JP4652621B2 - Spark plug manufacturing method and spark plug - Google Patents

Spark plug manufacturing method and spark plug Download PDF

Info

Publication number
JP4652621B2
JP4652621B2 JP2001192643A JP2001192643A JP4652621B2 JP 4652621 B2 JP4652621 B2 JP 4652621B2 JP 2001192643 A JP2001192643 A JP 2001192643A JP 2001192643 A JP2001192643 A JP 2001192643A JP 4652621 B2 JP4652621 B2 JP 4652621B2
Authority
JP
Japan
Prior art keywords
based composite
chip
composite material
spark plug
ignition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001192643A
Other languages
Japanese (ja)
Other versions
JP2003007422A (en
Inventor
聡子 伊藤
渉 松谷
昌幸 瀬川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Spark Plug Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2001192643A priority Critical patent/JP4652621B2/en
Publication of JP2003007422A publication Critical patent/JP2003007422A/en
Application granted granted Critical
Publication of JP4652621B2 publication Critical patent/JP4652621B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、スパークプラグの製造方法及びスパークプラグに関する。
【0002】
【従来の技術】
例えば内燃機関の点火用に用いられるスパークプラグにおいては、耐火花消耗性向上のために電極の先端にPtを主体とするチップを溶接して発火部を形成したタイプのものが使用されている。しかしながら、近年は、耐火花消耗性をさらに向上させるために、Ptに代えてW(タングステン)を主成分とするチップにて発火部を構成したスパークプラグが、例えば特開昭59−25945号、特開昭59−25949号、特開平5−54955号、特開平8−185954号公報等に各種提案されている。
【0003】
さらに近年では、内燃機関の高出力化により燃焼室内の温度も高くなる傾向にあり、また着火性向上のために、スパークプラグの発火部を燃焼室内部に突き出させるタイプのエンジンも多く使用されるようになってきている。また、自動車エンジンのメンテナンスフリー化対策の一環として、スパークプラグ無交換による例えば16万km以上連続走行等、以前の状況からは想像もつかないような苛酷な要望も出されるようになってきている。
【0004】
【発明が解決しようとする課題】
W系のチップを使用した場合、Wの融点が約3380℃と高いことから耐火花消耗性は大幅に改善されるが、Wは高温で酸化揮発しやすい性質を有していることから、長時間の高速走行を繰返してある温度以上に上昇すると、急激に発火部が酸化消耗し、火花ギャップ間隔が拡大してしまう欠点がある。これを解決するために、例えば上述の特開平5−54955号、特開平8−185954号等の各公報には、WにReやTa等の添加金属を添加したW系合金をチップに使用し、発火部の耐酸化消耗性を向上させる方法が提案されている。
【0005】
ここで、W系合金を用いたチップの製造方法としては、従来よりW粉末に添加金属粉末を添加した原料粉末をチップ形状に成形し、その成形体を焼結してチップ化する方法(粉末焼結法)が一般的であった。しかし、この粉末焼結法で得られたW系複合材料からなるチップは靭性が低く、機械的強度が不足して割れ等が発生しやすいという欠点がある。また、粉末焼結法を用いる場合、加工技術の点からWに対する添加金属の添加量は現実では3〜10wt%程度しか添加できず、耐酸化消耗性を十分に向上させることができない場合がある。
【0006】
本発明の課題は、W系複合材料からなる発火部の耐酸化消耗性と機械的強度との両立が可能なスパークプラグ及びその製造方法を提供することにある。
【0007】
【課題を解決するための手段及び作用・効果】
上記の課題を解決するために、本発明のスパークプラグの製造方法は、中心電極と接地電極との間に火花放電ギャップが形成され、かつ、前記中心電極と接地電極の少なくとも一方の前記火花放電ギャップに臨む位置に、W(タングステン)を主成分とするW系複合材料からなる発火部を設けたスパークプラグの製造方法であって、
前記W系複合材料の原料粉末を焼結することにより焼結体を作る焼結工程と、
前記焼結体に、W系複合材料粒子が所定方向に延伸するように熱間加工を施して熱間加工素材を得る熱間加工工程と、
前記熱間加工素材をチップ素材としてこれを所定形状のチップに加工するチップ化工程と、
前記チップを前記中心電極と前記接地電極との少なくとも一方に接合して前記発火部とする接合工程と、をみ、
前記W系複合材料には、元素周期律表の5A族又は7A族に属する金属元素の金属粉末が20〜40wt%含有されていることを特徴とする。
【0008】
Wを主成分とするW系複合材料にて発火部を構成する場合、該W系複合材料の添加成分として、元素周期律表の5A族又は7A族に属する金属元素から選択される1ないし複数のものを用いることが、Wの酸化揮発を抑制する上で有効である。具体的には、例えばそれら金属元素の金属粉末を用いることができる。
【0009】
W系複合材料にて発火部を構成したスパークプラグにおいて、該発火部の耐酸化消耗性は、従来、主としてRe等の適当な合金元素の添加により改善の試みが主になされてきた。それは確かに有効な手法ではあるが、本発明者らは、金属組織の観点から鋭意検討を行った結果、W系複合材料からなる発火部の高温での耐酸化消耗性及び機械的強度が、チップにおける金属結晶粒子の組織形態の影響を大きく受けるとともに、その組織をW系複合材料の粒子(金属結晶粒子)が所定方向に引き伸ばされた繊維状とすることで、発火部の耐酸化消耗性が顕著に改善され、かつ機械的強度も向上することを見い出し、本発明を完成するに至ったのである。
【0010】
すなわち、上記本発明の製造方法によれば、発火部を形成するためのW系複合材料からなるチップ素材を、焼結と熱間加工とを組み合わせて製造することにより、得られる発火部の耐酸化消耗性を、機械的特性を損ねることなく向上させることができる。焼結法の採用は、成分偏析防止に有効であり、耐酸化消耗性の改善に寄与する。そして、さらに熱間加工によりチップの組織をW系複合材料粒子が所定方向に延伸された繊維状とすることにより、割れや欠けの発生が著しく減少し、靭性や強度を始めとする機械的特性をさらに向上させることができる。また、熱間加工に伴う圧縮によりW系複合材料からなる焼結体中の空孔がつぶれて減少するので、熱伝導度が向上し、かつ空孔が存在することによる発火部(チップ)内への酸素の侵入を防げ、耐酸化消耗性のさらなる向上を図ることができる。さらに、熱間加工工程を経ることで、従来のように金属粉末の成形品を焼結してチップ化する場合と比較して金属粒子同士のつながりが密となるため火花消耗性が向上し、また粉末焼結の際にみられる粒界の不純物の偏析が均一化されるため粒界腐食による火花消耗性も向上することにつながる。
【0011】
上記W系複合材料への元素周期律表の5A族又は7A族に属する金属元素からなる金属粉末の含有量は、5〜45wt%程度、好ましくは10〜40wt%とするのがよい。該含有量が5wt%未満の場合、耐火花消耗性は優れるものの耐酸化性が劣る場合があり、45wt%を超えるとWの相対量が低くなるため耐火花消耗性が低下するとともに耐酸化性も劣る場合がある。
【0012】
なお、本明細書でいう「発火部」とは、接合されたチップのうち、接合による組成変動の影響を受けていない部分(例えば、接合により接地電極ないし中心電極の材料と合金化した部分を除く残余の部分)を指すものとする。また、本発明でいう「加工」とは、被加工素材となるW系複合材料の結晶粒子を所定方向に延伸できるものであれば特に限定されないが、例えば、鍛造、圧延及び線引き(伸線)の1種又は2種以上の組合せにより実施できる。この場合、加工は、加工時の素材温度が1650〜1750℃となる熱間加工にて行なうことが必要である。加工温度が1650℃未満では、W系複合材料からなる被加工素材の変形抵抗が大きく、また、粒界割れの発生頻度も高くなって健全な加工が不能となる。他方、加工温度が1750℃を超えると、W成分の酸化揮発が激しくなり、加工性も却って低下することにつながる。また、加工に使用する治具(鍛造パンチや圧延ロールあるいは伸線用のダイス)の寿命も早期に尽きやすく、製造コストの高騰を招きやすくなる。
【0013】
加工済みの素材はチップ素材として、種々の工程により、発火部として適切な形状のチップとされる。具体的な加工方法として、熱間加工工程において、焼結体を熱間鍛造、熱間圧延及び熱間伸線の少なくともいずれかにより線状あるいはロッド状の素材(以下、線状素材と称する)に加工した後、これを長さ方向に所定長に切断(例えば、放電加工等による)してチップを得るようにすれば、チップの製造歩留まりも高く、また、線状素材の軸線方向(チップあるいは発火部となった場合は、その軸線に平行な方向)に引き延ばされた扁平なW系複合材料粒子からなる組織を得る上でも好都合である。
【0014】
この場合、チップは、W系複合材料粒子がチップ厚さ方向に延伸するとともに、チップの厚さ方向と平行な断面に現われる該W系複合材料粒子の平均アスペクト比が5以上となる繊維状組織を呈するものとして製造されることが望ましい。該アスペクト比が5以上となることで、組織の繊維化による耐酸化消耗性及び機械的強度の向上を特に顕著に図ることができる。なお、アスペクト比を極端に大きくすることは、加工工数の徒な増大により製造能率の低下とコスト高騰を招くので、例えば100程度までの範囲で適宜定めるようにする。なお、本明細書においてアスペクト比とは、図7に示すように、定められた断面上の視野にて観察される結晶粒子の外形線に対し、粒子内部を横切らない平行接線対の組を各種位置関係にて引いたときに、それら接線対の組における最大間隔Rdmaxと同じく最小間隔Rminとの比Rdmax/Rdminとして規定する。
【0015】
別の方法としては、熱間加工は熱間圧延工程を含み、該熱間圧延工程に基づいて熱間加工素材を板状素材として形成し、その板状素材から板厚方向がチップ厚さ方向となるように、例えば熱間打抜き加工あるいは放電加工等によりチップを製造することも可能である。該方法も高能率であり、また、板状素材の板面方向(チップあるいは発火部となった場合は、その軸線に垂直な方向)に引き延ばされた扁平なW系複合材料粒子からなる組織を得る上で好都合である。
【0016】
この場合、チップは、W系複合材料粒子がチップ主面方向に延伸するとともに、チップ主面と直交する断面に現われる該W系複合材料粒子の平均アスペクト比が5以上となる繊維粒子組織を呈するものとして製造されることが望ましい。該アスペクト比が5以上となることで、組織の扁平化による耐酸化消耗性及び機械的強度の向上を特に顕著に図ることができる。この場合もアスペクト比を極端に大きくすることは、加工工数の徒な増大により製造能率の低下とコスト高騰を招くので、例えば100程度までの範囲で適宜定めるようにする。
【0017】
次に、本発明のスパークプラグは、上記製造方法により製造可能なもので、中心電極と接地電極との間に火花放電ギャップが形成され、かつ、前記中心電極と接地電極の少なくとも一方の前記火花放電ギャップに臨む位置に、Wを主成分とするW系複合材料からなる発火部を設けたスパークプラグであって、
前記発火部をなす前記W系複合材料の粒子が、所定方向に引き伸ばされた組織を有有し、
前記W系複合材料には、元素周期律表の5A族又は7A族に属する金属元素の金属粉末が20〜40wt%含有されていることを特徴とする。
これによれば、発火部をなすW系複合材料の粒子(金属結晶粒子)を所定方向に引き伸ばされた組織となすことで、耐酸化消耗性の向上とともに、発火部の靭性や強度といった機械的性質が改善され、割れや欠け等の不良発生が著しく減少する。さらには、W系複合材料粒子の引き伸ばし組織とする加工が加えられていることによりW系複合材料からなる発火部中の空孔(焼結法採用時による)が減少して熱伝導度が向上し、空孔が存在することによる発火部(チップ)内への酸素の侵入を防ぐことができるから、耐酸化消耗性のさらなる向上を図ることができる。なお、W系複合材料粒子には、元素周期律表の5A族又は7A族に属する金属元素から選択される1ないし複数のものが含有されているものとすることができる。この場合、Wの酸化揮発をさらに抑制することが可能となる。
【0018】
また、前記発火部をなす前記W系複合材料は、前記火花放電ギャップに面する表面を発火面とし、該発火面と直交する向きを発火部高さ方向として、W系複合材料粒子が前記発火部高さ方向に延伸するとともに、該発火部高さ方向と平行な断面に現われる前記W系複合材料粒子の平均アスペクト比が5以上となる組織を呈していることが望ましい。また、W系複合材料粒子が発火面に沿う所定方向に延伸するものとなっている場合は、該発火面においてW系複合材料粒子の延伸方向に沿い、かつ発火面と直交する断面に現われる該W系複合材料粒子の平均アスペクト比が5以上となる組織を呈していることが望ましい。
【0019】
【発明の実施の形態】
以下、本発明の実施の形態を図面を用いて説明する。
図1及び図2に示す本発明の一例たるスパークプラグ100は、筒状の主体金具1、先端部21が突出するようにその主体金具1の内側に嵌め込まれた絶縁体2、先端に形成された発火部31を突出させた状態で絶縁体2の内側に設けられた中心電極3、及び主体金具1に一端が溶接等により結合されるとともに他端側が側方に曲げ返されて、その側面が中心電極3の先端部と対向するように配置された接地電極4等を備えている。また、接地電極4には上記発火部31に対向する発火部32が形成されており、それら発火部31と、対向する発火部32との間の隙間が火花放電ギャップgとされている。
【0020】
絶縁体2は、例えばアルミナあるいは窒化アルミニウム等のセラミック焼結体により構成され、その内部には自身の軸方向に沿って中心電極3を嵌め込むための孔部6を有している。また、主体金具1は、低炭素鋼等の金属により円筒状に形成されており、スパークプラグ100のハウジングを構成するとともに、その外周面には、プラグ100を図示しないエンジンブロックに取り付けるためのねじ部7が形成されている。
【0021】
中心電極3及び接地電極4のチップ被固着面形成部位、この実施例では少なくともその表層部がNi又はFeを主成分とする耐熱合金にて構成されている(なお、本明細書において「主成分」とは、最も質量含有率の高い成分を意味し、必ずしも「50質量%以上を占める成分」を意味するものではない)。例えばNiを主成分とする耐熱合金としては、INCONEL600やINCONEL601等を使用できる。
【0022】
一方、上記発火部31及び対向する発火部32は、Wを主成分とするW系複合材料を主体に構成されており、該W系複合材料は5A族金属元素(V,Nb,Ta)又は7A族金属元素(Mn,Tc,Re)から選択される1ないし複数の添加金属を含み、その粒子が所定方向に引き伸ばされた組織を有する。これにより、中心電極3、接地電極4の温度が上昇しやすい環境下においても、発火部31,32の耐火花消耗性及び機械的強度を良好なものとすることができ、かつW成分の酸化・揮発により減耗が極めて効果的に抑制される。また、上記のような耐熱合金からなる電極に対する溶接性も良好である。なお、発火部31及び対向する発火部32のいずれか一方を省略する構成としてもよい。この場合には、発火部31と、発火部を有さない接地電極4の側面との間、又は発火部32と、発火部を有さない中心電極3の先端面との間で火花放電ギャップgが形成されることとなる。また、接地電極4側の、対向する発火部32は、例えばPt又はIr、Rhを主成分とする貴金属又は貴金属合金など、W系複合材料以外にて構成してもよい。
【0023】
発火部31,32を構成するW系複合材料に添加可能な添加金属元素成分としては、上述のように5A族金属元素(V,Nb,Ta)又は7A族金属元素(Mn,Tc,Re)から選択される1ないし複数のものを含有させることができる。これらの成分を添加することにより耐酸化消耗性を向上させることが可能となり、特にNbは、発火部31,32の高温での耐酸化消耗性改善効果が著しく高い。
【0024】
W系複合材料としては、例えばWを主成分とし、添加金属としてNbを5〜45wt%の範囲で含有する合金を使用することができる。該合金の使用により、高温でのW成分の酸化・揮発による発火部の消耗がさらに効果的に抑制され、ひいては、より耐久性に優れたスパークプラグが実現される。
【0025】
ここで、合金中のNbの含有量は上記範囲内において多くなるほど、発火部31,32の酸化・揮発抑制効果は高められる。この観点において、酸化・揮発抑制効果が最も顕著となるのは、Nb含有量が10〜40wt%、より望ましくは20〜35wt%、最も望ましくは25〜30wt%においてである。しかしながら、本発明においては、発火部31,32を構成するW系複合材料粒子が所定方向に引き伸ばされたことによる酸化消耗抑制効果が大きいため、Nbの含有量が比較的小さくとも、引き伸ばしの組織形態を備えないW系複合材料により発火部を構成した従来のスパークプラグと比較しても良好な酸化・揮発効果が達成される。その結果、比較的高価なNbの含有量を削減しつつも、発火部31あるいは32の耐酸化消耗性に優れたスパークプラグが実現可能となる。
【0026】
また、W系複合材料として、Wを主成分とし、添加金属としてReを5〜45wt%の範囲で含有する合金を使用することもできる。該合金の使用により、高温でのW成分の酸化・揮発による発火部の消耗が効果的に抑制され、ひいては耐久性に優れたスパークプラグが実現される。なお、上記合金中のReの含有量が5wt%未満になるとWの酸化・揮発の抑制効果が不十分となり、発火部が消耗しやすくなるためプラグの耐久性が低下する場合がある。一方、Reの含有量が45wt%を超えると合金の融点が低下し、プラグの耐久性が同様に低下する場合がある。
【0027】
以下、本発明のスパークプラグの製造方法の実施例について説明する。
図3(a)に示すように、中心電極3の先端面に上記発火部31(図1及び図2参照)を構成する合金組成からなる円板状のチップ31’を重ね合わせ、さらに、その接合面外縁部に沿ってレーザー溶接により全周レーザー溶接部(以下、単に溶接部ともいう)10を形成してこれを固着することにより発火部31が形成される。また、対向する発火部32(図1及び図2参照)は、発火部31に対応する位置において接地電極4にチップ32’を位置合わせし、その接合面外縁部に沿って同様に溶接部20を形成してこれを固着することにより形成される。
【0028】
