metal impurity elements other than the platinum group is 10 ppm or less.

【0009】4.Ir原料に、Irと合金をつくり酸に
溶解する金属を添加しIr合金を製造した後、該Ir合
金を酸もしくは酸とアルカリで浸出することによりIr
以外の成分を溶解除去し、得られたIr残渣を脱ガス処
理した後、電子ビーム溶解することを特徴とする高純度
Ir材料の製造方法
4. A metal that forms an alloy with Ir and dissolves in an acid is added to the Ir raw material to produce an Ir alloy, and the Ir alloy is leached with an acid or an acid and an alkali to obtain an Ir alloy.
A method for producing a high-purity Ir material, comprising dissolving and removing other components, degassing the obtained Ir residue, and then performing electron beam melting.

【0010】5.Irと合金をつくる金属としてMn,
Zn,NiまたはCuを用いることを特徴とする上記4
記載の高純度Ir材料の製造方法を提供するものであ
る。
[0010] 5. Mn, as a metal forming an alloy with Ir,
The above-mentioned item 4, wherein Zn, Ni or Cu is used.
It is intended to provide a method for producing the high-purity Ir material described above.

【0011】[0011]

【発明の実施の形態】以下、本発明の実施の形態につい
て詳細に説明する。本発明の高純度Ir材料の原料であ
るIrとしては、市販のIr粉末を用いれば良い。ある
いは、Ir合金ターゲットを製造する際に発生するIr
合金切り粉などのIr含有スクラップを使用することも
可能である。
Embodiments of the present invention will be described below in detail. As Ir which is a raw material of the high-purity Ir material of the present invention, a commercially available Ir powder may be used. Alternatively, Ir generated when manufacturing an Ir alloy target
It is also possible to use Ir-containing scraps such as alloy chips.

【0012】上記Ir原料に、Irと合金をつくり酸に
溶解する金属を添加しIr合金を製造する。ここで、I
rを一端Ir合金とするのは、合金化することによりI
rに含まれる不純物を合金中に原子状にバラバラにして
合金元素及び不純物のみを溶かし出すことを目的として
いる。Irと合金をつくり酸に溶解する金属としては、
Mn,Zn,Ni,Cu等が上げられるが、Mn−Ir
合金ターゲットを製造する場合には合金成分であるMn
を用いるのが特に好ましい。これらの添加金属はできる
だけ不純物の少ない、高純度のものを使用するべきであ
る。合金中のIrの組成範囲は10〜50wt%とすれ
ば良い。Irが10wt%未満では添加物の量が多くな
り効率的ではなく、Irが50wt%を超えると合金の
融点が高くなるため好ましくない。
A metal which forms an alloy with Ir and is dissolved in an acid is added to the Ir raw material to produce an Ir alloy. Where I
r is once made of an Ir alloy because alloying
The purpose is to dissolve impurities contained in r into atoms in the alloy atomically and to melt out only alloy elements and impurities. As a metal that forms an alloy with Ir and dissolves in acid,
Mn, Zn, Ni, Cu, etc. can be raised, but Mn-Ir
When manufacturing an alloy target, the alloy component Mn
It is particularly preferred to use These added metals should be of high purity with as few impurities as possible. The composition range of Ir in the alloy may be 10 to 50 wt%. If Ir is less than 10% by weight, the amount of the additive is large and it is not efficient. If Ir exceeds 50% by weight, the melting point of the alloy increases, which is not preferable.

【0013】合金化は、例えば高周波溶解により700
〜1700℃で溶解すれば良い。得られた低融点Ir合
金は、その後、酸浸出処理を行う。酸としては、硝酸、
王水などを用いれば良い。酸浸出によってIr及びW,
Mo以外の不純物成分は溶解除去される。次にアルカリ
浸出を行った方が好ましい。アルカリとしては、NaO
H溶液等でよい。これによりW,Mo等が除去できる。
The alloying is performed, for example, by high frequency melting to 700
What is necessary is just to melt at ~ 1700 degreeC. The obtained low melting point Ir alloy is then subjected to an acid leaching treatment. As the acid, nitric acid,
Aqua regia can be used. Ir and W,
Impurity components other than Mo are dissolved and removed. Next, it is preferable to perform alkali leaching. As the alkali, NaO
H solution or the like may be used. Thereby, W, Mo, etc. can be removed.

