JPH02101138A - Spark plug electrode material - Google Patents
Spark plug electrode materialInfo
- Publication number
- JPH02101138A JPH02101138A JP25147888A JP25147888A JPH02101138A JP H02101138 A JPH02101138 A JP H02101138A JP 25147888 A JP25147888 A JP 25147888A JP 25147888 A JP25147888 A JP 25147888A JP H02101138 A JPH02101138 A JP H02101138A
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- chip
- ppm
- wear resistance
- amount
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000007772 electrode material Substances 0.000 title claims abstract description 17
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 21
- 239000000463 material Substances 0.000 claims abstract description 18
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 17
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 17
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 8
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 8
- 229910000599 Cr alloy Inorganic materials 0.000 claims abstract description 5
- 229910052742 iron Inorganic materials 0.000 claims abstract description 4
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 32
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 20
- 239000001301 oxygen Substances 0.000 claims description 20
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 15
- 229910052804 chromium Inorganic materials 0.000 abstract description 5
- 230000001105 regulatory effect Effects 0.000 abstract 1
- 239000011651 chromium Substances 0.000 description 89
- 238000000034 method Methods 0.000 description 26
- 230000000052 comparative effect Effects 0.000 description 19
- 238000012360 testing method Methods 0.000 description 16
- 239000000843 powder Substances 0.000 description 13
- 239000002994 raw material Substances 0.000 description 13
- 239000007789 gas Substances 0.000 description 11
- 239000012535 impurity Substances 0.000 description 11
- 239000000956 alloy Substances 0.000 description 9
- 229910045601 alloy Inorganic materials 0.000 description 8
- 238000012545 processing Methods 0.000 description 8
- 238000005245 sintering Methods 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 7
- 238000005299 abrasion Methods 0.000 description 5
- 238000002485 combustion reaction Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 239000002244 precipitate Substances 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 4
- AYOOGWWGECJQPI-NSHDSACASA-N n-[(1s)-1-(5-fluoropyrimidin-2-yl)ethyl]-3-(3-propan-2-yloxy-1h-pyrazol-5-yl)imidazo[4,5-b]pyridin-5-amine Chemical compound N1C(OC(C)C)=CC(N2C3=NC(N[C@@H](C)C=4N=CC(F)=CN=4)=CC=C3N=C2)=N1 AYOOGWWGECJQPI-NSHDSACASA-N 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 229910052593 corundum Inorganic materials 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 238000004200 deflagration Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 150000001247 metal acetylides Chemical class 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 230000008646 thermal stress Effects 0.000 description 2
- 229910001845 yogo sapphire Inorganic materials 0.000 description 2
- ONPGOSVDVDPBCY-CQSZACIVSA-N 6-amino-5-[(1r)-1-(2,6-dichloro-3-fluorophenyl)ethoxy]-n-[4-(4-methylpiperazine-1-carbonyl)phenyl]pyridazine-3-carboxamide Chemical compound O([C@H](C)C=1C(=C(F)C=CC=1Cl)Cl)C(C(=NN=1)N)=CC=1C(=O)NC(C=C1)=CC=C1C(=O)N1CCN(C)CC1 ONPGOSVDVDPBCY-CQSZACIVSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 1
- ODUIXUGXPFKQLG-QWRGUYRKSA-N [2-(4-chloro-2-fluoroanilino)-5-methyl-1,3-thiazol-4-yl]-[(2s,3s)-2,3-dimethylpiperidin-1-yl]methanone Chemical compound C[C@H]1[C@@H](C)CCCN1C(=O)C1=C(C)SC(NC=2C(=CC(Cl)=CC=2)F)=N1 ODUIXUGXPFKQLG-QWRGUYRKSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- UFGZSIPAQKLCGR-UHFFFAOYSA-N chromium carbide Chemical compound [Cr]#C[Cr]C#[Cr] UFGZSIPAQKLCGR-UHFFFAOYSA-N 0.000 description 1
- 229910000423 chromium oxide Inorganic materials 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000010891 electric arc Methods 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000005242 forging Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 229910001026 inconel Inorganic materials 0.000 description 1
- 229910001055 inconels 600 Inorganic materials 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- XULSCZPZVQIMFM-IPZQJPLYSA-N odevixibat Chemical compound C12=CC(SC)=C(OCC(=O)N[C@@H](C(=O)N[C@@H](CC)C(O)=O)C=3C=CC(O)=CC=3)C=C2S(=O)(=O)NC(CCCC)(CCCC)CN1C1=CC=CC=C1 XULSCZPZVQIMFM-IPZQJPLYSA-N 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000009991 scouring Methods 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 238000007873 sieving Methods 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000011856 silicon-based particle Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 229910003470 tongbaite Inorganic materials 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- KMIOJWCYOHBUJS-HAKPAVFJSA-N vorolanib Chemical compound C1N(C(=O)N(C)C)CC[C@@H]1NC(=O)C1=C(C)NC(\C=C/2C3=CC(F)=CC=C3NC\2=O)=C1C KMIOJWCYOHBUJS-HAKPAVFJSA-N 0.000 description 1
Landscapes
- Spark Plugs (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の目的〕
(産業上の利用分野)
本発明は、内燃機関に用いられる点火プラグに係り、特
に改良した耐消耗性を有する点火プラグ電極材料に関す
る。DETAILED DESCRIPTION OF THE INVENTION OBJECTS OF THE INVENTION (Industrial Field of Application) The present invention relates to spark plugs used in internal combustion engines, and more particularly to spark plug electrode materials having improved wear resistance.
(従来の技術)
ガソリンエンジンの燃焼室には、シリンダ内で圧縮され
た爆燃ガスを点火爆発させるための点火栓が装着されて
いる。点火栓の軸心には電極が埋設され、その先端は点
火栓から燃焼室に突出しており、ここに点火コイルでつ
くられた高電圧を印加することによりスパーク放電が発
生せしめられる。(Prior Art) A combustion chamber of a gasoline engine is equipped with an ignition plug for igniting and exploding the deflagration gas compressed within the cylinder. An electrode is embedded in the axis of the spark plug, and its tip protrudes from the spark plug into the combustion chamber, and a spark discharge is generated by applying a high voltage generated by the ignition coil to this electrode.
したがって、この点火栓電極の材料には、耐熱性が優れ
ることと並んで爆燃ガスの中の腐食成分によっても腐食
されないというすぐれた耐消耗特性が要求される。Therefore, the material of the spark plug electrode is required to have excellent heat resistance and also excellent wear resistance such that it will not be corroded by corrosive components in the deflagration gas.
従来、このような電極材料としては、■−Cr5重星%
以下方、他にMnが5重量%以下、Siが5重量%以下
、残部が実質的にNiから成るNi基低合金が多用され
てきた。Conventionally, such electrode materials include ■-Cr 5 star%
Below, Ni-based low alloys consisting of 5% by weight or less of Mn, 5% by weight or less of Si, and the remainder substantially Ni have been frequently used.
他の例として■:耐食性に有効な成分であるCrを比較
的多量に含有せしめた例えばインコネル600のような
Ni基合金も使用されている。As another example, ■: Ni-based alloys such as Inconel 600 containing a relatively large amount of Cr, which is an effective component for corrosion resistance, are also used.
また、他の試みとして、■:更にCrの量を多くしたほ
ぼ純Crからなる材料の検討もなされている。In addition, as another attempt, (2): A material made of almost pure Cr with a further increased amount of Cr has been studied.
(発明が解決しようとする課題)
しかしながら、最近、低燃費化、高性能化、各種の油種
の使用などの要請に基づき点火栓電極の使用環境は苛酷
な状態になり、上記したような材料で充分に耐え得なく
なってきている。(Problem to be solved by the invention) However, in recent years, the environment in which spark plug electrodes are used has become harsher due to demands for lower fuel consumption, higher performance, use of various types of oil, etc. It's getting to the point where I can't stand it anymore.
例えば上記■、■の合金材料にあっては、点火プラグの
電極に要求される特性を一応満足するものではあるが、
最近要求の強い点火プラグの長寿命化、低コスI・化の
課題に対しては、まだ改良すべき点か多い。For example, the alloy materials listed in ■ and ■ above satisfy the characteristics required for spark plug electrodes, but
There are still many points that need to be improved in order to meet the recent demands for longer life and lower cost I for spark plugs.
また、上記■の電極材料においても、点火プラグの電極
に要求される特性を一応満足するものの、点火プラグの
加]二性(低コスト化と相関性が高い)に対しては、こ
れを点火プラグ電極に強加工した場合、電極中にクラッ
ク(亀裂)、割れ、欠けが発生するなどの問題がある。In addition, although the electrode material described in (1) above also satisfies the characteristics required for spark plug electrodes, it is difficult to ignite due to the secondary properties of spark plugs (highly correlated with cost reduction). If the plug electrode is subjected to severe processing, problems such as cracks, cracks, and chips may occur in the electrode.
更にここで言う加工性は、上述したプラグ電極チップ用
として所定形状に加工すること以外に、ベース金属との
接合性(例えば銀ロウ付は性、圧接性など)も含まれる
が、従来の材料はこれらの加工性においても改善される
余地がある。Furthermore, the workability referred to here includes not only the processing into a predetermined shape for the plug electrode tip described above, but also the bondability with the base metal (for example, silver soldering properties, pressure bondability, etc.), but conventional materials There is also room for improvement in these processability.
本発明は、耐消耗性にすぐれ、加工性を改善した信頼性
のある点火プラグ用電極材料を提供することを目的とし
ている。An object of the present invention is to provide a reliable electrode material for a spark plug that has excellent wear resistance and improved workability.
(課題を解決するための手段)
本発明者らは、上記目的を達成すべく、前記■のインコ
ネル60−0をベースとするNi基合金に於ける各成分
の点火プラグ電極特性への影響を追求したところ、高C
「のNi基合金は、必要とされる耐消耗性を損うことな
く硬さが低下して加工性が改善されるとの知見を得た。(Means for Solving the Problems) In order to achieve the above object, the present inventors investigated the influence of each component on the spark plug electrode characteristics in the Ni-based alloy based on Inconel 60-0 mentioned above. When I investigated, I found that high C
It has been found that the Ni-based alloys shown in the above have lower hardness and improved workability without compromising the required wear resistance.
これに基き本発明者らは、更に高Cr材料について改良
研究を重ねた結果、本発明の点火プラグ電極を開発する
に到った。Based on this, the present inventors further conducted improvement research on high Cr materials, and as a result, they developed the spark plug electrode of the present invention.
すなわち、本発明の点火プラグ電極材料は、9596以
上の相対密度(対理論密度比)を有し実質的にCrまた
はCr合金からなるチップによって構成された電極材料
であって、前記チップ中のAl及びSlの含有量として
は、Alが50 ppm以下(ゼロ含まず) 1.S
lが50 ppm以下(ゼロ含まず)の条件を満足し、
しかも前記Cr中の酸素、窒素、炭素の含有量としては
、酸素が500ppI11以下(ゼロ含まず)、窒素が
100 ppm以下(ゼロ含まず)、炭素が500pp
ffl以下(ゼロ含まず)の条件を満足することを特徴
としている。That is, the spark plug electrode material of the present invention is an electrode material constituted by a tip having a relative density (relative to theoretical density ratio) of 9596 or more and consisting essentially of Cr or a Cr alloy, wherein Al in the tip And as for the content of Sl, Al is 50 ppm or less (not including zero) 1. S
l satisfies the condition of 50 ppm or less (not including zero),
Furthermore, the content of oxygen, nitrogen, and carbon in the Cr is as follows: oxygen is 500 ppm or less (not including zero), nitrogen is 100 ppm or less (not including zero), and carbon is 500 ppm or less.
It is characterized by satisfying the condition of less than or equal to ffl (not including zero).
第1図は、本発明の点火プラグ電極材料を装着した点火
プラグの一実施例の一部断面図であり、第2図は部分拡
大図である。FIG. 1 is a partial sectional view of an embodiment of a spark plug equipped with the spark plug electrode material of the present invention, and FIG. 2 is a partially enlarged view.
これらの図に於いて、中心電極1及び接地電極2は従来
のプラ′グ電極用合金であり、例えば純Ni及びCrを
含有したNi基、Fe基、Co基合金である。中心電極
1及び接地電極2の先端には、場合によっては熱応力緩
衝材IA、2Aを介して、IB、2Bの本発明のCrチ
ップ、即ち、Al、Si含有量を夫々50ppm以下、
酸素、窒素、カーボンの夫々を500pI)抑、1.
OOppm s500 ppa+以下に制御したCrで
構成されたCrチップが接合されている。In these figures, the center electrode 1 and the ground electrode 2 are conventional alloys for plug electrodes, such as Ni-based, Fe-based, or Co-based alloys containing pure Ni and Cr. At the tips of the center electrode 1 and the ground electrode 2, the Cr chips of the present invention of IB and 2B, i.e., with Al and Si contents of 50 ppm or less, respectively, are applied via thermal stress buffer materials IA and 2A, depending on the case.
Suppression of oxygen, nitrogen, and carbon by 500 pI each; 1.
A Cr chip made of Cr controlled to OOppm s500 ppa+ or less is bonded.
第1図に於いて、3は中心電極1を覆う絶縁体、4は中
心端子、5は低抗体、6は内燃機関のシリンダヘッドへ
の取付ネジ部である。In FIG. 1, numeral 3 is an insulator covering the center electrode 1, 4 is a center terminal, 5 is a low antibody, and 6 is a screw portion for attachment to the cylinder head of an internal combustion engine.
なお、場合によっては、中心電極1、接地電極2のいず
れか一方は、C「チップ及び熱応力緩衝材を用いなくと
も良い。即ち、通常、中心電極、接地電極の少なくとも
一方をCrチップで構成すれば十分である。そして、上
記の様に点火プラグを構成する事によって、画電極の耐
消耗性を大幅に向上させる事ができる。In some cases, either the center electrode 1 or the ground electrode 2 does not need to use a C chip or a thermal stress buffer. In other words, usually, at least one of the center electrode and the ground electrode is made of a Cr chip. By configuring the spark plug as described above, the wear resistance of the picture electrode can be greatly improved.
本発明の点火プラグ電極は、中心電極、接地屯極の少な
くとも一方にCrを使うことが重要であり、しかもCr
中のAl5Si、酸素、窒素、カーボンの量を所定量範
囲に限定することがポイントである。これらの元素を前
記の範囲に制限することは、本発明のプラグ電極材料の
耐消耗性の向上に重要であるばかりでなく、CR主電極
安定してかつ経済的に得る為の加工性の維持向上にも重
要である。In the spark plug electrode of the present invention, it is important to use Cr for at least one of the center electrode and the ground electrode, and moreover, Cr
The key point is to limit the amounts of Al5Si, oxygen, nitrogen, and carbon within a predetermined range. Limiting these elements to the above ranges is not only important for improving the abrasion resistance of the plug electrode material of the present invention, but also for maintaining processability in order to stably and economically obtain the CR main electrode. It is also important for improvement.
更に本発明の点火プラグ電極においては、中心電極、接
地電極の少なくとも一方に、Fe、C。Furthermore, in the spark plug electrode of the present invention, at least one of the center electrode and the ground electrode contains Fe or C.
およびNiの少なくとも1種をQ、 1〜10vt%
含有するCr合金を使用してもよい。and at least one type of Ni, Q, 1 to 10 vt%
A Cr alloy containing Cr may also be used.
すなわち、加工性については、電極形状に加工する際に
、Crチップの表面或いは特に角部に発生するクラック
、割れ、欠けを抑制する必要があり、このためには加工
機械、加工条件の選定以外にCrチップ素祠の密度が重
要であり、密度が理論密度に対し95%未満では、割れ
などが表面に多く見られる傾向になるので避ける必要が
ある。In other words, regarding workability, it is necessary to suppress cracks, splits, and chips that occur on the surface or especially at the corners of the Cr chip when processing it into an electrode shape. The density of the Cr chip abrasive is important, and if the density is less than 95% of the theoretical density, cracks and the like will tend to appear on the surface, so it must be avoided.
このような場合には、プラグ電極としての耐消耗性が顕
著に劣る。従って、空隙を極力少な(制御するためにC
rチップ素材を得るときの焼結過程に於て、焼結性を促
進させ健全なC「チップ素材を得るために、上記Fe5
CoSNiの補助成分の添加は、加工時の割れ、欠は防
止に一層有益であり、より平滑な加工表面を得るのに有
利である。In such a case, the wear resistance as a plug electrode is significantly inferior. Therefore, the number of voids is as small as possible (in order to control C
In the sintering process when obtaining r-chip material, the above Fe5
Addition of the auxiliary component CoSNi is more effective in preventing cracking and chipping during processing, and is advantageous in obtaining a smoother processed surface.
平滑な加工面は、安定かつばらつきの少ない火花電圧を
得る効果も持つ。A smooth machined surface also has the effect of obtaining a stable and consistent spark voltage.
(実施例)
第1図に示すような点火プラグの中心電極及び接地電極
に、本発明のCrチップを装着し、後述する方法、条件
にて、耐消耗性のテストを行った。(Example) The Cr chip of the present invention was attached to the center electrode and ground electrode of a spark plug as shown in FIG. 1, and a wear resistance test was conducted using the method and conditions described below.
テストに供したCrチップの耐消耗性テスト後の電極の
アーク損傷状況を顕微鏡的に観察したところ、Cr電極
先端よりひび割れや、裂けか、チップの結晶粒界に沿っ
て成長している。特に、裂け、ひび割れは、条件によっ
てはチップから部分的に離脱し材料消耗に影響を与えて
いる。また上記裂け、ひび割れの成長は、結晶粒界中に
粒径が数μm程度のA I OS i O2、Cr2
032 3ゝ
などの介在物が存在すると放電が選択的に集中し、結果
的に著しい材料消耗を呈することが判った。A microscopic observation of the arc damage on the electrode after the abrasion resistance test of the Cr chip used in the test revealed that cracks and tears appeared from the tip of the Cr electrode, or they grew along the grain boundaries of the chip. In particular, tears and cracks can cause parts to separate from the chip depending on the conditions, affecting material consumption. In addition, the growth of the above-mentioned splits and cracks is caused by A IOS i O2, Cr2 with a grain size of about several μm in the grain boundaries.
It has been found that the presence of inclusions such as 0323゜ causes selective concentration of discharge, resulting in significant material consumption.
これら介在物は、一般に粒界に点在する為、前記裂け、
ひび割れが結晶粒界に沿って成長する。These inclusions are generally scattered at grain boundaries, so the cracks and
Cracks grow along grain boundaries.
従って上記知見からすれば、Cr電極の耐消耗性の改善
には、Al2O3など介在物の除去が重要であることを
示唆している。Therefore, the above findings suggest that removal of inclusions such as Al2O3 is important for improving the wear resistance of Cr electrodes.
初めから酸化物の形態を持ち、原料粉中に単に混入して
いる酸化物などの異物については、原料粉との比重差を
利用した沈降法による除去、或いは粒径の違いを利用し
、主として篩いわけで予め除去できる。これらの作業を
与えることによって消耗の軽減化に対して好結果を示し
た。Foreign substances such as oxides that are in the form of oxides from the beginning and are simply mixed into the raw material powder are removed by a sedimentation method that takes advantage of the difference in specific gravity with the raw material powder, or by using the difference in particle size. It can be removed in advance using a sieve. By giving these tasks, good results were shown in reducing wear and tear.
しかし問題は、原料中に固溶或いは析出して存在する不
純物である。これらは篩いわけ、比重差では、除去する
ことが出来ず消耗を大きくす゛る一要因を占めているこ
とが考えられた。しかしそれでもその解決の一つの手段
として原料粉(Cr粉)を十分吟味し不純物のより少な
い原料粉を選択することで異常消耗現象の発生は、より
一層軽減化される傾向にあることを認めた。However, the problem is impurities that exist as a solid solution or precipitate in the raw materials. It was thought that these could not be removed by sieving and the difference in specific gravity was one of the factors that increased the consumption. However, as a means of solving this problem, it was recognized that by carefully examining the raw material powder (Cr powder) and selecting a raw material powder with fewer impurities, the occurrence of abnormal consumption phenomena tends to be further reduced. .
このように、不純物(ここでは主として酸化物)の少な
い原料粉の選択は、著しい消耗現象の軽減に対して効果
は認められるものの、厳密な実験を進めると未だ改善の
余地のあることを本発明者らは認めた。In this way, although the selection of raw material powder with few impurities (mainly oxides here) is effective in reducing the remarkable consumption phenomenon, rigorous experiments revealed that there is still room for improvement. they admitted.
すなわち、Cr粉中の不純物が実質的に認められないロ
ットを選択し、これをCr原料とし、点火プラグ用Cr
電極を製造したにもかかわらず、Cr中に析出物の存在
を認めるものと析出物の存在のないものとが得られ、こ
れらの耐消耗特性を比較したところ、前者の析出物の存
在する合金を使った点火プラグに、より多くの消耗が発
生していることが判明した。That is, a lot in which impurities in the Cr powder are not substantially recognized is selected, and this is used as a Cr raw material to produce Cr powder for spark plugs.
Despite manufacturing electrodes, we obtained two types: one with the presence of precipitates in Cr and one with no precipitates, and when we compared the wear resistance properties of these, we found that the former alloy with precipitates It was found that more wear and tear occurred on the spark plugs that were used.
このような析出物は、Cr粉中に固溶していた成る種の
元素と、焼結中の雰囲気との反応によって生成した不純
物であると推考される。従って耐消耗特性の一層の改善
には、原料に単に混入している酸化物などの不純物以外
に、原料中に特に固溶している或種の元素(固溶状態に
あるため顕微鏡的には、一般に検出確認出来ない)に注
目する必要性のあることを示唆している。すなわち、特
に点火プラグ用Cr電極の製造に於ては一連の工程を通
して管理する必要性を示唆している。一連の工程とは、
焼結によって点火プラグ用Cr電極を製作する工程に於
て所定条件を備えた原料の選択であり、焼結条件の制御
、さらにCr板の製作、の各技術を意味する。It is assumed that such precipitates are impurities generated by a reaction between certain elements dissolved in the Cr powder and the atmosphere during sintering. Therefore, in order to further improve the wear resistance, it is necessary to not only contain impurities such as oxides that are simply mixed in the raw materials, but also to contain certain elements that are dissolved in the raw materials (because they are in a solid solution state, they cannot be seen microscopically). This suggests that there is a need to pay attention to (generally, detection cannot be confirmed). In other words, this suggests the necessity of controlling through a series of processes, especially in the production of Cr electrodes for spark plugs. What is the series of processes?
This refers to the selection of raw materials that meet predetermined conditions in the process of manufacturing Cr electrodes for spark plugs by sintering, and refers to techniques for controlling sintering conditions and manufacturing Cr plates.
本発明方法の実施に於て、Cr粉中の不純物の種類なら
びにその量は他の工程へも影響を与え、極めて重要であ
る。既に述べたように、著しい消耗の原因となる酸化物
(Al O5102)2 3ゝ
或いはCr粉中に固溶している金属(AlSSi)と、
焼結又は加工中の雰囲気との反応・によって新たに生成
した酸化物が特に問題である。著しい消耗現象の発生頻
度の高い点火プラグ用C「電極は先にも述べたようにC
r中のこれらの量が多く、相関性が得られた。In implementing the method of the present invention, the type and amount of impurities in the Cr powder are extremely important as they also affect other processes. As already mentioned, the oxide (AlO5102)23' that causes significant consumption or the metal (AlSSi) dissolved in Cr powder,
Newly formed oxides due to reaction with the atmosphere during sintering or processing are particularly problematic. As mentioned earlier, the C electrode for spark plugs, which frequently suffers from significant wear and tear, is
The amounts of these in r were large and a correlation was obtained.
他の工程とも関連づけ発生頻度を検討すると、Al s
S iの含有量は夫々50 ppa+以下、であるこ
とが目安であり、またCr中の酸素、窒素の含有量も少
なくとも夫々500ppm 、 100ppm以下が好
ましい。Al5Siなどが前記50 ppIllの数値
を上まわる場合には、後の工程に於ける焼結での雰囲気
ガスとの反応及び燃焼室雰囲気ガスとの反応などによる
生成物の生成量も多く、耐消耗特性の向上に対して好ま
しくない。When considering the frequency of occurrence in relation to other processes, Al s
The content of Si is preferably 50 ppm or less, respectively, and the content of oxygen and nitrogen in Cr is preferably at least 500 ppm and 100 ppm or less, respectively. When Al5Si etc. exceeds the above-mentioned value of 50 ppIll, a large amount of products are generated due to reaction with the atmospheric gas in the sintering process in the subsequent process and reaction with the combustion chamber atmospheric gas, resulting in poor wear resistance. Unfavorable for improving properties.
また、カーボンの加工性へ及ぼす影響も酸素、窒素と同
様なものである。すなわちC「の結晶粒界へのクロム・
炭化物の析出により加工性を著しく害し、厚さIIII
+1又はそれ以下の薄板化を必要とするプラグ電極材料
としての加工性を考慮した場合、Cr中のカーボンは5
00 ppm以下に抑制することが望ましい。粒界に析
出したCr炭化物の選択的脱落によって耐消耗性を低下
する。Further, the influence of carbon on workability is similar to that of oxygen and nitrogen. In other words, chromium to the grain boundaries of C
Precipitation of carbides significantly impairs workability, and the thickness
Considering workability as a plug electrode material that requires thinning of +1 or less, the carbon in Cr is 5
It is desirable to suppress it to 0.00 ppm or less. Wear resistance decreases due to selective dropout of Cr carbides precipitated at grain boundaries.
原料C「の調整
現在、工業的に供給されている金属Crめ精練法は、F
eCr OMgCr2O4などの24ゝ
C「鉱石をAl或いはSiなど他の金属で還元し金属C
rを得る方法(還元法)、及び前記Cr鉱石を溶解し未
溶解の非金属不純物の分離を行い、これを電界液として
電気分解し金属Crを得る方法(電解法)の両方法が主
体である。Preparation of raw material C Currently, the scouring method for metal Cr currently supplied industrially is F.
24゜C such as eCr OMgCr2O4 ore is reduced with other metals such as Al or Si to produce metal C.
There are two main methods: a method for obtaining r (reduction method), and a method for dissolving the Cr ore, separating undissolved non-metallic impurities, and electrolyzing this using an electrolyte to obtain metal Cr (electrolytic method). be.
しかし、前者の還元法によって得られたCrは、ガス量
(酸素、窒素)、が1,000ppm程度、Al、Si
、Feなど不純物を数1 、 000 ppI11〜1
0.OOOppIm程度含有している。一方後者の電解
法によるCrは、逆にガス量(酸素、窒素)が1,00
0ppm〜10,000ppmと著しく多く、Al等の
不純物が比較的少なく、例えば数100ppm1程度以
下含有するのが一般的である。However, Cr obtained by the former reduction method has a gas amount (oxygen, nitrogen) of about 1,000 ppm, Al, Si
, impurities such as Fe, number 1,000 ppI11~1
0. Contains approximately OOOppIm. On the other hand, when producing Cr using the latter electrolytic method, the amount of gas (oxygen, nitrogen) is 1,000
It is extremely high, ranging from 0 ppm to 10,000 ppm, and contains relatively little impurities such as Al, for example, generally about several 100 ppm or less.
このようにAl s S iなどの不純物及び酸素など
のガスのいずれかが多いのが一般的である。As described above, it is common that either impurities such as Al s Si or gas such as oxygen are present in large amounts.
数個のCrチップを加工後、耐消耗性テストに供したと
ころ、耐消耗性に大きなばらつきを呈することか観察さ
れた。すなわち主として酸素量が7 X 10. p
pm含有するCrと7X102ppm含有するCrとで
は前者の方り(消耗テスト中のアクの拡がりが大きく、
かつ消耗量も大である傾向にありガス量も、耐消耗性に
関係していることを示唆している知見を得た。When several Cr chips were processed and subjected to a wear resistance test, it was observed that the wear resistance exhibited large variations. That is, mainly the amount of oxygen is 7 x 10. p
Cr containing pm and Cr containing 7X102ppm are more likely to be the former (the spread of scum during the wear test is large,
Moreover, the amount of gas consumption tends to be large, and we obtained findings suggesting that the amount of gas is also related to the consumption resistance.
尚、ガス量が比較的少なくてもAl5Siなどが多い場
合には、消耗テスト初期には安定した耐消耗性を示すが
、放電の経過と共にある時期で急激に、消耗が増大する
場合が見られ、Cr中のAl SS iなどが放電雰囲
気中のわずかな酸素によって酸化し、A I 203、
SiO2を形成した為、この形成した時点より消耗速度
が変化したものと考えられる。In addition, even if the amount of gas is relatively small, if there is a large amount of Al5Si, etc., stable wear resistance is shown at the beginning of the wear test, but as the discharge progresses, there are cases where wear increases suddenly at a certain point. , Al SS i in Cr is oxidized by a small amount of oxygen in the discharge atmosphere, and A I 203,
It is thought that because SiO2 was formed, the wear rate changed from the time of its formation.
従ってAl、Siなどは、初めからAl2O3、SiO
2などの形態を持たないCr中に固溶したAl5Siで
も少なく抑制する必要性のあることを示唆している。Therefore, Al, Si, etc. are originally Al2O3, SiO
This suggests that even Al5Si dissolved in Cr that does not have a form such as 2 needs to be suppressed to a small extent.
一方、Crチップの裂け、ひび割れは、前述した□Cr
中のA I 203、S io 2、C「203など介
在物、酸素などガスのみならずCr自体の脆さに起因す
る加工性の悪さも原因となっている。On the other hand, the tearing and cracking of the Cr chip is caused by the aforementioned □Cr
The cause is not only inclusions such as A I 203, S io 2, and C 203, gases such as oxygen, but also poor workability due to the brittleness of Cr itself.
す、なわち、加工時の衝撃や、加圧によって生じたC「
表面のミクロのクラックが引金となり、太きなひび割れ
、或いは裂けに発展する場合も観察される。従ってCr
チップの加工性を確保することも、耐消耗性を確保する
上で、重要な因子であることを示唆している。すなわち
前述したようにC「チップ中に残存する空隙(不完全な
焼結状態)が多いと、クラックの引金となり、耐消耗性
が劣る。In other words, C" caused by shock during machining and pressure
It has also been observed that microscopic cracks on the surface become a trigger and develop into larger cracks or tears. Therefore, Cr
This suggests that ensuring chip processability is also an important factor in ensuring wear resistance. That is, as mentioned above, if there are many voids (incompletely sintered state) remaining in the C chip, it will trigger cracks and the wear resistance will be poor.
観察によれば、前述のひび割れ、裂けなどが結晶粒界に
沿って進行する際、Fe、Co、Niを含有するCrチ
ップにおいては、焼結性の改善による結晶粒界の健全化
の為、前記ひび割れ等による脱落は軽減化された。Fe
5Co、Niの少なくとも1つの合計量が10vt%以
上では、Crとしての耐食性を示さず不利となることも
認められた。According to observations, when the aforementioned cracks and fissures progress along grain boundaries, in Cr chips containing Fe, Co, and Ni, the grain boundaries become healthy due to improved sinterability. Falling off due to the cracks and the like was reduced. Fe
It was also found that when the total amount of at least one of 5Co and Ni is 10 vt% or more, it does not exhibit the same corrosion resistance as Cr, which is disadvantageous.
評価条件;
耐消耗性
高圧大気中(5kg/cm)で中心、接地両電極間に通
常のイグニッション点火システムを介して12000回
/分のアーク放電を生じさせ、100時間試験後の体積
減量を測定した。Evaluation conditions: Abrasion resistance: 12,000 arc discharges per minute are generated between the center and ground electrodes in a high-pressure atmosphere (5 kg/cm) via a normal ignition system, and the volume loss is measured after a 100-hour test. did.
加工性: 所定のCr板材を1順まで圧延加工したとき
の加工性をもって表わし、
X: 全く加工が不可能だったもの
Δ: 加工はできたが割れ等の著しいものO: 良好に
加工できたもの
の記号で表わす。Workability: Expressed by the workability when a given Cr plate material is rolled up to the first order. Represent something with a symbol.
実施例1〜31.比較例1〜2
サイズ直径約3mrms厚さ1關の各種Crチップを中
心電極の先端に接着し、またサイズ縦×横×厚さが2.
5X2XO,5の各種C「チップを接地電極の先端に接
着し、両者を対面させ前述の方法、条件で耐消耗性を評
価する為のベンチテストに供した。Examples 1-31. Comparative Examples 1 and 2 Various types of Cr chips with a diameter of about 3 mrms and a thickness of 1 mrms were glued to the tip of the center electrode, and the size was 2 mrms in length x width x thickness.
A 5×2
尚、各Crチップのうち、圧延法によってCrチップの
製作が困難なもの(表1及び表2に於て×印及びΔ印)
については、厚板から切削及び研摩仕上げによる方法に
よって、試験片を得た。In addition, among each Cr chip, those that are difficult to manufacture by rolling method (X mark and Δ mark in Tables 1 and 2)
A test piece was obtained by cutting a thick plate and polishing it.
加工性及び耐消耗性の評価結果を表1に示す。Table 1 shows the evaluation results of workability and wear resistance.
表1から明らかなように、Crチップ中のAlが300
1)I)111以上、310.ppm(比較例1.2)
の場合に特に前者では1、薄板への加工が困難であり、
後者に於ても亀裂、ひび割れが表面から内部深くまで発
生した上に消耗が大きく、ばらつきも見られて好ましく
ないことが判った。これに対しCrチップ中のAlの量
が50 ppm以下(実施例1゜2.3)では所定の板
厚に加工出来る上に、耐消耗性も良好であった。As is clear from Table 1, Al in the Cr chip is 300
1) I) 111 or more, 310. ppm (Comparative Example 1.2)
In the case of 1, it is difficult to process into thin plates, especially in the former case.
The latter was also found to be undesirable, as cracks and crazing occurred from the surface to deep inside, as well as large wear and dispersion. On the other hand, when the amount of Al in the Cr chip was 50 ppm or less (Example 1°2.3), it was possible to process the board to a predetermined thickness, and the wear resistance was also good.
ベンチテスト後のこれらの各Crチップの表面及び内部
を顕微鏡的にマクロ及びミクロ観察すると、Alの多い
比較例1.2では表面に弗裂が多い上に、結晶粒界にA
l2O3が点存し、集中した放電痕跡と脱落した状況が
見られこれらが耐消耗性を阻害したものと考えられる。Macro and microscopic observation of the surface and interior of each of these Cr chips after the bench test revealed that Comparative Example 1.2, which contains a large amount of Al, had many fissures on the surface and also had A at the grain boundaries.
12O3 was present, concentrated traces of discharge, and falling off, and it is thought that these impeded the wear resistance.
これに対してAl量の少ない実施例1,2.3に於ては
、ベンチテスト後のチップの結晶粒界での介在物は極く
わずかであり、特に放電の集中跡も少なく好ましい状況
であった。結果を表−1に示す。On the other hand, in Examples 1 and 2.3 with a small amount of Al, there were very few inclusions at the grain boundaries of the chip after the bench test, and there were especially few traces of discharge concentration, which was a favorable situation. there were. The results are shown in Table-1.
以上によってCrチップ中のAlの量は加工性及び耐消
耗性に重要な影響を与え、その量は50ppm以下に抑
制することが好ましい。尚、5 ppIll(実施例−
3)より少ないAl量でも、これらの特性は当然向上す
ることが考えられるが現実的に工業的にはこれ以下の量
に抑制することが困難であった。As described above, the amount of Al in the Cr chip has an important influence on workability and wear resistance, and it is preferable to suppress the amount to 50 ppm or less. In addition, 5 ppIll (Example-
3) Although it is thought that these properties can naturally be improved even if the amount of Al is smaller, it has been difficult to suppress the amount to less than this in practical industrial terms.
比較例3〜4、実施例4〜6
前記実施例1〜3、比較例1〜2と同様な方法でベンチ
テストを行った。尚、供試Crチップも同じ条件、工程
で作成した。表1に示した加工性、耐消耗性のテスト結
果から明らかなように、Crチップ中のSi量が200
0 ppI11以上及び290ppm (比較例3.
4)の場合に、特に前者では薄板への加工が困難であり
、また後者に於ても亀裂、ひび割れが表面及び、内部の
深部まで発生した上に消耗も大きくばらつきも見られ好
ましくないことが判明した。Comparative Examples 3-4, Examples 4-6 A bench test was conducted in the same manner as in Examples 1-3 and Comparative Examples 1-2. Incidentally, a sample Cr chip was also produced under the same conditions and process. As is clear from the workability and wear resistance test results shown in Table 1, the amount of Si in the Cr chip is 200%.
0 ppI 11 or more and 290 ppm (Comparative Example 3.
In the case of 4), it is particularly difficult to process the former into a thin plate, and the latter is also undesirable because cracks occur on the surface and deep inside, and wear and tear are also seen in large variations. found.
これに対してC「チップ中のSi量が50 ppm以下
(実施例4.5.’6)では、所定の板厚に加工出来る
上に耐消耗性も良好であった。On the other hand, when the amount of Si in the C chip was 50 ppm or less (Examples 4, 5, and 6), it was possible to process the plate to a predetermined thickness and the wear resistance was also good.
ベンチテスト後、これらの各Crチップの表面及び内部
の顕微鏡的にマクロ及びミクロ観察すると、Siの多い
比較例3.4では、表面に亀裂が多い上に結晶粒界に8
102が点在し、これに放電が集中したように見られる
痕跡と、脱落した状況が見られ、これらが耐消耗性を阻
害したものと見られる。After the bench test, macroscopic and microscopic observations of the surface and interior of each of these Cr chips revealed that in Comparative Example 3.4, which has a large amount of Si, there were many cracks on the surface and 8.
102 were scattered, and there were traces of discharge that seemed to be concentrated there, as well as a situation where they had fallen off, and it is thought that these impeded the wear resistance.
これに対して、5iffiの少ない実施例4,5゜6に
於てはベンチテスト後のチップの結晶粒界での酸化物の
介在は極くわずかであり、特に放電の集中跡も少なく好
ましい状態であった。結果を表−1に示す。On the other hand, in Examples 4, 5 and 6, where 5iffi is small, there is very little oxide intervening at the crystal grain boundaries of the chip after the bench test, and there are especially few traces of discharge concentration, which is a favorable condition. Met. The results are shown in Table-1.
以上によってCrチップ中のSiの童は、加工性及び耐
消耗性に重要な影響を与え、その量は50 ppm以下
に抑制することが好ましい。尚5ppI11(実施例−
6)より少ないSi値でもこれらの特性は、当然向上す
ることが考えられるが、現実的これ以上に少なく抑制す
ることが困難であった。As described above, the Si particles in the Cr chip have an important influence on the workability and wear resistance, and the amount thereof is preferably suppressed to 50 ppm or less. Furthermore, 5ppI11 (Example-
6) Although these characteristics can naturally be considered to be improved even with a smaller Si value, it has been difficult to realistically suppress the Si value to a lower value.
比較例5、実施例7〜9
前記と同様な方法で加工性及び耐消耗性を評価した。C
rチップ中のA I Jil、5iJilが、Alに於
ては10〜20ppm 、S iでは20〜30 pp
I11程度と、好ましい星の範囲内に抑制しても、同C
r中の酸素量が多い場合には(比較例−5,5770p
pm)、放電中にCrが酸化を受は酸化クロム(Cr2
03)を生成したり、Al、Siも選択酸化を受け、前
述比較例1〜4と同様な、異常な消耗を呈する。Crチ
ップとしての加工性も阻害される。これに対してCr中
の酸素量が5001)l)III以下の場合(実施例7
〜9)には、中心電極、接地電極」1、耐消耗性の著し
い改善が見られる、加工性も充分であり、点火プラグ用
電極飼料として好ましい酸素量である。結果は表−2に
示した。Comparative Example 5, Examples 7 to 9 Workability and wear resistance were evaluated in the same manner as above. C
A I Jil and 5i Jil in the r chip are 10 to 20 ppm for Al and 20 to 30 ppm for Si.
Even if it is suppressed to about I11, which is within the preferable range of stars, the same C
When the amount of oxygen in r is large (Comparative Example-5, 5770p
pm), Cr undergoes oxidation during discharge and becomes chromium oxide (Cr2
03), and Al and Si also undergo selective oxidation, exhibiting abnormal consumption similar to Comparative Examples 1 to 4 described above. Processability as a Cr chip is also inhibited. On the other hand, when the amount of oxygen in Cr is 5001)l)III or less (Example 7
9) have a center electrode, a ground electrode"1, which shows a remarkable improvement in abrasion resistance, has sufficient processability, and has a preferable oxygen content as electrode feed for spark plugs. The results are shown in Table-2.
比較例6、実施例10〜]2
同様にCrチップ中の窒素量も、特性に重要な影響を与
え、同Cr中の窒素の量が994 ppm(比較例6)
の場合には、薄肉化が困難である上に、耐消耗性も劣る
ことが判る。これに対して窒素の量が1100pp以下
(実施例1.0. 11 。Comparative Example 6, Examples 10~]2 Similarly, the amount of nitrogen in the Cr chip also has an important influence on the characteristics, and the amount of nitrogen in the Cr chip was 994 ppm (Comparative Example 6).
In this case, it is difficult to reduce the thickness, and the wear resistance is also poor. In contrast, the amount of nitrogen is 1100 pp or less (Example 1.0.11).
12)□では、両特性とも問題ない。12) In □, there is no problem with both characteristics.
比較例7、実施例13〜14
同様にC「チップ中のカーボンの量も、特性に重要な影
響を与えた。表−2から明らかなように同Cr中のカー
ボンの量が1500ppI11 (比較例7)ではクロ
ム炭化物の生成が見られ、加工性が低下すると共に放電
時にアークの集中による塊状の脱落が見られ耐消耗性を
低下させる。これに対してカーボンの量が5’00 p
pm以下では、上述の影響は少な(Crチップとしての
加工性、耐消耗性共、問題がない。結果を表−2に示す
。Comparative Example 7, Examples 13 to 14 Similarly, the amount of carbon in the Cr chip also had an important influence on the characteristics.As is clear from Table 2, the amount of carbon in the Cr chip was 1500 ppI11 (Comparative Example In 7), the formation of chromium carbide is observed, which reduces the workability and also causes lumps to fall off due to the concentration of arc during discharge, reducing wear resistance.On the other hand, when the amount of carbon is 5'00 p
Below pm, the above-mentioned effects are small (no problems in workability or wear resistance as a Cr chip). The results are shown in Table 2.
以上実施例7〜14及び比較例5〜7で述べた様に、A
l及びSiが好ましい量であっても酸素、窒素、カーボ
ンの量への配慮がなされないチップに於ても加工性及び
耐消耗性のいずれに&Jl、でも好ましくない影響を与
える。As described above in Examples 7 to 14 and Comparative Examples 5 to 7, A
Even if the amounts of 1 and Si are preferable, even if no consideration is given to the amounts of oxygen, nitrogen, and carbon in chips, both processability and wear resistance will be adversely affected.
実施例15〜16
組合せ電極の実施例及び結果を表3に示す。実施例15
は、中心電極に前述実施例−6のC「チップを用い、接
地電極にNi−2,・0Cr−3,0Mn−1,8S
iを使用した例である。“中心電極、接地電極ともにC
rチップ同志の組合せの場合とほぼ同等な耐消耗性を示
し良好な使用状態であったと思われる。Examples 15-16 Examples and results of the combined electrodes are shown in Table 3. Example 15
The C tip of Example-6 was used for the center electrode, and the ground electrode was made of Ni-2, 0Cr-3, 0Mn-1, 8S.
This is an example using i. “Both center electrode and ground electrode are C
It appears that the wear resistance was almost the same as in the case of a combination of r chips, and that it was in a good state of use.
また、実施例16は、中心電極に純Ni、接地電極に実
施例−6のCrチップを用いたものである。実施例−1
5と同様に画電極の耐消耗性はC「チップ同志のそれと
大差なく、良好であった。Further, in Example 16, pure Ni was used for the center electrode, and the Cr chip of Example-6 was used for the ground electrode. Example-1
Similar to No. 5, the wear resistance of the picture electrode was good, not much different from that of the C chip.
結果を表−3に示す。The results are shown in Table-3.
以上の様に、Crチップと他合金の組合せにてプラグ電
極を構成しても耐消耗性の面からはCrチッープ同志の
プラグ電極と比較して同)であり、良好な特性を示すこ
とが確認された。As mentioned above, even if a plug electrode is made of a combination of Cr chips and other alloys, it has the same wear resistance as a plug electrode made of Cr chips) and exhibits good characteristics. confirmed.
実施例17〜22、比較H8
Crチップ中のアルミ、シリコン、酸素、窒素、カーボ
ンの各々の量を所定値以内に抑制したときには、Crチ
ップ中の割れ防止材料の量がo、】wL%(実施例−1
7)の場合には、耐消耗性等、プラグ電極材料としての
特性は、前記Al等の抑制による効果が優先されている
。。割れ防止材料の量が1 、、 !V!% (実施例
−18)でc孝−層の改善が見られる。割れ防止材料の
量が35vt%(比較例−8)では、加工時にCr専極
表面に条数のクラックが発生し、好ましくなく、その量
は10wt%(実施例−19)が限度である。見上は割
れ防止材料としてCoを選んだもので条る々<C,oの
み比較例9〜10、実施例23〜24
簡易な焼結法等によりCrチップを製造し、70%(比
較例9)及び85%(比較例10)の相対密度を有する
Crチップを得た。試料を前記と同様なベンチテスI・
に供したところ、試料表面からのCr塊の脱落等により
耐消耗性が著しく劣りζ実用には困難であると思われた
。一方、同一原料を用いて9596(実施例23) 、
98%(実施例24)の相対密度を有するCrチップを
用いて、同様なベンチテストに供した。その結果、上記
した実施例1〜16とほぼ同等又は、それ以上の耐消耗
特性を示した。Examples 17 to 22, Comparative H8 When the amount of each of aluminum, silicon, oxygen, nitrogen, and carbon in the Cr chip is suppressed within predetermined values, the amount of crack prevention material in the Cr chip becomes o, ]wL%( Example-1
In the case of 7), the effect of suppressing the aforementioned Al etc. is prioritized in terms of properties as a plug electrode material such as wear resistance. . The amount of anti-crack material is 1,,! V! % (Example-18), improvement in the C-filial layer is seen. When the amount of the anti-crack material is 35 wt% (Comparative Example-8), a number of cracks occur on the Cr exclusive surface during processing, which is not preferable, and the upper limit of the amount is 10 wt% (Example-19). In appearance, Co was selected as the crack-preventing material. 9) and Cr chips having relative densities of 85% (Comparative Example 10) were obtained. The sample was placed in the same Bentes I tube as above.
When the sample was subjected to a test, the abrasion resistance was extremely poor due to the falling off of Cr lumps from the sample surface, etc., and it was thought that it would be difficult to put it into practical use. On the other hand, using the same raw materials, 9596 (Example 23),
A similar bench test was performed using a Cr chip with a relative density of 98% (Example 24). As a result, wear resistance properties were shown to be substantially equivalent to or better than those of Examples 1 to 16 described above.
なお、上記した実施例1〜16、比較例1〜7はいずれ
も相対密度95〜99.9%の範囲のものである。In addition, all of the above-mentioned Examples 1 to 16 and Comparative Examples 1 to 7 have relative densities in the range of 95 to 99.9%.
上記の結果、プラグ用Crチップ素)」の相対密度は少
なくとも95%を必要とする。As a result of the above, the relative density of the Cr chip element for plugs needs to be at least 95%.
プラグ用Crチップ素月の製作
本発明に係るCrチッゾ素祠の製作の一例を小す。前述
したような条件を満す原料Crを調整用意する。次いで
、この原料Crを少なくとも1×10’Torrより高
度の真空下で、1300℃〜Crの融点直下の温度の好
ましい温度で脱ガスを兼ねた加熱を行い数關〜数印程度
のブリケットを作る。得られたC「ブリゲットを、酸化
を抑制した雰囲気と条件下で約10〜150μmの粒径
を有するCr粉末にする。この時点で、Cr粉末は、本
発明の制約条件であるAl、Siの量は、充分、抑制範
囲にあり、酸素、窒素、カーボンについても好ましい範
囲にある。Manufacturing of a Cr chip base for plugs An example of manufacturing a Cr chip base according to the present invention will be described below. A raw material Cr that satisfies the conditions described above is prepared. Next, this raw Cr is heated under a vacuum higher than at least 1 x 10' Torr at a preferable temperature of 1300°C to just below the melting point of Cr, which also serves as degassing, to produce briquettes of several to several marks. . The obtained carbon bridgette is made into a Cr powder having a particle size of approximately 10-150 μm in an atmosphere and conditions that suppress oxidation. The amounts are well within the control range, and oxygen, nitrogen and carbon are also within the preferred range.
得られた前記Cr粉末(必要により割れ防止材料を混合
)を約4トン/cJで成形した後、特殊容器に入れ真空
度I X 10−5Torrより高真空中で、例えば1
550℃、3時間焼結しCr焼結体を得る。密度が相対
密度に対し95%未満のときには、必要により?11ら
れた結晶体に対し再度加工成形するか、鍛造加工を与え
るか、圧延加工等を与えることによって緻密化後、更に
必要により同程度の温度及び真空度下で焼結を行う。The obtained Cr powder (mixed with anti-crackling material if necessary) was molded at about 4 tons/cJ, and then placed in a special container and heated at a vacuum level higher than I x 10-5 Torr, for example, at 1
Sintering is performed at 550° C. for 3 hours to obtain a Cr sintered body. When the density is less than 95% of the relative density, if necessary? After densifying the crystalline body by processing it again, forging it, rolling it, etc., it is further sintered at the same temperature and degree of vacuum as necessary.
最終的には、チップとしての必要寸法に機械的加工を行
い、チップとする。Finally, mechanical processing is performed to obtain the required dimensions for the chip.
このとき補助材料としての割れ防止材料の存在は焼結温
度の成る程度の低下効果が得られ工業的に有利である。At this time, the presence of a crack-preventing material as an auxiliary material is industrially advantageous because it can reduce the sintering temperature to a certain degree.
結果を表−5に示す。The results are shown in Table-5.
第1図
〔発明の効果〕
上記実施例の結果からも明らかなように、本発明の電極
材料は、点火プラグとしての耐消耗性と加工性の双方に
おいてすぐれた効果を有しており、点火プラグ用電極材
料としてすこぶる有用でありその工業的価値は大きい。FIG. 1 [Effects of the Invention] As is clear from the results of the above examples, the electrode material of the present invention has excellent effects in both wear resistance and workability as a spark plug, and It is extremely useful as an electrode material for plugs and has great industrial value.
第1図は本発明の一実施例の一部断面図、第2図は、第
1図の部分断面図である。
1・・・中心電極、2・・・接地電極、3・・・絶縁体
、4・・・中心端子、5・・・低抗体、6・・・取付ネ
ジ部。FIG. 1 is a partial sectional view of an embodiment of the present invention, and FIG. 2 is a partial sectional view of FIG. 1. DESCRIPTION OF SYMBOLS 1... Center electrode, 2... Ground electrode, 3... Insulator, 4... Center terminal, 5... Low antibody, 6... Mounting screw part.
Claims (1)
的にCrまたはCr合金からなるチップによって構成さ
れた電極材料であって、前記チップ中のAl及びSiの
含有量としては、Alが50ppm以下(ゼロ含まず)
、Siが50ppm以下(ゼロ含まず)の条件を満足し
、しかも前記Cr中の酸素、窒素、炭素の含有量として
は、酸素が500ppm以下(ゼロ含まず)、窒素が1
00ppm以下(ゼロ含まず)、炭素が500ppm以
下(ゼロ含まず)の条件を満足することを特徴とする、
点火プラグ電極材料。 2、前記チップが、Fe、CoおよびNiからなる群よ
り選ばれる少なくとも1種の割れ防止材料を0.1〜1
0重量%含有する、請求項1の点火プラグ電極材料。[Scope of Claims] An electrode material constituted by a chip having a relative density (relative to theoretical density ratio) of 1.95% or more and consisting essentially of Cr or a Cr alloy, wherein Al and Si in the chip The content of Al is 50 ppm or less (not including zero)
, Si satisfies the conditions of 50 ppm or less (not including zero), and the content of oxygen, nitrogen, and carbon in the Cr is such that oxygen is 500 ppm or less (not including zero) and nitrogen is 1
00 ppm or less (not including zero), carbon is 500 ppm or less (not including zero),
Spark plug electrode material. 2. The chip contains at least one anti-crack material selected from the group consisting of Fe, Co and Ni in an amount of 0.1 to 1
The spark plug electrode material of claim 1, containing 0% by weight.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25147888A JPH02101138A (en) | 1988-10-05 | 1988-10-05 | Spark plug electrode material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25147888A JPH02101138A (en) | 1988-10-05 | 1988-10-05 | Spark plug electrode material |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02101138A true JPH02101138A (en) | 1990-04-12 |
Family
ID=17223411
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25147888A Pending JPH02101138A (en) | 1988-10-05 | 1988-10-05 | Spark plug electrode material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02101138A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007225080A (en) * | 2006-02-27 | 2007-09-06 | Akebono Brake Ind Co Ltd | Shoe hold mechanism in drum brake |
JP2007298121A (en) * | 2006-04-28 | 2007-11-15 | Hosei Brake Ind Ltd | Drum brake |
US8151949B2 (en) | 2008-05-14 | 2012-04-10 | Akebono Brake Industry Co., Ltd. | Drum brake apparatus |
-
1988
- 1988-10-05 JP JP25147888A patent/JPH02101138A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007225080A (en) * | 2006-02-27 | 2007-09-06 | Akebono Brake Ind Co Ltd | Shoe hold mechanism in drum brake |
JP2007298121A (en) * | 2006-04-28 | 2007-11-15 | Hosei Brake Ind Ltd | Drum brake |
US8151949B2 (en) | 2008-05-14 | 2012-04-10 | Akebono Brake Industry Co., Ltd. | Drum brake apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4769070B2 (en) | Spark plug for internal combustion engine | |
EP0866530B1 (en) | Spark plug | |
JP7247378B2 (en) | Nickel-cobalt alloy powder and method for producing the same | |
US9027524B2 (en) | Spark plug for internal combustion engine and method of manufacturing the same | |
WO2012039421A1 (en) | Electrode material | |
EP0223135A1 (en) | Corrosion resistant self-fluxing alloys for thermal spraying | |
US20050194878A1 (en) | Spark plug | |
JPH02101138A (en) | Spark plug electrode material | |
JP2007227189A (en) | Spark plug for internal combustion engine and manufacturing method | |
JPH06158226A (en) | Spring steel excellent in fatigue characteristic | |
EP0357216B1 (en) | Alloy for building up valve | |
JP4644139B2 (en) | Spark plug for internal combustion engine and method for manufacturing the same | |
JPS6130014B2 (en) | ||
JPS626737B2 (en) | ||
JPS626736B2 (en) | ||
JP4573548B2 (en) | Spark plug electrode | |
JPH02163335A (en) | Electrode for spark plug | |
JP2000144330A (en) | Slab for thin steel sheet small in defect caused by inclusion and its production | |
JPH10212165A (en) | Composite carbide powder and its production | |
JP4652621B2 (en) | Spark plug manufacturing method and spark plug | |
JP3535026B2 (en) | Slab for thin steel sheet with less inclusion defect and method for producing the same | |
CA1210257A (en) | Nickel alloy for spark plug centre electrodes | |
JPH0213018B2 (en) | ||
JP2002235137A (en) | Spark plug electrode material having excellent spark consumption resistance | |
JPS63153236A (en) | Electrode material for spark plug |