これらチップ31’,32’(以下、チップ31,32を総称する場合は、符号「154」ないし「155」を用いる場合がある)の製造方法を以下に説明する。まず、図4(a)に示すようにWを主成分とする所定の組成の原料粉末(W系複合材料粉末)Pを配合し、これを同図(b)に示すように所定の形状に成形後、焼結する。なお、原料粉末PはW金属粉末を主成分とし上記Nb,Re等の添加金属元素からなる添加金属粉末を複合させたものとすることができる。
【0029】
図5(a)は、W金属粉末を主体とする原料粉末Pをプレス等により成型して成形体140となし、同図(b)に示すようにこれを焼結炉FS内にて焼結して、ブロック状の焼結体150を得る例である。また、図5(c)に示すように、円筒状の粉末成形体130を作り、これを焼結して円筒状の焼結体135を作ることもできる。この形態は、例えば円形断面の線状あるいは棒状に加工する場合に好都合である。
【0030】
次に上記により得られた焼結体を熱間加工する。例えば、図5(c)のように得られた円柱状の焼結体135を、回転ハンマーを用いた熱間回転鍛造(熱間スウェージング:方式自体は公知のものである)、熱間線材圧延(ロール孔型を形成する溝付ロールを用いる:方式自体は公知のものである)、もしくはそれらの組合せにより軸線方向に引き延ばして棒状素材とした後、図6(a)のような伸線ダイスを用いた熱間伸線によりさらに引き延ばして、図4(d)のような線状素材153を得る。線状素材153は円形の軸断面を有するものとして形成され、その組織は、図6(b)に示すように、W系複合材料の結晶粒子が素材長手方向に延伸された繊維状のもとなる。W系複合材料の結晶粒子の平均アスペクト比(Rdmax/Rdmin)は、線状素材153の長手方向と平行な断面(図では素材の中心軸線を含む断面A−A)において5以上とされる。
【0031】
一方、図4(b)に示すブロック状の焼結体150(あるいは、(c)に示す、それを鍛造した棒状素材151)を、図8(a)に示すように、圧延ロール対を用いて焼結素材熱間圧延することにより、図4(d)に示す板状素材152とすることができる。板状素材152は、熱間加工により、W系複合材料の結晶粒子が板の主面MTに沿う方向に延伸される。そのW系複合材料の結晶粒子は、その延伸方向に沿い、かつ主面と直交する断面LTにおいて、平均アスペクト比(Rdmax/Rdmin)が5以上となる扁平粒子組織を呈するものとされる。
【0032】
次に、上記のようにして得られた熱間加工素材となる板状素材152又は線状素材153を所定形状のチップに加工する。例えば、図4(d)の板状素材152を熱間打抜き加工により板厚方向に打ち抜けば、図4(e)に示すようなチップ154を形成することができる。この場合、チップ154は、図10(a)に示すように、W系複合材料の結晶粒子がチップ厚さ方向における端面(チップ主面)CPに沿う方向に延伸するとともに、その延伸方向に沿いかつチップ主面と直交する断面ASに現われるW系複合材料の結晶粒子の平均アスペクト比が5以上となる扁平粒子組織を呈するものとされる。
【0033】
上記チップ154は、図1において、中心電極3の軸線方向Oにチップ厚さ方向が一致するように、中心電極3及び/又は接地電極4に溶接により接合して発火部31あるいは32とされる。具体的には、チップ外周面に沿う環状の溶接部10あるいは20(図3参照)をレーザー溶接により形成する方法、あるいは抵抗溶接を用いる方法を例示できる。図3(b)に示すように、これら発火部31,32は、火花放電ギャップgに面する表面(チップ主面に由来するものである)を発火面として、W系複合材料の結晶粒子が発火面と平行な所定方向Jに沿って延伸するとともに、発火面と直交する断面に現われるW系複合材料の結晶粒子の平均アスペクト比が5以上となる扁平粒子組織を呈するものとなる。
【0034】
一方、図4(d)の線状素材153を、放電加工等により長さ方向に所定の間隔に切断することによりチップ155を製造することができる。図10(b)に示すように、該チップ155は、W系複合材料の結晶粒子がチップ厚さ方向に延伸するとともに、チップの厚さ方向と平行な断面ASに現われるW系複合材料の結晶粒子の平均アスペクト比が5以上となる繊維状組織を呈する。該チップ155も、図3(c)に示すように、中心電極3及び/又は接地電極4に溶接により接合して発火部31あるいは32とされる。W系複合材料の結晶粒子は、軸線Oと平行な方向Jに沿って延伸するとともに、その延伸方向と平行な断面に現われるW系複合材料の結晶粒子の平均アスペクト比が5以上となる繊維状組織を呈する。
【0035】
なお、図10(a)及び(b)に示す上記のチップ154及び155は、例えば直径dcが0.4〜1.2mm、厚さtcが0.5〜1.5mm程度とされる。結果として、発火部31,32の外径も同様の寸法dcを有するものとなる。
【0036】
【実験例】
上記本発明のスパークプラグ100の構成によりもたらされる効果を確認するために、以下の実験を行った。まず、原料粉末として、平均粒径10μm程度のW粉末に対して、平均粒径10μm程度のTa粉末、Nb粉末、Re粉末をそれぞれ5,10,20,30,40,45,50重量%となるように乾式混合した。これら各原料粉末を成形圧力200kg/mmにて室温でプレス成形して圧粉成形体となした。次に、この成形体を真空中にて、3000℃で20時間焼結し、縦約30mm、横20mm及び高さ100mmの棒状焼結体を得た。
【0037】
次に、上記焼結体に以下のような熱間加工を施した。まず、素材温度を1500℃に維持しながら鍛造圧力5×10kg/cmにて、軸断面形状が10mm角の角柱状棒材に予備鍛造加工した。次いで溝付ロールを用いた熱間線材圧延加工により、断面が1.5mm角となるまで圧延した。なお、圧延時の溝ロール温度は680〜750℃、素材温度は1300〜1400℃の範囲に維持した。
【0038】
そして、素材温度を1300〜1400℃に維持して、熱間回転鍛造加工により断面直径が0.9mmの線材とし、さらに、ダイス温度を680〜750℃、線材温度1300〜1400℃に維持しながら、最終線径が0.6mmとなるまで熱間伸線加工を行なった。こうして得られた線材を、放電加工により軸方向に0.8mmの厚さに切断することにより、直径0.6mm及び厚さ0.8mmの円板状のチップを得た。
【0039】
得られたチップは、中心軸線を含む断面が現われるように研磨して組織観察したところ、W系複合材料の結晶粒子がチップの厚み方向に引き伸ばされて繊維状の組織が形成されていることがわかった。該断面にてW系複合材料の結晶粒子の平均アスペクト比を測定したところ、約50であることがわかった。
【0040】
上記の各チップに対し、耐酸化消耗性試験を行った。すなわち、各チップを大気中にて1100℃で20時間放置した後、各チップの断面の面積に対する未酸化部分の面積の割合により酸化残存量を算出した。具体的には、各チップをそれぞれ放電面となる側から平面視したときのチップ表面面積Xを予め求めておき、さらに、各チップを大気中にて1100℃で20時間放置した後、各チップを超音波洗浄した場合において、残存する各チップ(未酸化部分)についてそれぞれ放電面となる側から平面視したときのチップ(未酸化部分)表面面積Yを求め、チップ表面面積Xに対するチップ(未酸化部分)表面面積Yの割合により酸化残存量を算出した。結果を図11に示す。図11のグラフは横軸がTa,Nb,Reの添加量を示し、縦軸が酸化残存量を示している。このように、Ta,Nb,Reの添加量を本発明の範囲である5〜45wt%としたチップは、酸化消耗が抑制されていることが分かり、10〜40wt%程度の添加量にするとさらに好ましいことが分かる。なお、添加金属のないW金属は5時間にて消失した。
【0041】
また、上記Nbを各添加量にて含有させたチップに対して机上火花試験を行った。すなわち、各チップを用いて、図1に示すスパークプラグの発火部31及び対向する発火部32を火花放電ギャップgの幅が0.8mmとなるように形成し、プラグを試験用チャンバに取り付けると共に、フルトランジスタ型イグナイタに接続し、チャンバ内気圧0.4MPa、最大電圧30kVにて周波数60Hzの交流電圧を200時間印加し、火花放電ギャップgの幅の増加量を測定した。なお、チャンバ内雰囲気は窒素雰囲気として行った。その結果を図12に示す。このように、Nbの添加量を本発明の範囲である5〜45wt%としたチップは、ギャップ増加量が小さく耐酸化消耗性が極めて良好ことがわかる。
【0042】
一方、上記各チップと、熱間加工を行わずに、粉末成形品を焼結することにより得たチップ(成分組成は同様)とに対してそれぞれ実機耐久試験を行った。すなわち、図1に示すスパークプラグ100の発火部31及び対向する発火部32を上記各チップを用いて、火花放電ギャップgの幅が0.8mmとなるように形成するとともに、実機による耐火花消耗性試験を行った。すなわち、プラグをガソリンエンジン(排気量2000cc)に取り付け、無鉛ガソリンを使用して、スロットル全開状態、エンジン回転数5000rpmにて400時間(5万km走行に相当)運転を行ない、火花放電ギャップgの拡大量を測定した。なお、試験中の中心電極温度は、公知の測温プラグを用いて測定したところ、図1に示すスパークプラグ100の主体金具1の先端面位置近傍にて約780〜790℃(最大820℃)であった。結果を図13に示す。焼結のみのチップと比較して、焼結後さらに熱間加工することにより組織を繊維状としたチップは、ギャップ増加量が小さく耐酸化消耗性が格段に向上しており、極めて良好な結果が得られていることがわかる。
【0043】
次に、Nbを30wt%添加し上記熱間加工により得たチップ(W−30Nb熱間鍛造品)と、Nbを30wt%添加し上記熱間加工を行わずに成形・焼結により得たチップ(W−30Nb焼結品)に対して強度試験を行った。すなわち、図1に示すスパークプラグ100にて主体金具1に接地電極4が結合されていないものを準備するとともに、発火部31に上記各チップを用いたものをチップ毎に4つずつ準備して、図14に示すような装置において該状態のスパークプラグを固定し、錘(200g)を角度θ=15°〜45°まで振り上げ、2.5°毎に初速ゼロにて振り子式に落下させチップ面(発火部31)に衝撃を加え、チップにおける割れや欠けの発生の有無を調べた。なお、錘のチップに当る面にはアルミナ板を固定するものとした。結果を図15に示す。図15は各チップについて割れや欠けが発生した錘角度をプロットしたもので、焼結のみのチップと比較して、焼結後、さらに熱間加工することにより組織を繊維状としたチップでは、欠けの発生する錘角度が大きくなっており、すなわち耐衝撃性が向上していることがわかる。
【0044】
なお、W粉末にNb粉末を10wt%添加し、さらにRe粉末を5,10,15,20,25wt%添加した5種類の原料粉末と、W粉末にNb粉末を20wt%添加し、さらにRe粉末を5,10,15wt%添加した3種類の原料粉末とについて、それぞれ上記と同様、焼結後、熱間加工を施して3元系(W−Nb−Re)の各チップを作成した。これら各チップについて、上記と同様の耐酸化消耗性試験により酸化残存量を算出した。結果を図16に示す。WとNbからなる2元系のチップと同様、WとNbとReからなる3元系のチップについても、良好な耐酸化消耗性を備えていることが分かる。
【図面の簡単な説明】
【図1】本発明のスパークプラグの一実施例を示す正面部分断面図。
【図2】その要部を示す拡大断面図。
【図3】図2をさらに拡大して示す拡大断面図。
【図4】発火部形成用チップの製造方法の例を示す模式図。
【図5】チップの成形及び焼結方法の例を示す模式図。
【図6】W系複合材料粒子を繊維状となす工程と、得られる素材の組織を模式的に示す説明図。
【図7】結晶粒子のアスペクト比を説明する図。
【図8】W系複合材料粒子を扁平状となす工程と、得られる素材の組織を模式的に示す説明図。
【図9】焼結体中の空孔が加工による圧縮により消滅する様子を模式的に示す図。
【図10】チップ組織の例をいくつか示す説明図。
【図11】2元系の耐酸化消耗性試験の結果を示す図。
【図12】机上火花試験の結果を示す図。
【図13】実機耐久試験の結果を示す図。
【図14】強度試験を行うための装置を示す模式図。
【図15】強度試験の結果を示す図。
【図16】3元系の耐酸化消耗性試験の結果を示す図。
【符号の説明】
1 主体金具
2 絶縁体
3 中心電極
4 接地電極
31 発火部
31’ チップ
32 対向する発火部
g 火花放電ギャップ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a spark plug manufacturing method and a spark plug.
[0002]
[Prior art]
For example, a spark plug used for ignition of an internal combustion engine is of a type in which an ignition part is formed by welding a tip mainly made of Pt to the tip of an electrode in order to improve spark wear resistance. However, in recent years, in order to further improve the spark wear resistance, a spark plug in which an ignition part is composed of a chip mainly composed of W (tungsten) instead of Pt is disclosed in, for example, Japanese Patent Application Laid-Open No. 59-25945, Various proposals have been made in JP-A-59-25949, JP-A-5-54955, JP-A-8-185594, and the like.
[0003]
Further, in recent years, the temperature in the combustion chamber tends to increase due to the increase in the output of the internal combustion engine, and in order to improve the ignitability, an engine of a type in which the ignition portion of the spark plug protrudes into the combustion chamber is often used. It has become like this. In addition, as part of measures for making maintenance free for automobile engines, severe demands that cannot be imagined from the previous situation, such as continuous running of 160,000 km or more without replacement of spark plugs, have come to be issued.
[0004]
[Problems to be solved by the invention]
When a W-type chip is used, since the melting point of W is as high as about 3380 ° C., the spark wear resistance is greatly improved. However, since W has a property of being easily oxidized and volatilized at a high temperature, it is long. If the high-speed traveling of time is repeated and the temperature rises above a certain temperature, there is a drawback that the ignition part is suddenly oxidized and consumed, and the spark gap interval is enlarged. In order to solve this problem, for example, in each of the above publications such as JP-A-5-54955 and JP-A-8-185594, a W-based alloy in which an additive metal such as Re or Ta is added to W is used for the chip. A method for improving the oxidative wear resistance of the ignition part has been proposed.
[0005]
Here, as a chip manufacturing method using a W-based alloy, a raw material powder obtained by adding an additive metal powder to a W powder is formed into a chip shape, and the molded body is sintered to form a chip (powder). Sintering method) was common. However, a chip made of a W-based composite material obtained by this powder sintering method has a drawback that it has low toughness and lacks mechanical strength, so that cracks are likely to occur. In addition, when using the powder sintering method, the additive amount of the additive metal to W can actually be added only about 3 to 10 wt% from the viewpoint of processing technology, and the oxidation consumption resistance may not be sufficiently improved. .
[0006]
An object of the present invention is to provide a spark plug and a method for manufacturing the same that can achieve both the oxidation wear resistance and mechanical strength of an ignition part made of a W-based composite material.
[0007]
[Means for solving the problems and actions / effects]