【0014】ここで得られたIr残渣粉に対して脱ガス
処理を行う。脱ガス処理は、Arなどの不活性ガスある
いは水素などの還元性ガス雰囲気中で、温度800〜1
500℃で行なえば良い。この脱ガス処理によって、
O,N,Cなどのガス成分の大部分が除去される。この
ようにして得られた高純度Ir粉末は、例えば、電子ビ
ーム溶解などの方法によってインゴットとし、所定形状
に加工してスパッタリングターゲットとすることができ
る。あるいは、ホットプレスなどの焼結方法によりスパ
ッタリングターゲットとすることも可能である。
The Ir residue powder obtained here is subjected to a degassing treatment. The degassing process is performed in an atmosphere of an inert gas such as Ar or a reducing gas such as hydrogen at a temperature of 800 to 1 ° C.
What is necessary is just to carry out at 500 degreeC. By this degassing process,
Most of the gas components such as O, N and C are removed. The high-purity Ir powder thus obtained can be formed into an ingot by a method such as electron beam melting and processed into a predetermined shape to form a sputtering target. Alternatively, a sputtering target can be obtained by a sintering method such as hot pressing.

【0015】本発明による薄膜形成用高純度Ir材料
は、Na,K等のアルカリ金属元素含有率1ppm以
下、U,Th等の放射性元素含有率10ppb以下であ
り、さらに炭素及びガス成分(酸素、水素、窒素、塩
素)含有率が100ppm以下であることを特徴とする
ものである。Na,K などのアルカリ金属元素は特に
拡散しやすく絶縁膜中を容易に移動し、MOS−LSI
界面特性の劣化の原因となるため、1ppm 以下、好
ましくは0.1ppm 以下にすべきである。U,Th
などの放射性元素は、α線を放出し半導体素子のソフト
エラーの原因となるため、特に厳しく制限する必要があ
り、10ppb 以下、好ましくは1ppb 以下、さら
に好ましくは0.5ppb以下にするべきである。炭素
及びガス成分元素(酸素、水素、窒素、塩素)は、スパ
ッタリングの際のパーティクルの発生の原因となるた
め、100ppm以下とするべきである。さらに好まし
くは10ppm以下とするべきである。
The high-purity Ir material for forming a thin film according to the present invention has a content of alkali metal elements such as Na and K of 1 ppm or less, a content of radioactive elements such as U and Th of 10 ppb or less, and further contains carbon and gas components (oxygen and oxygen). (Hydrogen, nitrogen, chlorine) content is 100 ppm or less. Alkali metal elements such as Na and K are particularly easily diffused and easily move in the insulating film, and MOS-LSI
Since it causes deterioration of interface characteristics, the content should be 1 ppm or less, preferably 0.1 ppm or less. U, Th
Since a radioactive element such as emits α-rays and causes a soft error in a semiconductor device, it must be particularly severely restricted, and should be 10 ppb or less, preferably 1 ppb or less, more preferably 0.5 ppb or less. . Since carbon and gas component elements (oxygen, hydrogen, nitrogen, and chlorine) cause generation of particles during sputtering, the content should be 100 ppm or less. More preferably, it should be 10 ppm or less.

