JPH0198496A - Purification of dideoxyadenosine - Google Patents

Purification of dideoxyadenosine

Info

Publication number
JPH0198496A
JPH0198496A JP25700287A JP25700287A JPH0198496A JP H0198496 A JPH0198496 A JP H0198496A JP 25700287 A JP25700287 A JP 25700287A JP 25700287 A JP25700287 A JP 25700287A JP H0198496 A JPH0198496 A JP H0198496A
Authority
JP
Japan
Prior art keywords
dda
dideoxyadenosine
column
porous resin
action
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25700287A
Other languages
Japanese (ja)
Other versions
JPH0710236B2 (en
Inventor
Masaru Otani
勝 大谷
Toshiya Tanabe
田辺 俊哉
Toshihide Yugawa
湯川 利秀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ajinomoto Co Inc
Original Assignee
Ajinomoto Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Co Inc filed Critical Ajinomoto Co Inc
Priority to JP25700287A priority Critical patent/JPH0710236B2/en
Publication of JPH0198496A publication Critical patent/JPH0198496A/en
Priority to US08/161,071 priority patent/US6306647B1/en
Publication of JPH0710236B2 publication Critical patent/JPH0710236B2/en
Priority to US08/385,888 priority patent/USRE35609E/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To purify dideoxyadenosine produced by action of a microorganism or enzyme in high purity advantageously on an industrial scale, by absorbing the dideoxyadenosine into a nonpolar and porous resin. CONSTITUTION:2',3'-Dideoxyadenosine produced by action a microorganism or enzyme and containing 2',3'-dioxyuridine, adenine and uracil as impurities is absorbed into a nonpolar and porous resin (preferably styrene-divinylbenzene based copolymer), preferably using a column system. Liquid rate passing through the column, i.e. SV is preferably 1-2 and temperature for bringing the liquid into contact with the column is preferably 10-60 deg.C. As the eluate, an aqueous solution of lower aliphatic alcohol is preferred. As the eluting rate, SV is preferably 1-2.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、微生物又は酵素の作用により生産された7、
3′−ジデオキシアデノシン(以下、DDA(!:略す
。)の新規精製方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides 7, produced by the action of microorganisms or enzymes.
This invention relates to a new method for purifying 3'-dideoxyadenosine (hereinafter referred to as DDA (!)).

〔従来の技術〕[Conventional technology]

従来のDDAの製造方法としては、ヌクレオシド類の2
′位あるいは3′位の脱酸素反応が行われている( C
h@m、Pharm、Bull、 、22 、128(
1974) )が、以下のような理由により、報告例は
少ない。
Conventional methods for producing DDA include two nucleoside
Deoxygenation reaction at the ′ or 3′ position is taking place (C
h@m, Pharm, Bull, , 22, 128 (
(1974)), but there are few reported cases for the following reasons.

■ 反応に先立ち保護基を導入しなければならないこと
■ Protecting groups must be introduced prior to the reaction.

■ τ位、3′位は立体障害が大きく反応が起きにくい
こと。
■ The τ and 3' positions are highly sterically hindered, making it difficult for reactions to occur.

この為、単離精製法についても、わずかに実験室レベル
で液体クロマトグラフィーによる分取の繰り返し精製が
実施されている程度で、工業的に利用できるa裏方法は
未だ確立していなかった。
For this reason, as for the isolation and purification method, repeated purification of preparative separation using liquid chromatography has only been carried out at the laboratory level, and an industrially usable method a has not yet been established.

z、3′−ジデオキシウリジン(以下、 DDUと略す
。)又は2.3−ソデオ中シリ号?−スー1−リン酸を
基質として微生物又は酵素の作用により生産された酵素
反応液中には、目的生成物のDDAの他に不純物として
未反応基質であるDDUとアデニ/(以下Adと略す。
z, 3'-dideoxyuridine (hereinafter abbreviated as DDU) or 2,3-sodeo-siri? In the enzyme reaction solution produced by the action of microorganisms or enzymes using -su-1-phosphate as a substrate, in addition to the target product DDA, there are unreacted substrates DDU and adenium (hereinafter abbreviated as Ad) as impurities.

)及び基質の分解物であるウラシル(以下Uと略す。)
、他若干の副生ずる核酸類が含まれている。
) and uracil (hereinafter abbreviated as U), which is a decomposition product of the substrate.
, and some other by-product nucleic acids.