  In order to solve the above-described problem, the spark plug manufacturing method of the present invention includes a spark discharge gap formed between a center electrode and a ground electrode, and at least one of the spark discharge of the center electrode and the ground electrode. A spark plug manufacturing method in which an ignition part made of a W-based composite material containing W (tungsten) as a main component is provided at a position facing a gap,
  A sintering process for producing a sintered body by sintering the raw material powder of the W-based composite material;
  A hot working step for obtaining a hot working material by subjecting the sintered body to hot working so that W-based composite material particles extend in a predetermined direction;
  A chip forming step of processing the hot processed material into a chip of a predetermined shape as a chip material;
  A bonding step of bonding the chip to at least one of the center electrode and the ground electrode to form the ignition portion;TheIncludingSee
The W-based composite material contains 20 to 40 wt% of metal powder of a metal element belonging to Group 5A or 7A of the Periodic Table of Elements.It is characterized by that.
[0008]
When the ignition part is composed of a W-based composite material containing W as a main component, one or more selected from metal elements belonging to Group 5A or Group 7A of the periodic table of elements as an additive component of the W-based composite material It is effective in using Wt to suppress oxidation and volatilization of W. Specifically, for example, metal powders of these metal elements can be used.
[0009]
In the spark plug in which the ignition part is composed of a W-based composite material, the oxidation resistance consumption of the ignition part has hitherto been mainly attempted to improve mainly by adding an appropriate alloy element such as Re. Although it is certainly an effective technique, the present inventors have conducted intensive studies from the viewpoint of the metal structure, and as a result, the oxidation resistance and mechanical strength at high temperatures of the ignition part made of a W-based composite material are The chip is greatly affected by the structure of the metal crystal particles in the chip, and the structure is made into a fibrous shape in which the W-based composite material particles (metal crystal particles) are stretched in a predetermined direction, so that the oxidation resistance of the ignition part is reduced. Has been found to be remarkably improved and the mechanical strength is improved, and the present invention has been completed.
[0010]
That is, according to the manufacturing method of the present invention, a chip material made of a W-based composite material for forming an ignition part is manufactured by combining sintering and hot working, whereby the acid resistance of the ignition part obtained is obtained. It is possible to improve the wear resistance without deteriorating the mechanical properties. Employing the sintering method is effective in preventing component segregation and contributes to improvement in oxidation resistance. Further, by forming the chip structure into a fibrous form in which the W-based composite material particles are stretched in a predetermined direction by hot working, the occurrence of cracks and chips is remarkably reduced, and mechanical properties such as toughness and strength are reduced. Can be further improved. In addition, since the voids in the sintered body made of the W-based composite material are crushed and reduced by compression accompanying hot working, the thermal conductivity is improved and the inside of the ignition part (chip) due to the presence of the voids Oxygen can be prevented from penetrating into the film, and oxidation resistance can be further improved. Furthermore, by passing through the hot working process, compared with the case where the molded product of metal powder is sintered and made into chips as in the past, the connection between the metal particles becomes dense, so that the spark consumption is improved, In addition, since the segregation of impurities at the grain boundaries seen during powder sintering is made uniform, the spark consumption due to grain boundary corrosion is also improved.
[0011]
The content of the metal powder made of a metal element belonging to Group 5A or Group 7A of the periodic table of elements in the W-based composite material is about 5 to 45 wt%, preferably 10 to 40 wt%. When the content is less than 5 wt%, the spark wear resistance is excellent, but the oxidation resistance may be inferior. When the content exceeds 45 wt%, the relative amount of W is lowered, so that the spark wear resistance is lowered and the oxidation resistance is reduced. May be inferior.
[0012]
As used herein, the term “ignition portion” refers to a portion of a bonded chip that has not been affected by compositional variation due to bonding (for example, a portion that is alloyed with the material of the ground electrode or the center electrode by bonding). The remaining part). The “processing” as used in the present invention is not particularly limited as long as the crystal grains of the W-based composite material to be processed can be stretched in a predetermined direction. For example, forging, rolling, and wire drawing (drawing). It can carry out by 1 type or the combination of 2 or more types. In this case, the processing needs to be performed by hot processing in which the material temperature during processing is 1650 to 1750 ° C. When the processing temperature is less than 1650 ° C., the deformation resistance of the workpiece material made of the W-based composite material is large, and the frequency of occurrence of grain boundary cracks is high, and sound processing becomes impossible. On the other hand, when the processing temperature exceeds 1750 ° C., the oxidation and volatilization of the W component becomes violent, leading to a decrease in workability. In addition, the life of jigs used for processing (forging punches, rolling rolls, or wire drawing dies) can easily be exhausted at an early stage, leading to an increase in manufacturing costs.
[0013]
The processed material is made into a chip material having a suitable shape as an ignition part by various processes. As a specific processing method, in the hot working step, the sintered body is formed into a linear or rod-shaped material (hereinafter referred to as a linear material) by at least one of hot forging, hot rolling and hot wire drawing. If the chip is obtained by cutting it into a predetermined length in the length direction (for example, by electric discharge machining), the chip manufacturing yield is high, and the axial direction of the linear material (chip Or when it becomes an ignition part, it is convenient also in obtaining the structure | tissue consisting of the flat W type composite material particle extended in the direction parallel to the axis line.
[0014]
In this case, the chip has a fibrous structure in which the W-based composite material particles extend in the chip thickness direction and the average aspect ratio of the W-based composite material particles appearing in a cross section parallel to the chip thickness direction is 5 or more. It is desirable to manufacture as what exhibits. When the aspect ratio is 5 or more, the oxidation resistance and mechanical strength can be improved particularly remarkably due to the fiber formation of the tissue. Note that an extremely large aspect ratio causes a decrease in manufacturing efficiency and a cost increase due to an increase in the number of processing steps, so that the aspect ratio is appropriately determined within a range of, for example, about 100. In the present specification, the aspect ratio refers to various pairs of parallel tangent pairs that do not cross the inside of the grain with respect to the outline of the crystal grain observed in the field of view on a predetermined cross section, as shown in FIG. When drawn in the positional relationship, it is defined as a ratio Rdmax / Rdmin between the maximum interval Rdmax and the minimum interval Rmin in the pair of tangent pairs.
[0015]
As another method, the hot working includes a hot rolling process, and the hot working material is formed as a plate material based on the hot rolling process, and the thickness direction from the plate material is the chip thickness direction. For example, the chip can be manufactured by hot punching or electric discharge machining. The method is also highly efficient, and is composed of flat W-based composite material particles that are elongated in the plate surface direction of the plate-like material (in the direction perpendicular to the axis line when it becomes a chip or an ignition part). Convenient for obtaining tissue.
[0016]
In this case, the chip exhibits a fiber particle structure in which the W-based composite material particles extend in the direction of the chip main surface and the average aspect ratio of the W-based composite material particles appearing in a cross section orthogonal to the chip main surface is 5 or more. It is desirable to be manufactured as a product. When the aspect ratio is 5 or more, it is possible to particularly remarkably improve oxidation resistance and mechanical strength by flattening the tissue. Also in this case, extremely increasing the aspect ratio causes a decrease in manufacturing efficiency and a cost increase due to an increase in the number of processing steps, so that the aspect ratio is appropriately determined within a range of, for example, about 100.
[0017]
  Next, the spark plug of the present invention can be manufactured by the above manufacturing method, a spark discharge gap is formed between the center electrode and the ground electrode, and at least one of the sparks of the center electrode and the ground electrode. A spark plug provided with an ignition part made of a W-based composite material containing W as a main component at a position facing the discharge gap,
  The W-based composite material particles forming the ignition part have a structure stretched in a predetermined direction.And
The W-based composite material contains 20 to 40 wt% of metal powder of a metal element belonging to Group 5A or Group 7A of the Periodic Table of Elements.It is characterized by that.
  According to this, by making the W-based composite material particles (metal crystal particles) forming the ignition part into a structure stretched in a predetermined direction, the mechanical properties such as the toughness and strength of the ignition part are improved as well as the improvement in oxidation resistance. The properties are improved and the occurrence of defects such as cracks and chips is significantly reduced. Furthermore, the processing to make the W-based composite particles stretched reduces the number of vacancies in the ignition part made of W-based composite materials (due to the use of the sintering method) and improves thermal conductivity. In addition, oxygen can be prevented from entering the ignition portion (chip) due to the presence of the vacancies, so that the oxidation resistance and wear resistance can be further improved. The W-based composite material particles may contain one or more selected from metal elements belonging to Group 5A or Group 7A of the Periodic Table of Elements. In this case, oxidation and volatilization of W can be further suppressed.
[0018]
The W-based composite material forming the ignition part has a surface facing the spark discharge gap as an ignition surface, and a direction perpendicular to the ignition surface is defined as a height direction of the ignition part. It is desirable that the W-based composite material particles appear in a cross section parallel to the firing portion height direction and have a structure having an average aspect ratio of 5 or more while extending in the portion height direction. Further, when the W-based composite material particles are to be stretched in a predetermined direction along the ignition surface, the ignition surface appears along a cross-section perpendicular to the ignition surface along the extending direction of the W-based composite material particles. It is desirable to exhibit a structure in which the average aspect ratio of the W-based composite material particles is 5 or more.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
A spark plug 100 as an example of the present invention shown in FIG. 1 and FIG. 2 is formed at a distal end of a tubular metal shell 1, an insulator 2 fitted inside the metal shell 1 so that a tip portion 21 protrudes. One end is joined to the center electrode 3 and the metal shell 1 provided inside the insulator 2 in a state where the ignition portion 31 is protruded, and the other end is bent back to the side. Includes a ground electrode 4 disposed so as to face the tip of the center electrode 3. Further, the ground electrode 4 is formed with an ignition part 32 that faces the ignition part 31, and a gap between the ignition part 31 and the opposing ignition part 32 is a spark discharge gap g.
[0020]
The insulator 2 is made of a ceramic sintered body such as alumina or aluminum nitride, for example, and has a hole 6 for fitting the center electrode 3 along its own axial direction. The metal shell 1 is formed in a cylindrical shape from a metal such as low carbon steel, and constitutes a housing of the spark plug 100, and a screw for attaching the plug 100 to an engine block (not shown) on its outer peripheral surface. Part 7 is formed.
[0021]
The chip adherent surface forming portion of the center electrode 3 and the ground electrode 4, in this embodiment, at least the surface layer portion thereof is made of a heat-resistant alloy containing Ni or Fe as a main component. "Means the component having the highest mass content, and does not necessarily mean" the component occupying 50% by mass or more "). For example, as a heat-resistant alloy containing Ni as a main component, INCONEL600, INCONEL601, or the like can be used.
[0022]
On the other hand, the ignition part 31 and the opposing ignition part 32 are mainly composed of a W-based composite material containing W as a main component, and the W-based composite material includes a group 5A metal element (V, Nb, Ta) or One or more additive metals selected from Group 7A metal elements (Mn, Tc, Re) are included, and the particles have a structure stretched in a predetermined direction. Thereby, even in an environment in which the temperature of the center electrode 3 and the ground electrode 4 is likely to rise, the spark consumption and mechanical strength of the ignition parts 31 and 32 can be improved, and oxidation of the W component can be achieved.・ Deterioration is extremely effectively suppressed by volatilization. Moreover, the weldability with respect to the electrode which consists of the above heat-resistant alloys is also favorable. In addition, it is good also as a structure which abbreviate | omits any one of the ignition part 31 and the opposing ignition part 32. FIG. In this case, the spark discharge gap is between the ignition part 31 and the side surface of the ground electrode 4 that does not have the ignition part, or between the ignition part 32 and the tip surface of the center electrode 3 that does not have the ignition part. g will be formed. Further, the opposing ignition part 32 on the ground electrode 4 side may be made of a material other than the W-based composite material such as a noble metal or a noble metal alloy mainly containing Pt, Ir, or Rh.
[0023]
As described above, the additive metal element component that can be added to the W-based composite material constituting the ignition parts 31 and 32 is a group 5A metal element (V, Nb, Ta) or a group 7A metal element (Mn, Tc, Re). One or more selected from can be contained. By adding these components, it becomes possible to improve the oxidation consumption resistance. In particular, Nb has an extremely high effect of improving the oxidation consumption resistance at high temperatures of the ignition parts 31 and 32.
[0024]
As the W-based composite material, for example, an alloy containing W as a main component and Nb as an additive metal in a range of 5 to 45 wt% can be used. By using the alloy, the consumption of the ignition part due to oxidation and volatilization of the W component at a high temperature is further effectively suppressed, and as a result, a spark plug having higher durability is realized.
[0025]
Here, as the content of Nb in the alloy increases within the above range, the oxidation / volatilization suppressing effect of the ignition parts 31 and 32 is enhanced. In this respect, the effect of suppressing oxidation and volatilization is most remarkable when the Nb content is 10 to 40 wt%, more preferably 20 to 35 wt%, and most preferably 25 to 30 wt%. However, in the present invention, since the effect of suppressing oxidation consumption due to the W-based composite material particles constituting the ignition portions 31 and 32 being stretched in a predetermined direction is large, the stretched structure is obtained even if the Nb content is relatively small. Even when compared with a conventional spark plug in which the ignition part is formed of a W-based composite material having no form, a good oxidation / volatilization effect is achieved. As a result, it is possible to realize a spark plug having excellent oxidation resistance and wear resistance of the ignition part 31 or 32 while reducing the content of relatively expensive Nb.
[0026]
An alloy containing W as a main component and Re as an additive metal in the range of 5 to 45 wt% can also be used as the W-based composite material. By using the alloy, the consumption of the ignition part due to the oxidation and volatilization of the W component at a high temperature is effectively suppressed, and as a result, a spark plug excellent in durability is realized. If the Re content in the alloy is less than 5 wt%, the effect of suppressing the oxidation and volatilization of W becomes insufficient, and the ignition part tends to be consumed, so that the durability of the plug may be lowered. On the other hand, if the Re content exceeds 45 wt%, the melting point of the alloy may decrease, and the durability of the plug may also decrease.
[0027]
Examples of the spark plug manufacturing method of the present invention will be described below.
As shown in FIG. 3A, a disc-shaped chip 31 ′ made of an alloy composition constituting the ignition part 31 (see FIGS. 1 and 2) is superimposed on the tip surface of the center electrode 3, and The ignition part 31 is formed by forming an all-around laser welded part (hereinafter also simply referred to as a welded part) 10 along the outer edge of the joint surface by laser welding and fixing it. Further, the opposing ignition part 32 (see FIGS. 1 and 2) aligns the tip 32 'with the ground electrode 4 at a position corresponding to the ignition part 31, and similarly welds 20 along the outer edge of the joint surface. And are fixed to each other.
[0028]
A manufacturing method of these chips 31 ′ and 32 ′ (hereinafter, when the chips 31 and 32 are generically referred to, the symbols “154” to “155” may be used) will be described below. First, as shown in FIG. 4 (a), a raw material powder (W-based composite material powder) P having a predetermined composition containing W as a main component is blended, and this is formed into a predetermined shape as shown in FIG. 4 (b). After molding, it is sintered. The raw material powder P can be a composite of an additive metal powder composed mainly of a W metal powder and composed of an additive metal element such as Nb or Re.
[0029]
FIG. 5 (a) shows a raw material powder P mainly composed of W metal powder formed by pressing or the like to form a compact 140, which is sintered in a sintering furnace FS as shown in FIG. 5 (b). This is an example of obtaining a block-shaped sintered body 150. Moreover, as shown in FIG.5 (c), the cylindrical powder compact 130 can be made and this can be sintered and the cylindrical sintered body 135 can also be made. This form is advantageous when processing into a linear or rod-like shape having a circular cross section, for example.
[0030]
Next, the sintered body obtained as described above is hot-worked. For example, the cylindrical sintered body 135 obtained as shown in FIG. 5C is subjected to hot rotary forging using a rotary hammer (hot swaging: the method itself is known), hot wire. After rolling (using a grooved roll that forms a roll hole mold: the method itself is a known one) or a combination thereof to draw in the axial direction to form a rod-shaped material, wire drawing as shown in FIG. 6 (a) Drawing is further performed by hot drawing using a die to obtain a linear material 153 as shown in FIG. The linear material 153 is formed to have a circular axial cross section, and the structure thereof is a fibrous material in which crystal grains of a W-based composite material are stretched in the longitudinal direction of the material, as shown in FIG. Become. The average aspect ratio (Rdmax / Rdmin) of the crystal grains of the W-based composite material is 5 or more in a cross section parallel to the longitudinal direction of the linear material 153 (the cross section AA including the central axis of the material in the drawing).
[0031]
On the other hand, as shown in FIG. 8A, a block-shaped sintered body 150 shown in FIG. 4B (or a bar-shaped material 151 forged from it shown in FIG. 8C) is used as a rolling roll pair. By hot rolling the sintered material, a plate-shaped material 152 shown in FIG. 4 (d) can be obtained. In the plate-like material 152, the crystal grains of the W-based composite material are stretched in a direction along the main surface MT of the plate by hot working. The crystal particles of the W-based composite material have a flat particle structure having an average aspect ratio (Rdmax / Rdmin) of 5 or more in a cross section LT along the extending direction and orthogonal to the main surface.
[0032]
Next, the plate-like material 152 or the linear material 153 that is the hot-worked material obtained as described above is processed into chips having a predetermined shape. For example, if the plate-like material 152 of FIG. 4D is punched in the thickness direction by hot punching, a chip 154 as shown in FIG. 4E can be formed. In this case, as shown in FIG. 10A, in the chip 154, the crystal particles of the W-based composite material extend in the direction along the end surface (chip main surface) CP in the chip thickness direction and along the extending direction. In addition, a flat particle structure in which the average aspect ratio of the crystal grains of the W-based composite material appearing in the cross section AS orthogonal to the chip main surface is 5 or more is exhibited.
[0033]
In FIG. 1, the tip 154 is joined to the center electrode 3 and / or the ground electrode 4 by welding so that the tip thickness direction coincides with the axial direction O of the center electrode 3, thereby forming the ignition portion 31 or 32. . Specifically, a method of forming the annular welded portion 10 or 20 (see FIG. 3) along the outer peripheral surface of the chip by laser welding, or a method of using resistance welding can be exemplified. As shown in FIG. 3 (b), the ignition parts 31 and 32 have W-based composite material crystal particles with the surface facing the spark discharge gap g (derived from the chip main surface) as the ignition surface. While extending along a predetermined direction J parallel to the ignition surface, it exhibits a flat particle structure in which the average aspect ratio of the crystal grains of the W-based composite material appearing in the cross section orthogonal to the ignition surface is 5 or more.
[0034]
On the other hand, the chip | tip 155 can be manufactured by cut | disconnecting the linear raw material 153 of FIG.4 (d) to a predetermined space | interval in a length direction by electrical discharge machining etc. FIG. As shown in FIG. 10 (b), the chip 155 includes W-based composite material crystals that appear in a cross section AS parallel to the chip thickness direction, while crystal grains of the W-based composite material extend in the chip thickness direction. It exhibits a fibrous structure in which the average aspect ratio of the particles is 5 or more. The tip 155 is also joined to the center electrode 3 and / or the ground electrode 4 by welding as shown in FIG. The W-based composite material crystal particles are stretched along a direction J parallel to the axis O, and the average aspect ratio of the W-based composite material crystal particles appearing in a cross section parallel to the extending direction is 5 or more. Presents an organization.
[0035]
The above-mentioned chips 154 and 155 shown in FIGS. 10A and 10B have a diameter dc of about 0.4 to 1.2 mm and a thickness tc of about 0.5 to 1.5 mm, for example. As a result, the outer diameters of the ignition parts 31 and 32 also have the same dimension dc.
[0036]
[Experimental example]
In order to confirm the effect brought about by the configuration of the spark plug 100 of the present invention, the following experiment was conducted. First, as a raw material powder, Ta powder, Nb powder, and Re powder having an average particle size of about 10 μm are respectively 5, 10, 20, 30, 40, 45, and 50% by weight with respect to W powder having an average particle size of about 10 μm. Dry mixing was performed. Each of these raw material powders is molded at a pressure of 200 kg / mm2Was pressed at room temperature to form a green compact. Next, this compact was sintered in a vacuum at 3000 ° C. for 20 hours to obtain a rod-shaped sintered body having a length of about 30 mm, a width of 20 mm, and a height of 100 mm.
[0037]
Next, the following hot working was performed on the sintered body. First, forging pressure 5 × 10 while maintaining the material temperature at 1500 ° C.5kg / cm2Then, preliminary forging was performed on a prismatic bar having an axial cross-section of 10 mm square. Subsequently, it rolled by the hot wire rolling process using a grooved roll until a cross section became 1.5 mm square. In addition, the groove roll temperature at the time of rolling was maintained in the range of 680-750 degreeC, and raw material temperature in the range of 1300-1400 degreeC.
[0038]
Then, the material temperature is maintained at 1300 to 1400 ° C., the wire diameter is 0.9 mm by hot forging, and the die temperature is maintained at 680 to 750 ° C. and the wire temperature is 1300 to 1400 ° C. Then, hot wire drawing was performed until the final wire diameter became 0.6 mm. The wire thus obtained was cut into a thickness of 0.8 mm in the axial direction by electric discharge machining to obtain a disk-shaped chip having a diameter of 0.6 mm and a thickness of 0.8 mm.
[0039]
The obtained chip was polished so that a cross-section including the central axis appeared and the structure was observed. As a result, the crystalline particles of the W-based composite material were stretched in the thickness direction of the chip to form a fibrous structure. all right. When the average aspect ratio of the crystal grains of the W-based composite material was measured in the cross section, it was found to be about 50.
[0040]
Each chip was subjected to an oxidation consumption resistance test. That is, after each chip was left at 1100 ° C. for 20 hours in the air, the remaining amount of oxidation was calculated from the ratio of the area of the unoxidized portion to the area of the cross section of each chip. Specifically, the chip surface area X when each chip is viewed in plan from the discharge surface side is obtained in advance, and each chip is left in the atmosphere at 1100 ° C. for 20 hours. In the case of ultrasonic cleaning, the surface area Y of the chip (unoxidized portion) when the remaining chip (unoxidized portion) is viewed in plan from the discharge surface side is obtained, and the chip (unoxidized portion) relative to the chip surface area X is obtained. Oxidized portion) The remaining amount of oxidation was calculated from the ratio of the surface area Y. The results are shown in FIG. In the graph of FIG. 11, the horizontal axis indicates the amount of Ta, Nb, and Re added, and the vertical axis indicates the amount of residual oxidation. Thus, it can be seen that the chip with the added amount of Ta, Nb, Re of 5 to 45 wt%, which is the range of the present invention, shows that the oxidation consumption is suppressed, and further when the added amount is about 10 to 40 wt%. It turns out that it is preferable. Note that the W metal with no added metal disappeared in 5 hours.
[0041]
In addition, a desktop spark test was performed on the chips containing the above Nb in each addition amount. That is, using each chip, the spark plug ignition portion 31 and the opposing ignition portion 32 shown in FIG. 1 are formed so that the spark discharge gap g has a width of 0.8 mm, and the plug is attached to the test chamber. Then, an AC voltage with a frequency of 60 Hz was applied for 200 hours at a chamber internal pressure of 0.4 MPa and a maximum voltage of 30 kV, and the amount of increase in the width of the spark discharge gap g was measured. Note that the atmosphere in the chamber was a nitrogen atmosphere. The result is shown in FIG. Thus, it can be seen that the chip in which the amount of Nb added is 5 to 45 wt%, which is the range of the present invention, has a small gap increase and a very good resistance to oxidation and consumption.
[0042]
On the other hand, an actual machine durability test was performed on each of the above chips and a chip (same component composition) obtained by sintering a powder molded product without performing hot working. That is, the ignition part 31 and the opposing ignition part 32 of the spark plug 100 shown in FIG. 1 are formed using the above chips so that the spark discharge gap g has a width of 0.8 mm, and the spark consumption by the actual machine is reduced. A sex test was performed. In other words, the plug is attached to a gasoline engine (displacement 2000 cc), unleaded gasoline is used, the throttle is fully opened, the engine is operated at 5000 rpm for 400 hours (equivalent to traveling 50,000 km), and the spark discharge gap g The amount of magnification was measured. The center electrode temperature during the test was measured using a known temperature measuring plug. As a result, the center electrode temperature in the vicinity of the tip surface position of the metal shell 1 of the spark plug 100 shown in FIG. Met. The results are shown in FIG. Compared to a chip with only sintering, a chip whose structure is fibrous by further hot working after sintering has a very good result because the gap increase is small and the oxidation consumption resistance is greatly improved. It can be seen that is obtained.
[0043]
Next, a chip (W-30Nb hot forged product) obtained by adding 30 wt% Nb and the above hot working, and a chip obtained by molding and sintering without adding 30 wt% Nb and performing the above hot working A strength test was performed on (W-30Nb sintered product). That is, in addition to preparing the spark plug 100 shown in FIG. 1 in which the ground electrode 4 is not coupled to the metal shell 1, four chips each using the above-mentioned chips are prepared for each chip. In the apparatus as shown in FIG. 14, the spark plug in this state is fixed, the weight (200 g) is swung up to an angle θ = 15 ° to 45 °, and dropped in a pendulum manner at an initial speed of zero every 2.5 °. An impact was applied to the surface (ignition part 31), and the presence or absence of cracks or chips in the chip was examined. An alumina plate is fixed to the surface of the weight that contacts the chip. The results are shown in FIG. FIG. 15 is a plot of the weight angle at which cracking and chipping occurred for each chip. Compared with a chip of only sintering, in a chip whose structure is fibrous by further hot working after sintering, It can be seen that the weight angle at which chipping occurs is large, that is, the impact resistance is improved.
[0044]
In addition, 10 wt% of Nb powder is added to W powder, 5 kinds of raw material powders are added 5, 10, 15, 20, and 25 wt% of Re powder, and 20 wt% of Nb powder is added to W powder, and Re powder is further added. Each of the three types of raw material powders to which 5,10,15 wt% was added was sintered and hot-worked in the same manner as described above to produce ternary (W-Nb-Re) chips. For each of these chips, the oxidation remaining amount was calculated by the same oxidation resistance consumption test as described above. The results are shown in FIG. It can be seen that the ternary chip consisting of W, Nb, and Re also has good oxidation resistance as well as the binary chip consisting of W and Nb.
[Brief description of the drawings]
FIG. 1 is a partial front sectional view showing an embodiment of a spark plug according to the present invention.
FIG. 2 is an enlarged sectional view showing the main part.
FIG. 3 is an enlarged sectional view showing FIG. 2 in a further enlarged manner.
FIG. 4 is a schematic view showing an example of a method for manufacturing a firing portion forming chip.
FIG. 5 is a schematic view showing an example of chip forming and sintering methods.
FIG. 6 is an explanatory view schematically showing a step of making W-based composite material particles into a fibrous form and a structure of the obtained material.
FIG. 7 is a diagram illustrating an aspect ratio of crystal grains.
FIG. 8 is an explanatory view schematically showing a step of flattening W-based composite material particles and a structure of the obtained material.
FIG. 9 is a diagram schematically showing a state in which pores in a sintered body disappear due to compression by processing.
FIG. 10 is an explanatory diagram showing some examples of chip structures.
FIG. 11 is a graph showing the results of a binary oxidation resistance test.
FIG. 12 is a diagram showing the results of a desktop spark test.
FIG. 13 is a diagram showing results of an actual machine durability test.
FIG. 14 is a schematic diagram showing an apparatus for performing a strength test.
FIG. 15 is a diagram showing the results of a strength test.
FIG. 16 is a graph showing the results of a ternary oxidation resistance consumption test.
[Explanation of symbols]
1 metal shell
2 Insulator
3 Center electrode
4 Ground electrode
31 ignition part
31 'chip
32 Opposing firing parts
g Spark discharge gap

Claims (8)

中心電極と接地電極との間に火花放電ギャップが形成され、かつ、前記中心電極と接地電極の少なくとも一方の前記火花放電ギャップに臨む位置に、Wを主成分とするW系複合材料からなる発火部を設けたスパークプラグの製造方法であって、
前記W系複合材料の原料粉末を焼結することにより焼結体を作る焼結工程と、
前記焼結体に、W系複合材料粒子が所定方向に延伸するように熱間加工を施して熱間加工素材を得る熱間加工工程と、
前記熱間加工素材をチップ素材としてこれを所定形状のチップに加工するチップ化工程と、
前記チップを前記中心電極と前記接地電極との少なくとも一方に接合して前記発火部とする接合工程と、をみ、
前記W系複合材料には、元素周期律表の5A族又は7A族に属する金属元素の金属粉末が20〜40wt%含有されていることを特徴とするスパークプラグの製造方法。
Ignition made of a W-based composite material containing W as a main component at a position where a spark discharge gap is formed between the center electrode and the ground electrode and at least one of the center electrode and the ground electrode faces the spark discharge gap. A spark plug manufacturing method provided with a section,
A sintering process for producing a sintered body by sintering the raw material powder of the W-based composite material;
A hot working step for obtaining a hot working material by subjecting the sintered body to hot working so that W-based composite material particles extend in a predetermined direction;
A chip forming step of processing the hot processed material into a chip of a predetermined shape as a chip material;
See containing and a bonding step to the firing portion by joining the tip to at least one of said ground electrode and said center electrode,
The spark plug manufacturing method, wherein the W-based composite material contains 20 to 40 wt% of a metal powder of a metal element belonging to Group 5A or Group 7A of the Periodic Table of Elements .
前記焼結体を前記熱間加工により延伸することにより、前記熱間加工素材を線状又はロッド状の素材(以下、これらを総称して線状素材という)として形成し、その線状素材を長手方向において所定の間隔に切断することにより前記チップとなす請求項1に記載のスパークプラグの製造方法。By stretching the sintered body by the hot working, the hot working material is formed as a linear or rod-shaped material (hereinafter collectively referred to as a linear material), and the linear material is The method for manufacturing a spark plug according to claim 1, wherein the tip is formed by cutting at predetermined intervals in the longitudinal direction. 前記チップは、W系複合材料粒子がチップ厚さ方向に延伸するとともに、チップの厚さ方向と平行な断面に現われる該W系複合材料粒子の平均アスペクト比が5以上となる繊維状組織を呈するものとして製造される請求項記載のスパークプラグの製造方法。The chip exhibits a fibrous structure in which W-based composite particles extend in the chip thickness direction and the average aspect ratio of the W-based composite particles appearing in a cross section parallel to the chip thickness direction is 5 or more. The method for manufacturing a spark plug according to claim 2 , wherein the spark plug is manufactured as a product. 前記熱間加工は熱間圧延工程を含み、該熱間圧延工程に基づいて前記熱間加工素材を板状素材として形成し、その板状素材から板厚方向がチップ厚さ方向となるように前記チップを加工する請求項1に記載のスパークプラグの製造方法。The hot working includes a hot rolling step, and the hot working material is formed as a plate-like material based on the hot rolling step, and the plate thickness direction from the plate-like material is the chip thickness direction. The method for manufacturing a spark plug according to claim 1, wherein the chip is processed. 前記チップは、W系複合材料粒子が前記チップ厚さ方向における端面(以下、チップ主面という)に沿う方向に延伸するとともに、前記延伸方向と平行かつチップ主面方向と直交する断面に現われる該W系複合材料粒子の平均アスペクト比が5以上となる扁平粒子組織を呈するものとして製造される請求項記載のスパークプラグの製造方法。The chip extends in a direction along an end face (hereinafter referred to as a chip main surface) in the chip thickness direction, and the W-based composite material particle appears in a cross section parallel to the extending direction and perpendicular to the chip main surface direction. The manufacturing method of the spark plug of Claim 4 manufactured as what exhibits the flat particle structure whose average aspect-ratio of W type composite material particle | grains is 5 or more. 中心電極と接地電極との間に火花放電ギャップが形成され、かつ、前記中心電極と接地電極の少なくとも一方の前記火花放電ギャップに臨む位置に、Wを主成分とするW系複合材料からなる発火部を設けたスパークプラグであって、
前記発火部をなす前記W系複合材料の粒子が、所定方向に引き伸ばされた組織を有し、
前記W系複合材料には、元素周期律表の5A族又は7A族に属する金属元素の金属粉末が20〜40wt%含有されていることを特徴とするスパークプラグ。
Ignition made of a W-based composite material containing W as a main component at a position where a spark discharge gap is formed between the center electrode and the ground electrode and at least one of the center electrode and the ground electrode faces the spark discharge gap. A spark plug provided with a portion,
Particles of the W-based composite material of the said spark portion, have a tissue stretched in a predetermined direction,
The spark plug characterized in that the W-based composite material contains 20 to 40 wt% of a metal powder of a metal element belonging to Group 5A or Group 7A of the Periodic Table of Elements .
前記発火部をなす前記W系複合材料は、前記火花放電ギャップに面する表面を発火面とし、該発火面と直交する向きを発火部高さ方向として、W系複合材料粒子が前記発火部高さ方向に延伸するとともに、該発火部高さ方向と平行な断面に現われる前記W系複合材料粒子の平均アスペクト比が5以上となる繊維状組織を呈する請求項に記載のスパークプラグ。The W-based composite material forming the ignition part has a surface facing the spark discharge gap as an ignition surface, and a direction perpendicular to the ignition surface is an ignition part height direction. The spark plug according to claim 6 , wherein the spark plug exhibits a fibrous structure in which an average aspect ratio of the W-based composite material particles extending in the vertical direction and appearing in a cross section parallel to the ignition portion height direction is 5 or more. 前記発火部をなす前記W系複合材料は、前記火花放電ギャップに面する表面を発火面として、前記W系複合材料粒子が前記発火面に沿う所定方向に延伸するとともに、該発火面において前記W系複合材料粒子の延伸方向に沿い、かつ前記発火面と直交する断面に現われる該W系複合材料粒子の平均アスペクト比が5以上となる組織を呈する請求項に記載のスパークプラグ。The W-based composite material forming the ignition part has the surface facing the spark discharge gap as an ignition surface, and the W-based composite material particles extend in a predetermined direction along the ignition surface. The spark plug according to claim 6 , which exhibits a structure in which an average aspect ratio of the W-based composite material particles appearing in a cross-section along the extending direction of the composite material particles and perpendicular to the ignition surface is 5 or more.
JP2001192643A 2001-06-26 2001-06-26 Spark plug manufacturing method and spark plug Expired - Fee Related JP4652621B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001192643A JP4652621B2 (en) 2001-06-26 2001-06-26 Spark plug manufacturing method and spark plug

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001192643A JP4652621B2 (en) 2001-06-26 2001-06-26 Spark plug manufacturing method and spark plug

Publications (2)

Publication Number Publication Date
JP2003007422A JP2003007422A (en) 2003-01-10
JP4652621B2 true JP4652621B2 (en) 2011-03-16

Family

ID=19031070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001192643A Expired - Fee Related JP4652621B2 (en) 2001-06-26 2001-06-26 Spark plug manufacturing method and spark plug

Country Status (1)

Country Link
JP (1) JP4652621B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6675340B2 (en) * 2017-02-21 2020-04-01 日本特殊陶業株式会社 Bar member
JP7191067B2 (en) * 2020-08-24 2022-12-16 日本特殊陶業株式会社 Spark plug

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5925948A (en) * 1982-08-03 1984-02-10 Toshiba Corp Tungsten alloy for electrode of ignition plug
JPH04169788A (en) * 1990-11-01 1992-06-17 Toshiba Corp High temperature heat treating jig and manufacture thereof
JPH0554955A (en) * 1991-08-27 1993-03-05 Ngk Spark Plug Co Ltd Spark plug
JPH0845643A (en) * 1994-08-03 1996-02-16 Nippondenso Co Ltd Spark plug for internal combustion engine
JPH08185954A (en) * 1994-12-27 1996-07-16 Yanmar Diesel Engine Co Ltd W-rhenium sintered alloy for ignition plug and ignition plug for gas engine using it as electrode
JPH11124642A (en) * 1997-08-19 1999-05-11 Tokyo Tungsten Co Ltd Iridium-containing metallic material and its production
JP2001118660A (en) * 1999-08-12 2001-04-27 Ngk Spark Plug Co Ltd Spark plug

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5925948A (en) * 1982-08-03 1984-02-10 Toshiba Corp Tungsten alloy for electrode of ignition plug
JPH04169788A (en) * 1990-11-01 1992-06-17 Toshiba Corp High temperature heat treating jig and manufacture thereof
JPH0554955A (en) * 1991-08-27 1993-03-05 Ngk Spark Plug Co Ltd Spark plug
JPH0845643A (en) * 1994-08-03 1996-02-16 Nippondenso Co Ltd Spark plug for internal combustion engine
JPH08185954A (en) * 1994-12-27 1996-07-16 Yanmar Diesel Engine Co Ltd W-rhenium sintered alloy for ignition plug and ignition plug for gas engine using it as electrode
JPH11124642A (en) * 1997-08-19 1999-05-11 Tokyo Tungsten Co Ltd Iridium-containing metallic material and its production
JP2001118660A (en) * 1999-08-12 2001-04-27 Ngk Spark Plug Co Ltd Spark plug

Also Published As

Publication number Publication date
JP2003007422A (en) 2003-01-10

Similar Documents

Publication Publication Date Title
JP3000955B2 (en) Spark plug
CN100379108C (en) Spark plug
KR101562411B1 (en) Spark plug and method of manufacturing the same
JP4402046B2 (en) Spark plug
KR20100103673A (en) Spark plug for internal combustion engine and method of manufacturing the same
JP5978250B2 (en) Electrode tip for spark plug and spark plug
JP4217372B2 (en) Spark plug
JP4644140B2 (en) Spark plug for internal combustion engine and method for manufacturing the same
EP0400950B1 (en) Spark plug
JP4652621B2 (en) Spark plug manufacturing method and spark plug
JP2002198158A (en) Manufacturing method of spark plug, and the spark plug
JP4392130B2 (en) Spark plug for internal combustion engine
JP4291540B2 (en) Spark plug
WO2021161845A1 (en) Precious metal chip for spark plug, electrode for spark plug, and spark plug
JP4644139B2 (en) Spark plug for internal combustion engine and method for manufacturing the same
JP4294909B2 (en) Spark plug
JP4080015B2 (en) Spark plug
JP2005285464A (en) Manufacturing method for spark plug
JP4164534B2 (en) Spark plug
JP3878262B2 (en) Spark plug
JP4368100B2 (en) Spark plug
JPH11124642A (en) Iridium-containing metallic material and its production
JP5912986B2 (en) Electrode material, electrode for spark plug and spark plug
JPH10162929A (en) Spark plug
JP2007227187A (en) Spark plug for internal combustion engine and manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100409

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101122

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101216

R150 Certificate of patent or registration of utility model

Ref document number: 4652621

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees