JPS63153236A - Electrode material for spark plug - Google Patents

Electrode material for spark plug

Info

Publication number
JPS63153236A
JPS63153236A JP30508886A JP30508886A JPS63153236A JP S63153236 A JPS63153236 A JP S63153236A JP 30508886 A JP30508886 A JP 30508886A JP 30508886 A JP30508886 A JP 30508886A JP S63153236 A JPS63153236 A JP S63153236A
Authority
JP
Japan
Prior art keywords
electrode material
spark plug
electrode
internal combustion
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30508886A
Other languages
Japanese (ja)
Inventor
Kazunao Kudo
和直 工藤
Hisashi Higuchi
樋口 尚志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP30508886A priority Critical patent/JPS63153236A/en
Publication of JPS63153236A publication Critical patent/JPS63153236A/en
Pending legal-status Critical Current

Links

Landscapes

  • Spark Plugs (AREA)

Abstract

PURPOSE:To develop an electrode material excellent in durability for use in spark plug for internal combustion engine, by adding small amounts of one or more elements among Y, Ca, Zr, Sc, and La to an Ni-Fe-Cr alloy having a specific composition. CONSTITUTION:One or more elements among Y, Ca, Zr, Sc, and La are added by 0.01-0.3%, by weight, to the Ni-Cr-Fe alloy having a composition consisting of >72% Ni, 14-17% Cr, 6-10% Fe, <0.5% Si, and <1.0% Mn, which is melted. Then, an ingot of the above molten metal is subjected to hot rolling and cold working, so that an electrode used for spark plug for internal combustion engine can be manufactured. In this way, the electrode material in which consumption due to the peering of oxide film is inhibited and which has superior durability can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、主として内燃機関用点火プラグに用いる耐
久性に優れた電極材料に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates primarily to a highly durable electrode material used in a spark plug for an internal combustion engine.

〔従来の技術〕[Conventional technology]

自動車用エンジン等の内燃機関に用いられる点火プラグ
の電極材料としては、Ni基合金、具体的にはNiにM
、SC,、S、 、T、 、/1等を1種又は2種以上
、重量比で1−10%程度添加した合金が一般的に用い
られている。また、近頃は、高温腐食耐久性の観点から
Ni基合金の中でも、インコネル系(C−F−Ni)合
金、例えば、JIS  NCF600などが使用されつ
つある。下表はNCF600の代表的成分である。
As the electrode material for spark plugs used in internal combustion engines such as automobile engines, Ni-based alloys, specifically Ni and M
, SC, , S, , T, , /1, etc., are generally used in alloys to which one or more types are added in an amount of about 1 to 10% by weight. Furthermore, recently, among Ni-based alloys, Inconel-based (C-F-Ni) alloys, such as JIS NCF600, are being used from the viewpoint of high-temperature corrosion durability. The table below shows typical components of NCF600.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した如き従来の電極材料は、耐高温酸化性、経済性
、熱伝導性には優れているが、ガソリンエンジンの燃焼
過程で発生する酸化雰囲気、還元雰囲気の繰り返えし、
さらには、ガソリン・エアー混合ガスの圧縮・燃焼及び
同ガスの排気・吸入による高温状態と冷却状態の繰り返
えしにより、耐高温酸層性に優れたC、 、Ni 、F
aの表面酸化物が剥離し、このために、下地金属の消耗
やプラグ部分の欠損が起り、点火プラグのメンテナンス
フリー化、長寿命化が強く要求されだした最近では、そ
のことが大きくクローズアップされて解消すべき重要な
課題となってきた。
Conventional electrode materials as described above have excellent high-temperature oxidation resistance, economic efficiency, and thermal conductivity, but they suffer from repeated oxidizing and reducing atmospheres generated during the combustion process of gasoline engines.
Furthermore, C, , Ni, and F, which have excellent high-temperature acid layer resistance, are produced by compressing and combusting a gasoline/air mixture gas, and by exhausting and inhaling the same gas to repeatedly cycle through high-temperature and cooling conditions.
The surface oxide of a is peeled off, which causes the underlying metal to wear out and the plug to break off.This problem has come into the spotlight recently as there has been a strong demand for maintenance-free and long-life spark plugs. This has become an important issue that needs to be resolved.

〔問題点を解決するための手段] この発明は、上記の問題点を無くすため、NCF00の
組成の中に、微量の添加元素(希土類金属)を含める。
[Means for Solving the Problems] In order to eliminate the above problems, the present invention includes a trace amount of an additive element (rare earth metal) in the composition of NCF00.

具体的には、重量比でNiを72%以上、Crを14〜
17%、Faを6〜lO%、S、を0.5%以下、M、
を1%以下含むN。
Specifically, Ni is 72% or more and Cr is 14 to 14% by weight.
17%, Fa 6-1O%, S, 0.5% or less, M,
N containing 1% or less.

−、C,−Fa合金内に、YSC,、Z、 、s、、L
aの中から選ばれた元素を1種以上0.01〜0.3%
の範囲で添加してNCF600の性質をガソリン燃焼室
内で発生する酸化、還元及び高温、急冷の繰り返えしに
よっても表面酸化膜の剥離のないものに改質し、内燃機
関用点火プラグに用いても耐久性に富む電極材料を実現
している。
-,C,-Fa alloy contains YSC,,Z, ,s,,L
0.01-0.3% of one or more elements selected from a
NCF600 is added in a range of We have created an electrode material that is extremely durable.

〔作用〕[Effect]

Y、Z、 、C,、S、 、Laなどの希土類金属は、
微量に含有するだけで優先的に(積極的に)高温下で緻
密かつ微小な酸化物を形成するため、その添加によって
電極材料は酸化性高温状況下では勿論、良好な皮膜を形
成し、かつ、長時間放置しても一定以上に酸化増量が進
まないと云う特性を示すようになる。また、還元雰囲気
になっても酸化膜が全量還元されて金属層に戻ることも
なく、皮膜の増減が極めて少ないと云う特性も付与され
る。従って、電極の下地金属は、常に存在する酸化膜に
覆われて保護され、このために、下地金属の消耗が防止
されて電極の耐久性が長められる。
Rare earth metals such as Y, Z, , C, , S, , La,
Even if it is contained in a small amount, it will preferentially (actively) form a dense and minute oxide at high temperatures, so its addition will allow the electrode material to form a good film even under oxidizing high-temperature conditions. However, even if left for a long time, oxidation does not increase beyond a certain level. Further, even in a reducing atmosphere, the oxide film is not completely reduced and returns to a metal layer, and the film has the characteristic that there is very little increase or decrease in the film. Therefore, the base metal of the electrode is protected by being covered with the always present oxide film, which prevents the base metal from being worn out and increases the durability of the electrode.

ここで、上記希土類金属の含有量を0.01〜0.3重
置%に限定したのは次の理由による。即ち、その含有量
が0.01重量%以下では改質効果が薄く緻密な酸化膜
が得られない、一方、0.3重量%以上にしても改質効
果は頭打ちとなり、逆に、優先酸化のために酸化膜厚が
過剰に厚くなって剥離し易くなり、かつ放電性能を低下
させる。特に、添加量が0.4重量%を越えると加工硬
化し易くなる傾向もあり、電極材料としては不向きなも
のになる。
Here, the reason why the content of the rare earth metal is limited to 0.01 to 0.3% is as follows. That is, if the content is less than 0.01% by weight, the modification effect is weak and a dense oxide film cannot be obtained.On the other hand, if the content is more than 0.3% by weight, the modification effect reaches a ceiling, and conversely, preferential oxidation Therefore, the oxide film becomes excessively thick and easily peels off, and the discharge performance is deteriorated. In particular, if the amount added exceeds 0.4% by weight, it tends to be work hardened, making it unsuitable as an electrode material.

この希土類金属のより好ましい添加量は0.02〜0゜
1%の範囲である。
A more preferable addition amount of this rare earth metal is in the range of 0.02 to 0.1%.

なお、希土類金属の酸化を積極化する目的と、材料の加
工性(プラグ用電極となす際の冷間加工性)を向上させ
る目的から、組成中のC成分は可及的に低く抑えること
が肝要である。そのCの含有量は0.01重量%以下が
特に好ましいことが判ったが、酸化膜の耐剥離性に関し
ては0.15%以下でも問題はなく、電極材料としての
使用は充分に可能である。
Note that the C component in the composition should be kept as low as possible for the purpose of actively oxidizing the rare earth metal and improving the workability of the material (cold workability when making it into an electrode for a plug). It is essential. It has been found that the C content is particularly preferably 0.01% by weight or less, but there is no problem with the peeling resistance of the oxide film even if it is 0.15% or less, and it is fully possible to use it as an electrode material. .

〔実施例] 次表に示す成分、重量比の金属粉末を配合し、高周波溶
解炉で溶解し、熱間圧延後、成形して電1材料を得た。
[Example] Metal powders having the components and weight ratios shown in the following table were blended, melted in a high frequency melting furnace, hot rolled, and then molded to obtain an electric material.

次に、この発明の効果を知るため、その材料を冷間加工
して所定寸法のプラグ電極とし、これを特性評価試験に
供した。
Next, in order to find out the effects of this invention, the material was cold-worked into a plug electrode of a predetermined size, and this was subjected to a characteristic evaluation test.

特性評価試験は、大気中で1000°Cに加熱してその
温度を24時間保持し、次に急冷し、その後700°C
に加熱されたH2雰囲気下で4時間還元し、放冷する工
程を1サイクルとして、そのサイクルを表に示す回数繰
り返した後の酸化増量と表面酸化物層の剥離状態を外観
検査したものである。
Characteristic evaluation tests were conducted by heating to 1000°C in air, holding that temperature for 24 hours, then rapidly cooling, and then heating to 700°C.
One cycle is the process of reducing for 4 hours in an H2 atmosphere heated to , followed by cooling, and the cycle is repeated the number of times shown in the table, after which the oxidation weight increase and the peeling state of the surface oxide layer are visually inspected. .

また、耐火花消耗性は、得られた電極に対してスパーク
を飛ばし、1000サイクル後の表面状況から判断した
Further, the spark abrasion resistance was judged from the surface condition after 1000 cycles by blowing sparks on the obtained electrode.

なお、比較のため、従来品と、成分比を本発明品とは若
干変化させたもの(表の比較品)についても同じ試験を
行った。
For comparison, the same test was also conducted on a conventional product and a product whose component ratio was slightly different from that of the present invention product (comparative products in the table).

上の表から、従来のインコネル系合金の場合、酸化、還
元の繰り返しによって酸化膜が次第に厚(なるのに対し
、希土類元素を添加すれば、その増厚が効果的に抑制さ
れることが判る。
From the table above, it can be seen that in the case of conventional Inconel-based alloys, the oxide film gradually becomes thicker due to repeated oxidation and reduction, but by adding rare earth elements, this increase in thickness can be effectively suppressed. .

また、耐火花消耗性も従来より良い方向に向かうことが
判る。
It can also be seen that the spark wear resistance is also better than before.

さらに、成分比の調整次第では(希土属元素の添加量次
第では)、酸化膜の耐剥離性に差が出ることも判る。
Furthermore, it can be seen that depending on the adjustment of the component ratio (depending on the amount of rare earth element added), a difference appears in the peeling resistance of the oxide film.

〔効果〕〔effect〕

以上述べたように、この発明は、耐高圧酸化性、経済性
、熱伝導性には優れるが、酸化、還元及び高温、急冷が
繰り返される使用条件下では、表面酸化膜が剥離して下
地金属の消耗等が起こると云う従来のN F C600
の性質を、組成中に微量の希土類元素を加えることによ
って改質し、酸化増量を抑制すると共に、耐花火消耗性
も向上させたものであるから、ガソリンエンジン等の内
燃機関用点火プラグに採用しても不足の無い耐久性を発
揮し、点火プラグのメンテナンスフリー化と長寿命化に
貢献できると云う効果が得られる。
As described above, this invention has excellent high-pressure oxidation resistance, economic efficiency, and thermal conductivity, but under usage conditions where oxidation, reduction, high temperature, and rapid cooling are repeated, the surface oxide film peels off and the underlying metal The conventional NFC600 is said to suffer from wear and tear.
Its properties have been modified by adding a small amount of rare earth elements to its composition, which suppresses oxidation increase and also improves fireworks wear resistance, making it suitable for use in spark plugs for internal combustion engines such as gasoline engines. Even when the spark plug is used, it exhibits perfect durability and contributes to maintenance-free spark plugs and longer lifespans.

Claims (1)

【特許請求の範囲】[Claims] 重量比でNiを72%以上、Crを14〜17%、Fa
を6〜10%、Siを0.5%以下、Mnを1%以下含
むNi−Cr−Fa合金内に、Y、Ce、Zr、Sc、
Laの中から選ばれた元素を1種以上0.01〜0.3
%の範囲で添加して成る点火プラグ用電極材料。
By weight ratio, Ni is 72% or more, Cr is 14-17%, Fa
Y, Ce, Zr, Sc,
One or more elements selected from La 0.01 to 0.3
An electrode material for spark plugs containing additives in the range of %.
JP30508886A 1986-12-17 1986-12-17 Electrode material for spark plug Pending JPS63153236A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30508886A JPS63153236A (en) 1986-12-17 1986-12-17 Electrode material for spark plug

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30508886A JPS63153236A (en) 1986-12-17 1986-12-17 Electrode material for spark plug

Publications (1)

Publication Number Publication Date
JPS63153236A true JPS63153236A (en) 1988-06-25

Family

ID=17940962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30508886A Pending JPS63153236A (en) 1986-12-17 1986-12-17 Electrode material for spark plug

Country Status (1)

Country Link
JP (1) JPS63153236A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01180934A (en) * 1988-01-14 1989-07-18 Ngk Spark Plug Co Ltd Electric discharge electrode material for spark plug
JPH0234734A (en) * 1988-07-25 1990-02-05 Mitsubishi Metal Corp Ni-base alloy for spark plug electrode of internal combustion engine
US6852177B2 (en) 2001-12-21 2005-02-08 Hitachi Metals Ltd. Ni-based alloy improved in oxidation-resistance, high temperature strength and hot workability
JP2007165291A (en) * 2005-11-16 2007-06-28 Ngk Spark Plug Co Ltd Spark plug for internal combustion engine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01180934A (en) * 1988-01-14 1989-07-18 Ngk Spark Plug Co Ltd Electric discharge electrode material for spark plug
JPH0234734A (en) * 1988-07-25 1990-02-05 Mitsubishi Metal Corp Ni-base alloy for spark plug electrode of internal combustion engine
JP2587864B2 (en) * 1988-07-25 1997-03-05 三菱マテリアル株式会社 Spark plug electrode material for internal combustion engines
US6852177B2 (en) 2001-12-21 2005-02-08 Hitachi Metals Ltd. Ni-based alloy improved in oxidation-resistance, high temperature strength and hot workability
JP2007165291A (en) * 2005-11-16 2007-06-28 Ngk Spark Plug Co Ltd Spark plug for internal combustion engine

Similar Documents

Publication Publication Date Title
CA1090168A (en) Oxidation resistant cobalt base alloy
RU2518814C1 (en) Nickel-based alloy
JPS6043897B2 (en) Nickel alloy for spark plug electrodes
JP2016516127A (en) Nickel-based alloy with silicon, aluminum and chromium
JP5273620B2 (en) Nickel base alloy
JP2004011024A (en) Nickel based alloy and its usage
WO2012039421A1 (en) Electrode material
US4906438A (en) Ni base alloy for spark plug electrodes of internal combustion engine
JPS63153236A (en) Electrode material for spark plug
WO2018117135A1 (en) Heat-resistant ir alloy
WO2013069822A1 (en) Electrode material, electrode for spark plug, and spark plug
US3591365A (en) Heat resisting corrosion resisting iron chromium alloy
JPH0617170A (en) Electrode material of ignition plug made of ni-based alloy for internal-combustion engine
JP2000336446A (en) Electrode material for ignition plug excellent in high temperature oxidation resistance and hot workability
JPH0445239A (en) Alloy for spark plug
EP1090155A1 (en) Spark plug electrode alloy
JPS6318033A (en) Spark plug electrode made of ni-base alloy
JPH02163335A (en) Electrode for spark plug
JPH0379735A (en) Ti-al series lightweight heat-resistant material
JPS63118039A (en) Electrode material for spark plug
JPS6250430A (en) Electrode material for spark plug
JPH0234734A (en) Ni-base alloy for spark plug electrode of internal combustion engine
JPS63118040A (en) Electrode material for spark plug
JP2002235139A (en) Spark plug electrode material having excellent spark consumption resistance
JPS61179837A (en) Nickel-base alloy for spark plug electrode