【0016】Fe,Ni,Cr,Co Cuなどの遷移
金属元素も界面接合部のトラブルの原因となるため、好
ましくは10ppm以下、さらに好ましくは1ppm以
下にするべきである。なお、Pt族元素(Ru,Rh,
Pd,Os,Pt)は、Irと同族元素でありIr原料
中にもある程度含有され、電子ビーム溶解後の高純度I
r中にも数十ppm程度含まれる場合があるが、Pt族
元素はIrとほぼ同じ挙動を示し特に悪影響を及ぼさな
いことから、特に低減すべき不純物金属元素からは除外
しても問題はない。そして、炭素,ガス成分元素及び不
純物Pt族元素を除いたIrの純度を99.99%以上
と極めて高純度とすることにより、比抵抗値を極めて小
さくすることが可能である。
Since transition metal elements such as Fe, Ni, Cr, and Co Cu also cause troubles at the interfacial junction, they should be preferably at most 10 ppm, more preferably at most 1 ppm. In addition, Pt group elements (Ru, Rh,
(Pd, Os, Pt) is a homologous element to Ir and is contained to some extent in the Ir raw material.
Although some tens of ppm may be contained in r, the Pt group element exhibits almost the same behavior as Ir and has no particular adverse effect, so that there is no problem even if it is excluded from impurity metal elements to be particularly reduced. . By setting the purity of Ir excluding carbon, gas component elements, and impurity Pt group elements to be as extremely high as 99.99% or more, the specific resistance value can be extremely reduced.

【0017】[0017]

【実施例】以下、本発明を実施例に従って説明するが、
本発明の内容はこの実施例に限定されるものではない。 (実施例1)市販のイリジウム粉末(純度99.9%)
に高純度Mn(純度99.99%)を添加しアルミナル
ツボを用いて高周波溶解を行った。雰囲気はAr雰囲気
とした。 溶解温度:1500℃、保持時間5分とした。溶解後金
型に鋳造しMn−20wt%Ir合金を得た。この合金
を王水で溶解しIr残渣を得た。次にNaOH溶液でI
r残渣を撹拌洗浄した。得られたIr残渣に対して水素
雰囲気中で1000℃で脱ガス処理を行った。その後成
型しさらに電子ビーム溶解を行ってIrインゴットを得
た。電子ビーム溶解条件を以下に示す。 真空度:1〜3×10−4torr Emit電流:0.2〜0.5A 溶解時間:10分 得られた精製Ir塊を所定形状に成型し、圧延を温度1
200℃で行い、直径110mm、厚さ5mmの円板状
のIrスパッタリングターゲットを得た。
Hereinafter, the present invention will be described with reference to Examples.
The content of the present invention is not limited to this embodiment. (Example 1) Commercial iridium powder (purity 99.9%)
, High-purity Mn (purity 99.99%) was added thereto, and high-frequency melting was performed using an alumina crucible. The atmosphere was an Ar atmosphere. Melting temperature: 1500 ° C., holding time 5 minutes. After melting, it was cast in a mold to obtain a Mn-20 wt% Ir alloy. This alloy was dissolved in aqua regia to obtain an Ir residue. Then IOH with NaOH solution
The residue was washed with stirring. The obtained Ir residue was subjected to degassing at 1000 ° C. in a hydrogen atmosphere. Thereafter, it was molded and further subjected to electron beam melting to obtain an Ir ingot. The electron beam melting conditions are shown below. Degree of vacuum: 1-3 × 10 −4 Torr Emit Current: 0.2-0.5 A Melting time: 10 minutes The obtained purified Ir lump is molded into a predetermined shape, and the rolling is performed at a temperature of 1 mm.
This was performed at 200 ° C. to obtain a disk-shaped Ir sputtering target having a diameter of 110 mm and a thickness of 5 mm.

【0018】(実施例2)Mn−50wt%Ir合金の
切り粉に高純度Mn(純度99.99%)を添加し、ア
ルミナルツボを用いて高周波溶解を行った。雰囲気はA
r雰囲気とした。 溶解温度:1500℃、保持時間2分とした。溶解後金
型に鋳造しMn−20wt%Ir合金を得た。この合金
を硝酸(61%)で溶解しIr残渣を得た。得られたI
r残渣に対してAr雰囲気中で1500℃で脱ガス処理
を行った。その後成型しさらに電子ビーム溶解を行って
Irインゴットを得た。電子ビーム溶解条件を以下に示
す。 真空度:1〜3×10−4torr Emit電流:0.2〜0.5A 溶解時間:5分 得られた精製Ir塊を所定形状に成型し、圧延を温度1
500℃で行い、直径110mm、厚さ5mmの円板状
のIrスパッタリングターゲットを得た。
Example 2 High-purity Mn (purity 99.99%) was added to cutting powder of an Mn-50 wt% Ir alloy, and high-frequency melting was performed using an alumina crucible. Atmosphere is A
r atmosphere. Melting temperature: 1500 ° C., holding time 2 minutes. After melting, it was cast in a mold to obtain a Mn-20 wt% Ir alloy. This alloy was dissolved with nitric acid (61%) to obtain an Ir residue. I obtained
The degassing process was performed on the r residue at 1500 ° C. in an Ar atmosphere. Thereafter, it was molded and further subjected to electron beam melting to obtain an Ir ingot. The electron beam melting conditions are shown below. Degree of vacuum: 1-3 × 10 −4 torr Emit Current: 0.2-0.5 A Melting time: 5 minutes The obtained purified Ir lump is molded into a predetermined shape, and the rolling is performed at a temperature of 1 mm.
This was performed at 500 ° C. to obtain a disk-shaped Ir sputtering target having a diameter of 110 mm and a thickness of 5 mm.

【0019】(比較例1)市販のIr粉末1100gを
所定形状に成型し、ホットプレス温度1800℃、ホッ
トプレス圧力300kg/cm、ホットプレス時間2
時間の条件でホットプレスを行い、直径110mm、厚
さ5mmの円盤状の密度97%のイリジウムスパッタリ
ングターゲットを得た。上記の方法によって得られたそ
れぞれのIrスパッタリングターゲットをIn−Sn合
金はんだを用いて銅製のバッキングプレートと接合し、
マグネトロンスパッタ装置を用いて、3インチSiウエ
ハ上に酸素雰囲気中で反応性スパッタリングにより酸化
Ir薄膜を形成した。上記の方法によって得られたIr
スパッタリングターゲットをIn−Sn合金はんだを用
いて銅製のバッキングプレートと接合し、マグネトロン
スパッタ装置を用いて、3インチSiウエハ上に酸素雰
囲気中で反応性スパッタリングにより酸化Ir薄膜を形
成した。
(Comparative Example 1) 1100 g of commercially available Ir powder was molded into a predetermined shape, hot press temperature was 1800 ° C, hot press pressure was 300 kg / cm 2 , and hot press time was 2
Hot pressing was performed under the conditions of time to obtain a disk-shaped iridium sputtering target having a diameter of 110 mm and a thickness of 5 mm and a density of 97%. Each Ir sputtering target obtained by the above method is joined to a copper backing plate using In-Sn alloy solder,
An Ir oxide thin film was formed on a 3-inch Si wafer by reactive sputtering in an oxygen atmosphere using a magnetron sputtering apparatus. Ir obtained by the above method
The sputtering target was bonded to a copper backing plate using In-Sn alloy solder, and an Ir oxide thin film was formed on a 3-inch Si wafer by reactive sputtering in an oxygen atmosphere using a magnetron sputtering apparatus.

【0020】(結果)原料のIr粉末およびスパッタリ
ングターゲットの不純物含有量を表1に示す。
(Results) Table 1 shows the Ir content of the raw material and the impurity content of the sputtering target.

【0021】[0021]

【表1】 [Table 1]

【0022】また、実施例及び比較例のIrスパッタリ
ングターゲットの密度、ターゲットの平均粒径、スパッ
タリングターゲットを用いて形成した薄膜の電気抵抗、
薄膜上の0.3μm以上のパーティクル数及び形成した
薄膜の電極特性を併せて表2に示す。
In addition, the density of the Ir sputtering target, the average particle size of the target, the electric resistance of the thin film formed using the sputtering target, and the
Table 2 also shows the number of particles of 0.3 μm or more on the thin film and the electrode characteristics of the formed thin film.

【0023】[0023]

【表2】 [Table 2]

【0024】本発明の高純度Irスパッタリングターゲ
ットは、アルカリ金属、放射性元素のみならず、炭素お
よびガス成分元素も低減された極めて高純度のものであ
った。 そして、本発明の高純度Irスパッタリングタ
ーゲットを用いて作成した薄膜は電極特性が良好で、ス
パッタリングの際のパーティクルの発生も少なかった。
これに対して、市販のIr粉は、アルカリ金属元素、ア
ルカリ土類金属元素、炭素及びガス成分元素、遷移金属
元素や放射性元素は高く、そのため、このスパッタリン
グターゲットを用いて作成した薄膜は、パーテイクルが
多くかつ電気抵抗が高いものであり、半導体薄膜として
の使用には耐えられないものであった。
The high-purity Ir sputtering target of the present invention was of extremely high purity, in which not only alkali metals and radioactive elements but also carbon and gas component elements were reduced. The thin film formed using the high-purity Ir sputtering target of the present invention had good electrode characteristics and generated few particles during sputtering.
In contrast, commercially available Ir powder has a high content of alkali metal elements, alkaline earth metal elements, carbon and gas component elements, transition metal elements and radioactive elements. And a high electrical resistance, and could not withstand use as a semiconductor thin film.

【0025】[0025]

【発明の効果】本発明により、アルカリ金属、放射性元
素のみならず炭素およびガス成分元素も十分に低減した
高純度のIrターゲットを製造することが可能となり、
それによってこれらの不純物を低減した薄膜形成用高純
度Ir材料を製造することが可能である。そして、本発
明の薄膜形成用高純度Ir材料は、低抵抗でスパッタリ
ング時のパーティクル発生が少なく、形成した薄膜の電
極特性も良好であり、誘電体キャパシタ用電極などの半
導体薄膜形成用材料として好適に用いることができる。
According to the present invention, a high-purity Ir target in which not only alkali metals and radioactive elements but also carbon and gas component elements are sufficiently reduced can be manufactured.
This makes it possible to manufacture a high-purity Ir material for forming a thin film in which these impurities are reduced. In addition, the high-purity Ir material for forming a thin film of the present invention has a low resistance, generates less particles during sputtering, has good electrode characteristics of the formed thin film, and is suitable as a material for forming a semiconductor thin film such as an electrode for a dielectric capacitor. Can be used.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI H01L 21/8242 ──────────────────────────────────────────────────の Continued on front page (51) Int.Cl. 6 Identification code FI H01L 21/8242

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 アルカリ金属元素含有率1ppm以下、
放射性元素含有率各10ppb以下でありさらに炭素及
びガス成分元素含有率が100ppm以下であることを
特徴とする薄膜形成用高純度Ir材料。
An alkali metal element content of 1 ppm or less,
A high-purity Ir material for forming a thin film, characterized in that the content of each radioactive element is 10 ppb or less and the content of carbon and gas component elements is 100 ppm or less.
【請求項2】 アルカリ金属元素含有率各0.1ppm
以下、放射性元素含有率各1ppb以下でありさらに炭
素及びガス成分含有率が10ppm以下であることを特
徴とする薄膜形成用高純度Ir材料。
2. An alkali metal element content of 0.1 ppm each
A high-purity Ir material for forming a thin film, wherein the content of each radioactive element is 1 ppb or less and the content of carbon and gas components is 10 ppm or less.
【請求項3】 白金族以外の遷移金属不純物元素含有率
各10ppm以下であることを特徴とする請求項1また
は2に記載の薄膜形成用高純度Ir材料。
3. The high-purity Ir material for forming a thin film according to claim 1, wherein the content of transition metal impurities other than the platinum group is 10 ppm or less.
【請求項4】 Ir原料に、Irと合金をつくり酸に溶
解する金属を添加しIr合金を製造した後、該Ir合金
を酸もしくは酸とアルカリで浸出することによりIr以
外の成分を溶解除去し、得られたIr残渣を脱ガス処理
した後、電子ビーム溶解することを特徴とする高純度I
r材料の製造方法。
4. An Ir alloy is prepared by adding a metal which forms an alloy with Ir and dissolves in an acid to an Ir raw material to produce an Ir alloy, and then leaches the Ir alloy with an acid or an acid and an alkali to dissolve and remove components other than Ir. Then, after degassing the obtained Ir residue, it is subjected to electron beam melting to obtain high purity I.
r Manufacturing method of material.
【請求項5】 Irと合金をつくる金属としてMn,Z
n,NiまたはCuを用いることを特徴とする請求項3
記載の高純度Ir材料の製造方法。
5. Mn, Z as a metal forming an alloy with Ir
4. The method according to claim 3, wherein n, Ni or Cu is used.
A method for producing a high-purity Ir material as described above.
JP11295898A 1998-04-23 1998-04-23 Method for producing high-purity Ir material for forming thin film Expired - Lifetime JP3411212B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11295898A JP3411212B2 (en) 1998-04-23 1998-04-23 Method for producing high-purity Ir material for forming thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11295898A JP3411212B2 (en) 1998-04-23 1998-04-23 Method for producing high-purity Ir material for forming thin film

Publications (2)

Publication Number Publication Date
JPH11302837A true JPH11302837A (en) 1999-11-02
JP3411212B2 JP3411212B2 (en) 2003-05-26

Family

ID=14599803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11295898A Expired - Lifetime JP3411212B2 (en) 1998-04-23 1998-04-23 Method for producing high-purity Ir material for forming thin film

Country Status (1)

Country Link
JP (1) JP3411212B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002327266A (en) * 2001-04-27 2002-11-15 Furuya Kinzoku:Kk Iridium alloy target material for forming thin film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002327266A (en) * 2001-04-27 2002-11-15 Furuya Kinzoku:Kk Iridium alloy target material for forming thin film

Also Published As

Publication number Publication date
JP3411212B2 (en) 2003-05-26

Similar Documents

Publication Publication Date Title
JP4058777B2 (en) High purity ruthenium sintered compact sputtering target for thin film formation and thin film formed by sputtering the target
KR910003884B1 (en) High melting metal silicide sputtering target and process for preparing the same
WO2000004202A1 (en) Method for preparing high purity ruthenium sputtering target and high purity ruthenium sputtering target
JP3721014B2 (en) Method for manufacturing tungsten target for sputtering
JP2001020065A (en) Target for sputtering, its production and high melting point metal powder material
WO2000038861A1 (en) Method of making high-density, high-purity tungsten sputter targets
JP3727115B2 (en) Manufacturing method of sputtering target
JPH0621346B2 (en) Method for manufacturing high-purity metal tantalum target
CN111945000A (en) Metal purification method
JP3974945B2 (en) Titanium sputtering target
JP4800317B2 (en) High purity Ru alloy target, method for producing the same, and sputtered film
JP2005330591A (en) Sputtering target
JP2003027154A (en) Method of recovering high-purity platinum and palladium
JP3280054B2 (en) Method for manufacturing tungsten target for semiconductor
JP3411212B2 (en) Method for producing high-purity Ir material for forming thin film
WO2023206905A1 (en) High-purity tantalum powder and preparation method therefor
JP2002363662A (en) Method for recovery of high-purity tantalum, high-purity tantalum sputtering target, and thin film deposited by using this sputtering target
JP2000219922A (en) High purity titanium and its production
JP2665928B2 (en) Tantalum powder and method for producing the same
JP2590091B2 (en) Refractory metal silicide target and its manufacturing method
JPH04116161A (en) Titanium target material and production thereof
JPH03107453A (en) Ti-w target and production thereof
JP3086447B1 (en) Tungsten target for sputtering and method for producing the same
JP2954711B2 (en) W-Ti alloy target and manufacturing method
JP4023282B2 (en) Iridium sputtering target manufacturing method and target obtained by the method

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20021001

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030304

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090320

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090320

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100320

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100320

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110320

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110320

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110320

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120320

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120320

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130320

Year of fee payment: 10