この反応液中から効率良く、高純度のODAを取得する
為に、一般的に用いられている濃縮晶析等の手段では不
適尚であった。その理由として、Ad 、Uは共に溶解
度が小さいため濃縮によっである程度は除去できるので
あるが、未反応DDUと目的生成物であるDDAは共に
溶解度が高いため分離精製が困難だからである。
In order to efficiently obtain high-purity ODA from this reaction solution, commonly used means such as concentration crystallization are not suitable. The reason for this is that both Ad and U have low solubility and can be removed to some extent by concentration, but unreacted DDU and DDA, the target product, both have high solubility and are difficult to separate and purify.

またDDAは、酸性、アルカリ性条件下において加水分
解を受け、2.3−ジデオキシリボース残基とアr二/
基とが容易に切断されるため、酸やアルカリを必要とす
るイオン交換樹脂処理による分離精製も困難であった。
In addition, DDA undergoes hydrolysis under acidic and alkaline conditions, forming 2,3-dideoxyribose residues and ar2/
Since the groups are easily cleaved, separation and purification by ion exchange resin treatment, which requires acid or alkali, is also difficult.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記の欠点を解消するようなりDAの工業上値れた精製
方法の開発が望まれている。
It is desired to develop an industrially valuable purification method for DA that eliminates the above-mentioned drawbacks.

〔問題点を解決するだめの手段〕[Failure to solve the problem]

本発明者らは、前記問題点を解決すべく鋭意検討した結
果、DDA含有溶液を例えば除菌、除蛋白、脱色後に濃
縮し、濾過した後、P液(以下、DDA濃縮液と略す。
As a result of intensive studies to solve the above-mentioned problems, the present inventors concentrated the DDA-containing solution after sterilization, protein removal, and decolorization, filtered it, and produced a P solution (hereinafter abbreviated as DDA concentrated solution).

)を非極性多孔質樹脂で処理することにより、DDAを
Ad、 U 、 DDU等の不純物から分離し、高純度
のDDAを分取できることを見い出し、この発見に基づ
いて本発明を完成するに到った。
) was discovered to be able to be separated from impurities such as Ad, U, and DDU by treating it with a non-polar porous resin, and high-purity DDA could be fractionated.Based on this discovery, the present invention was completed. It was.

即ち、本発明は、微生物又は酵素の作用により生産され
たDDAを精製するに際し、DDAを非極性多孔質樹脂
に吸着せしめることを特徴とするDDAの精製方法であ
る。
That is, the present invention is a method for purifying DDA, which is characterized in that when DDA produced by the action of microorganisms or enzymes is purified, DDA is adsorbed onto a non-polar porous resin.

本発明の出発物質は未精製のDDAであればよく純度の
程度は問わない。微生物又は酵素の作用により、例えば
、2.3−ジデオキシリボース残基とアデニン残基を結
合せしめた反応溶液やその中間処理物が採用される。
The starting material of the present invention may be unpurified DDA and its degree of purity does not matter. For example, a reaction solution in which a 2,3-dideoxyribose residue and an adenine residue are combined by the action of a microorganism or an enzyme, or an intermediate product thereof, is employed.

微生物としては、エシェリヒア属、フラデバクテリウム
属、セラチア属、エンテロバクター属、エルビニア属、
シトロバクタ−属、コリネバクテリウム属、八ツエア属
、クルイヘラ属、サルモネラ属、又は、キサントモナス
属等DDAを生産できるものであればよい。又、酵素は
、上記微生物が有しているもの、その他面−機能を有す
るものであれば特に制限されない・ 本発明に用いるDDA濃縮液は、不純物であるDDU 
、 Ad 、 U 、若干の副生成する核酸類のうち、
いずれを含有していてもよい。また、この溶液のDDA
a度は、DDAの溶解度以下であれば制限されるもので
はない。
Microorganisms include Escherichia, Fladebacterium, Serratia, Enterobacter, Erwinia,
Any species that can produce DDA may be used, such as Citrobacter, Corynebacterium, Hatsuea, Kluihera, Salmonella, or Xanthomonas. In addition, the enzyme is not particularly limited as long as it is possessed by the above-mentioned microorganisms or has other functions. The DDA concentrate used in the present invention is free from DDU, which is an impurity.
, Ad, U, among some by-product nucleic acids,
It may contain either. Also, the DDA of this solution
The a degree is not limited as long as it is below the solubility of DDA.

次に、ここで用いる非極性多孔質樹脂は、例えハソの母
体が、スチレン−ノビニルベンゼン系の共重合体又は、
その誘導体例えばこれにへロrン化し高比重化したポリ
マーである物質であれ、いずれも使用可能である。例え
ば、ダイヤイオンHPシリーズ、SPシリーズ(以上、
三菱化成工業)。
Next, the non-polar porous resin used here may be a styrene-novinylbenzene copolymer or
Any of its derivatives, such as polymers obtained by heronization and high specific gravity, can be used. For example, Diaion HP series, SP series (and above,
Mitsubishi Chemical Industries).

XAD−4(o −ム−7yド・ハース社) 、0C1
031(バイエル社)等が利用できるが、その他の非極
性多孔質樹脂であっても同等の性質を有するものであれ
ばいずれであっても良い。特に高比重化した5P207
 (三菱化成工業)が、DDAの績給液をフィードした
時に樹脂が浮上したりすることなく。
XAD-4 (O-Mu-7y De Haas), 0C1
031 (Bayer) etc., but any other non-polar porous resin may be used as long as it has equivalent properties. Especially high specific gravity 5P207
(Mitsubishi Chemical Industries), the resin does not float when feeding DDA liquid.

操作性が良い点で適している。It is suitable for its ease of operation.

非極性多孔質樹脂とDDA 9縮液との接液方法は、バ
ッチ式とカラム式があるが、カラム式の方が操作上簡便
で好ましい。
There are two methods of contacting the non-polar porous resin and the DDA 9 condensate: a batch method and a column method, but the column method is preferred because it is easier to operate.

カラムへの通液速度は、特に制限はなく、通常5V=0
.5〜4.0、好ましくは5v=1〜2程度がよい。
There is no particular restriction on the flow rate of liquid to the column, and it is usually 5V=0.
.. 5 to 4.0, preferably about 5v=1 to 2.

カラムにフィードするDDA @縮液の体積負荷量とし
てはDDA a給液の一度によって異なり、5〜40 
v/v (%)、かつ同時にDDAの樹脂負荷量(、I
l/1−n)は5〜4011/l−n、好ましくは10
〜31/A−Rが分離性及び経済性の点で適している。
The volume load of DDA@condensed liquid to be fed to the column varies depending on the amount of DDA a supplied liquid, and is 5 to 40
v/v (%), and at the same time the resin loading amount of DDA (, I
l/1-n) is 5 to 4011/l-n, preferably 10
~31/A-R is suitable from the viewpoint of separability and economy.

カラムへの接液温度については、10〜60°Cであれ
ば特に制限されない。この温度ではDDAと濃縮液中の
不純物Ad 、 U 、 DDUとの分離性の相違は殆
んどない。
The temperature of the liquid in contact with the column is not particularly limited as long as it is 10 to 60°C. At this temperature, there is almost no difference in separability between DDA and the impurities Ad, U, and DDU in the concentrate.

次に、カラムからのDDA溶離方法に関して記述する。Next, a method for eluating DDA from the column will be described.

溶離剤は、低級脂肪族アルコール水浴液が適している。As the eluent, a lower aliphatic alcohol aqueous solution is suitable.

例えば、メチルアルコール、エチル7 A/ :+ −
/l/、イソプロピルアルコール等の水溶液である。溶
離速度は、通常の5V=1〜2程度が良い。
For example, methyl alcohol, ethyl 7 A/: + -
/l/, is an aqueous solution such as isopropyl alcohol. The elution rate is usually about 5V=1 to 2.

実際の非極性多孔質樹脂を用いた精製操作は次の様にす
ると良い。すなわち、当該樹脂を充填したカラムにDD
A濃縮液を一定量フイード後、水神し、Uを溶離する。
The actual purification operation using a non-polar porous resin may be carried out as follows. That is, DD is added to the column filled with the resin.
After feeding a certain amount of A concentrate, it is washed with water and U is eluted.

次に、アルコール水溶液を用いて、DDU 、 Adを
溶離し、更にアルコール濃度を上げることによりDDA
を溶離する。そして、このDDA画分を濃縮し、晶析後
、冷却することにより、高純度のDDAを分取せしめる
ことができる。
Next, DDU and Ad are eluted using an alcohol aqueous solution, and DDA is further increased by increasing the alcohol concentration.
elute. Then, by concentrating this DDA fraction, cooling it after crystallization, highly pure DDA can be isolated.

〔実施例〕〔Example〕

以下、実施例により本発明の詳細な説明する。 Hereinafter, the present invention will be explained in detail with reference to Examples.

実施例1 酵母エキス0.5 f!/dt 、ベグトン1. O/
l/dt 。
Example 1 Yeast extract 0.5 f! /dt, Begton 1. O/
l/dt.

肉エキス1.0 /;l/dtおよびNaC10,5g
/dLを含む培地(pH7,0)50mをsoomt容
肩付フラスコに分注し殺菌した。この培地に、ブイヨン
寒天培地にて30°C116時間前培養したエシェリヒ
アコリATCC10798を1白金耳ずつ接種し、30
°Cにて16時間振とり培養した。得られた培養液より
菌体を遠心分離により分離した後、0.05 M IJ
ン酸バッファー(pH7,0)で洗浄し、更に遠心分離
することにより洗浄菌体を調製した。
Meat extract 1.0/;l/dt and NaC 10.5g
50 ml of a medium (pH 7.0) containing /dL was dispensed into a soft-shouldered flask and sterilized. One platinum loopful of Escherichia coli ATCC 10798, which had been precultured at 30°C for 116 hours on a bouillon agar medium, was inoculated into this medium.
Shaking culture was performed at °C for 16 hours. After separating the bacterial cells from the obtained culture solution by centrifugation, 0.05 M IJ
Washed bacterial cells were prepared by washing with acid buffer (pH 7.0) and further centrifuging.

このエシェリヒアコリATCC10798の洗浄菌体を
、20 mMのDDUと20 mMのAdとを含む10
0−のリン酸バッファー(pH=7.0)1tに、1優
になるように添加し、50’0124時間反応させた。
The washed bacterial cells of Escherichia coli ATCC 10798 were mixed with 10 μM of DDU and 20 mM of Ad.
The mixture was added to 1 ton of 0-phosphate buffer (pH=7.0) in an amount of 1 t, and reacted for 50'0124 hours.

この結果、85η/dtのDDAが生成していた。As a result, DDA of 85η/dt was generated.

(回収率18%) この溶液を遠心分離(7000,9,40分)で除菌後
、除菌液に活性炭(白すギ炭、式日薬品工業)を500
9添加し、除蛋白、脱色(50°(:!、1hr)後、
濾過(孔径0.45μmフィルタ)した。2液を15属
まで濃縮後、濾過(’No、 5 CP紙)した。
(Recovery rate 18%) After sterilizing this solution by centrifugation (7000, 9, 40 minutes), add 500% activated carbon (white sugi charcoal, Shikinichi Yakuhin Kogyo) to the sterilizing solution.
After adding 9, protein removal, and decolorization (50° (:!, 1 hr),
It was filtered (pore size 0.45 μm filter). The two liquids were concentrated to a concentration of 15 and then filtered (No. 5 CP paper).

このDDA濃縮液13 R1(DDA 6.29/ d
t)を非極性多孔質合成吸着樹脂5P207 (三菱化
成工業)65d(φxL=20mx210xi+)に5
V=1でフィード後、水神を260d行った(SV=2
)、C画分−1とする)次に、10%エチルアルコール
−水溶液390 mlで溶離した(SV=2)、C画分
−2とする)最後に、2(lエチルアルコール−水溶液
3901n/で溶離した(SV=2)、C画分−3とす
る)。
This DDA concentrate 13 R1 (DDA 6.29/d
t) to non-polar porous synthetic adsorption resin 5P207 (Mitsubishi Chemical Industries) 65d (φxL=20mx210xi+)
After feeding with V=1, I performed Suishin for 260d (SV=2
), referred to as C fraction-1) Next, eluted with 390 ml of 10% ethyl alcohol-aqueous solution (SV = 2), referred to as C fraction-2) Finally, 2 (1 ethyl alcohol-aqueous solution 3901 n/ (SV=2), designated as C fraction-3).

各両分を液体クロマトグラフィー分析で測定した。その
結果、画分−1にはUのみ検出され回収率は99%、画
分−2にはAd、DDU、若干のDDAが含まれており
AdとDDUのそれぞれ回収率は99% 、98% 、
画分−3にはDDAが含まれており回収率95%であっ
た。
Both portions were measured by liquid chromatography analysis. As a result, only U was detected in fraction-1, with a recovery rate of 99%, and fraction-2 contained Ad, DDU, and some DDA, with recovery rates of 99% and 98% for Ad and DDU, respectively. ,
Fraction-3 contained DDA, and the recovery rate was 95%.

画分−3を濃縮し、DDAを晶析後、10℃まで冷却し
、高純度のDDA 6009を戸数した。取得したDD
Aの元素分析値は表−1のとおりである。
Fraction-3 was concentrated, DDA was crystallized, and then cooled to 10° C. to obtain highly pure DDA 6009. Obtained DD
The elemental analysis values of A are shown in Table-1.

表−1 元素分析値 CHN    O 理論値51.06 5.57 29.77 13.60
測定値 51.22 5.53 29.78 13.4
7実施例2 実施例1と同様に処理し取得したDDA濃縮液13 a
l (DDA 6.2.9/dt)を、非極性多孔質合
成吸着樹脂5P207 (三菱化成工業)65ml(φ
×L=201tIIx 210x ) K SV =1
で74−ド後、水神を8V=2で260−行った (画
分−1とする入次に、20%メチルアルコール−水溶液
520mJで溶離した(sv=2)、C画分−2とする
入最後に、40チメチルアルコ一ルー水溶液390m1
で溶離し九(SV=2 )、C画分−3とする)。
Table-1 Elemental analysis value CHN O Theoretical value 51.06 5.57 29.77 13.60
Measured value 51.22 5.53 29.78 13.4
7 Example 2 DDA concentrate 13a obtained by processing in the same manner as in Example 1
l (DDA 6.2.9/dt) in 65 ml (φ
×L=201tIIx 210x ) K SV =1
After 74 days, water was run at 8 V = 2 for 260 hours (referred to as fraction-1).Next, it was eluted with 520 mJ of a 20% methyl alcohol-aqueous solution (sv = 2), and the C fraction was designated as fraction-2. Finally, add 390 ml of 40-thimethylalcohol aqueous solution.
9 (SV=2), designated as C fraction-3).

各画分を液体クロマトグラフィー分析によって測定した
。その結果、両分−1にはUのみ検出さ・れ回収率は9
8チ、画分−2にはAd 、 DDU若干のDDAが含
まれており、AdとDDUのそれぞれ回収率が98%、
98%、両分−3にはDDAが含まれており回収率93
チであった。画分−3を濃縮し、ODAを晶析後、10
℃まで冷却し、高純度のDDA5809を戸数した。取
得したDDiの元素分析値は表−2のとおりである。
Each fraction was determined by liquid chromatography analysis. As a result, only U was detected in both fractions-1, and the recovery rate was 9.
Fraction-2 contains Ad, DDU, and some DDA, and the recovery rate of Ad and DDU is 98%, respectively.
98%, Ryobu-3 contains DDA, recovery rate 93
It was Chi. After concentrating fraction-3 and crystallizing ODA, 10
It was cooled to ℃ and high-purity DDA5809 was collected. The elemental analysis values of the obtained DDi are shown in Table-2.

表−2 元素分析値 CHN       O 理論値 51.06 5.57 29.77 13.6
0測定値 51.30 5.53 29.80 13.
37〔発明の効果〕 以上述べた如く、本発明は非極性樹脂処理によりDDA
を効率的に分離精製できるので、工業化への道が大いに
期待されるものである。
Table-2 Elemental analysis value CHN O Theoretical value 51.06 5.57 29.77 13.6
0 measurement value 51.30 5.53 29.80 13.
37 [Effects of the Invention] As described above, the present invention provides DDA by non-polar resin treatment.
Since it can be efficiently separated and purified, there are great expectations that it will lead to industrialization.

Claims (4)

【特許請求の範囲】[Claims] (1)微生物又は酵素の作用により生産された2′,3
′−ジデオキシアデノシンを精製するに際し、2′,3
′−ジデオキシアデノシンを非極性多孔質樹脂に吸着せ
しめることを特徴とする2′,3′−ジデオキシアデノ
シンの精製方法。
(1) 2', 3 produced by the action of microorganisms or enzymes
When purifying '-dideoxyadenosine, 2',3
1. A method for purifying 2',3'-dideoxyadenosine, which comprises adsorbing '-dideoxyadenosine onto a non-polar porous resin.
(2)2′,3′−ジデオキシアデノシンの生産反応が
2,3−ジデオキシリボース残基とアデニン残基を微生
物又は酵素の作用により結合せしめるものである特許請
求の範囲第(1)項記載の方法。
(2) The production reaction of 2',3'-dideoxyadenosine is one in which a 2,3-dideoxyribose residue and an adenine residue are combined by the action of a microorganism or an enzyme. Method.
(3)被精製物が不純物として2′,3′−ジデオキシ
ウリジン、アデニン及びウラシルの少なくとも一種を含
有することを特徴とする特許請求の範囲第(1)項記載
の方法。
(3) The method according to claim (1), wherein the product to be purified contains at least one of 2',3'-dideoxyuridine, adenine, and uracil as impurities.
(4)非極性多孔質樹脂がスチレン−ジビニルベンゼン
系の共重合体、又はその誘導体を含有するものである特
許請求の範囲第(1)項記載の方法。
(4) The method according to claim (1), wherein the non-polar porous resin contains a styrene-divinylbenzene copolymer or a derivative thereof.
JP25700287A 1987-06-16 1987-10-12 Purification method of dideoxyadenosine Expired - Fee Related JPH0710236B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP25700287A JPH0710236B2 (en) 1987-10-12 1987-10-12 Purification method of dideoxyadenosine
US08/161,071 US6306647B1 (en) 1987-06-16 1993-12-03 Process for producing and purifying 2′,3′-dideoxynucleosides, and process for producing 2′,3′-dideoxy-2′,3′-didehydronucleosides
US08/385,888 USRE35609E (en) 1987-06-16 1995-02-09 Process for purifying 2',3'-dideoxynucleosides

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25700287A JPH0710236B2 (en) 1987-10-12 1987-10-12 Purification method of dideoxyadenosine

Publications (2)

Publication Number Publication Date
JPH0198496A true JPH0198496A (en) 1989-04-17
JPH0710236B2 JPH0710236B2 (en) 1995-02-08

Family

ID=17300359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25700287A Expired - Fee Related JPH0710236B2 (en) 1987-06-16 1987-10-12 Purification method of dideoxyadenosine

Country Status (1)

Country Link
JP (1) JPH0710236B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0582157A1 (en) * 1992-07-27 1994-02-09 Ajinomoto Co., Inc. Method of purifying nucleoside derivatives
JP4509447B2 (en) * 1999-09-30 2010-07-21 ヤマサ醤油株式会社 High purity guanosine 5'-diphosphate fucose and process for producing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0582157A1 (en) * 1992-07-27 1994-02-09 Ajinomoto Co., Inc. Method of purifying nucleoside derivatives
US5451671A (en) * 1992-07-27 1995-09-19 Ajinomoto Co., Inc. Method of purifying 2',3'-dideoxynucleosides
JP4509447B2 (en) * 1999-09-30 2010-07-21 ヤマサ醤油株式会社 High purity guanosine 5'-diphosphate fucose and process for producing the same

Also Published As

Publication number Publication date
JPH0710236B2 (en) 1995-02-08

Similar Documents

Publication Publication Date Title
EP0822989B1 (en) Process for producing calcium d-pantothenate
KR890001245B1 (en) Process for purifying tryptophan
USRE35609E (en) Process for purifying 2',3'-dideoxynucleosides
US5817238A (en) Process for producing purified L-ascorbic acid
US4584399A (en) Purification of L-phenylalanine
EP0337440A2 (en) Ion exchange recovery of L-lysine
JPH0198496A (en) Purification of dideoxyadenosine
JP2001258583A (en) Method for purifying shikimic acid
JP4361641B2 (en) Separation and recovery method of optically active amino acid and optically active amino acid amide
JP3243891B2 (en) Purification method of pyruvate
JPH01165390A (en) Method for purifying dideoxyinosine
US3734828A (en) Process for the separation and purification of riboflavinyl glycosides
US4992368A (en) Novel process for producing oxetanocin G
CN114213276B (en) Method for extracting and purifying theanine from enzyme catalytic reaction
EP0351853B1 (en) Method of manufacturing trifluorothymidine
JPH0826020B2 (en) Purification method of dideoxyinosine
JPS6348262A (en) Method for eluting l-tryptophan adsorbed on active carbon
JPH0631306B2 (en) Process for producing crystals of cytidine-5'-choline diphosphate monohydrate
SK69795A3 (en) Method of producing alpha, alpha-trehaloze
US6306647B1 (en) Process for producing and purifying 2′,3′-dideoxynucleosides, and process for producing 2′,3′-dideoxy-2′,3′-didehydronucleosides
JPH01175990A (en) Purifying method of dideoxyadenosine
KR860001821B1 (en) Method of isolating l-amino acids
JPS6337635B2 (en)
JP3776160B2 (en) Method for producing D-calcium pantothenate
US5164500A (en) Oxetanocin G

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees