JP3776160B2 - Method for producing D-calcium pantothenate - Google Patents

Method for producing D-calcium pantothenate Download PDF

Info

Publication number
JP3776160B2
JP3776160B2 JP9658096A JP9658096A JP3776160B2 JP 3776160 B2 JP3776160 B2 JP 3776160B2 JP 9658096 A JP9658096 A JP 9658096A JP 9658096 A JP9658096 A JP 9658096A JP 3776160 B2 JP3776160 B2 JP 3776160B2
Authority
JP
Japan
Prior art keywords
pantothenic acid
calcium
pantothenate
activated carbon
methyl alcohol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP9658096A
Other languages
Japanese (ja)
Other versions
JPH09286A (en
Inventor
淳 西村
啓司 三木
純一 松本
浤作 渋谷
英雄 矢田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Priority to JP9658096A priority Critical patent/JP3776160B2/en
Publication of JPH09286A publication Critical patent/JPH09286A/en
Application granted granted Critical
Publication of JP3776160B2 publication Critical patent/JP3776160B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は微生物により直接生産されたD−パントテン酸発酵液からのD−パントテン酸カルシウムの製造法に関する。D−パントテン酸カルシウムはビタミンとして医薬, 食品および飼料分野で広く使用される有用なものである。
【0002】
【従来の技術】
従来、パントテン酸カルシウムの製法は、化学合成法と直接発酵法に大別される。化学合成法としては、イソブチルアルデヒドを出発原料として合成されたD, L−パントラクトンを化学的あるいは酵素的方法で光学分割し、得られたD−パントラクトンをβ−アラニンカルシウムと縮合させてD−パントテン酸カルシウムとする方法が工業的規模で広く行われている。直接発酵法としては最近、糖, β−アラニンを原料として微生物によりD−パントテン酸を直接生産させる新規な製造法が報告された(特開平6−261772)。その中では、D−パントテン酸直接発酵液からのD−パントテン酸カルシウムの製造法として、イオン交換樹脂による脱塩処理後中和してカルシウム塩として濃縮し、メチルアルコール添加後(メチルアルコール濃度83v/v%)D−パントテン酸カルシウム結晶を析出させるという方法が記載されている。
【0003】
【発明が解決しようとする課題】
直接発酵法は化学的合成法に較べ光学分割が不要であるなどより効率的ではあるが、発酵液はD−パントテン酸の他菌体などの不溶物および単糖、オリゴ糖、有機酸、タンパク質、無機塩(陽イオン、陰イオン)など種々の可溶性不純物を含んでいるので、この発酵液からいかに効率的かつ収率良く純度の高いD−パントテン酸カルシウムを分離精製するかが最大の問題点であった。前記公開特許公報記載の方法においては、イオン交換樹脂による脱塩処理後D−パントテン酸を中和してカルシウム塩として濃縮し、メチルアルコールを添加して(メチルアルコール濃度83%)D−パントテン酸カルシウム結晶を析出させる製造法が記載されているが、▲1▼発酵液に含まれる単糖、オリゴ糖がイオン交換樹脂処理では分離除去できず晶出原液の段階でパントテン酸あたり約10%存在し、そのためイオン交換樹脂処理液濃縮時の熱による発色や、晶出時の晶出収率の低下の原因となる、さらに▲2▼高晶出収率を得るために晶出原液のD−パントテン酸カルシウム濃度が7w/v%以上でメチルアルコール濃度が約90v/v%となるようメチルアルコール添加前に水性溶出液を高濃度に(D−パントテン酸カルシウム約50w/v%)濃縮する必要があるが、この濃度付近のD−パントテン酸カルシウム溶液の粘度はかなり高く濃縮操作が困難であるといった欠点がある。
【0004】
【課題を解決するための手段】
本発明者らは直接発酵法によって得られ、D−パントテン酸以外に糖等の不純物を含む培養液から効率的かつ収率良く高品質のD−パントテン酸カルシウムが得られるような製造法を鋭意研究した結果、本発明を完成するに至った。
すなわち本発明は、微生物により直接発酵生産されたD−パントテン酸を含む溶液を活性炭と接触させてD−パントテン酸を活性炭に吸着させたのち、親水性有機溶媒で溶出し、ついでカルシウムを含むアルカリ剤で中和して析出するD−パントテン酸カルシウムを採取することを特徴とするD−パントテン酸カルシウムの製造法である。
本発明における微生物により直接生産されるD−パントテンを含む溶液は特開平6−261772に記載されているようにD−パントテン酸合成能を有する微生物、例えば腸内細菌エシェリヒア・コリ 814/pFV31株(IFO 15374, FERM BP4401)を例えばグルコースを糖原料とする培地で培養し、β−アラニンを接触させて得られる。このときD−パントテン酸の生成量は通常40g/リットルである。該溶液はたとえば遠心分離、濾過など、通常液中の不溶物を除去する方法により菌体などの不溶性固形物を除いておくのが後の活性炭処理での炭の汚れ防止、炭の寿命延長などの点から望ましい。
菌体などの不溶性固形物が除かれたD−パントテン酸を含む溶液はたとえば塩酸、硫酸などの無機酸によりpHを通常1〜5、好ましくはpH2〜4に調整する。pHが1未満になるとD−パントテン酸の分解が起こりやすくなり収率が低下し、pHが5を越えるとD−パントテン酸の活性炭への吸着量が少なくなり、一方糖の吸着力が増して糖類の分離除去が悪くなる。
【0005】
本発明に用いられる活性炭は特に限定されないが、通常液相分離用として市販されているものならどのようなものでも用いることができる。例えば、直径300Å以下の細孔の全細孔容積(以下単に「細孔容積」という。)が0.4cc/g以上、直径300Å以下の細孔の平均細孔直径(以下単に「平均孔径」という。)が17Å以上の細孔特性を有する活性炭が好適なものとして挙げられる。このような特定の細孔特性を有する活性炭は例えば、1)木材片、ヤシガラなどの木質原料を、塩化亜鉛、リン酸、塩化カルシウムなどの薬品に浸漬し、約600〜700℃で焼成した後、例えば、塩酸などの酸によって添加薬品類を脱離、洗浄することにより、あるいは2)石炭、石油ピッチなどの鉱物系原料を、アルカリで処理してから、水蒸気、炭酸ガスなどにより750〜900℃で賦活することによって得られる。活性炭の形状は粉末状、粒状、顆粒状のいずれでもよいが、カラムに充填して使用する場合塔圧抑制から粒状、顆粒状が好ましい。活性炭の具体例としては、粒状白鷺KLH(武田薬品製, 細孔容積1.09cc/g, 平均孔径32Å)、粒状白鷺W(武田薬品製, 細孔容積0.49cc/g, 平均孔径18Å)、粒状白鷺LH2C(武田薬品製, 細孔容積0.74cc/g, 平均孔径19Å)、CAL(CalgonCorporation製, 細孔容積0.55cc/g, 平均孔径21Å)、粒状活性炭ダイヤホープ008(三菱化学製, 細孔容積0.61cc/g, 平均孔径20Å)等が挙げられる。
被処理液と活性炭とを接触させる方法としては、例えば、固定床吸着法、すなわちカラムに充填した活性炭に被処理液を流す方法が適当である。この方法によれば、不純物のクロマト的分離除去ができ、さらに親水性有機溶媒によるD−パントテン酸の溶出液の分画も容易にできる。実用的には、直列する2基以上の活性炭充填カラムに被処理液を流してD−パントテン酸を活性炭に吸着させる、いわゆるシリーズ吸着が好ましい。
【0006】
2つのカラムを用いる場合を例にとって吸着処理法を説明する、すなわち図1に示すように、活性炭充填カラムA塔およびB塔を直列に繋ぎ通液路(i)→(ii)→(iv)→(v)→(vi)の順に被処理液を流し、A塔の出口のパントテン酸濃度がA塔の入口の濃度と同一になる時点まで通液する。出口と入口の濃度が同一となればA塔とB塔を切り離し、B塔へ通液を切り替え、B塔に別の活性炭塔を直列に繋ぎ、B塔の出口と入口のパントテン酸濃度が同一になるまで通液する。
図2はLH2C炭塔にD−パントテン酸直接発酵液を菌体分離および脱色用活性炭で脱色処理し、塩酸でpH3に調整したD−パントテン酸を含む溶液を通液したときのD−パントテン酸および糖類の成分漏出曲線を示す。A塔出口と入口のパントテン酸濃度が同一となる点は飽和吸着点(b)であり、D−パントテン酸の漏れのない(a)で示される破過吸着点までと較べると約1.5倍のD−パントテン酸を吸着している(約200g/リットル−LH2C)。破過吸着点以降漏れ始めたD−パントテン酸は次塔で吸着される。このとき被処理液に共存する糖類や他の不純物の活性炭に対する吸着力がD−パントテン酸より弱いため通液途中D−パントテン酸に追い出され漏出率が250%まで達しその後飽和吸着点に至るまで処理すると、被処理液中の糖類の90%以上が分離除去されることを見いだした。このことは当業者にとっても全く予想外の新知見であった。また被処理液に含まれる無機塩(陽イオン、陰イオン)は活性炭に吸着されず吸着廃液に流れ分離除去できる。
【0007】
次にD−パントテン酸が飽和吸着された活性炭カラムに親水性有機溶媒を流しD−パントテン酸を溶出する。親水性有機溶媒としてメチルアルコール、エチルアルコール、イソプロピルアルコールなどの炭素数1〜5の低級アルコールを有利に使用することができるがメチルアルコールが後工程の晶出の際特に有利である。すなわちD−パントテン酸カルシウムの結晶は多晶形で溶媒環境によりα,β,γ晶、4分子のMeOH・1分子のH2Oをもつ結晶(4MeOH・1H2O晶)、および無晶形をとるが、メチルアルコールを溶出溶媒として用いた場合の晶出原液から析出する4MeOH・1H2O晶は粒状であり、分離性が極めて良い。溶出温度は10〜30℃、好ましくは20〜30℃である。
メチルアルコールを使用して活性炭カラムからD−パントテン酸を溶出させる状況を実施例1における成分溶出曲線を示す図3を例にとって説明する。
最初の0.7vol溶出区分(対LH2C炭 vol)はカラムに保持されている水が押し出される区分であり、この区分のD−パントテン酸濃度はわずか0.4%w/v%であった。次の1.5vol溶出区分はD−パントテン酸濃度が8.7w/v%(移行量90%)、水分含量が7.5w/v%であった。被処理液のD−パントテン酸濃度は2.6w/v%であったので、この溶出区分は吸着、溶出により約3.4倍濃縮されたことになる。さらに最後の0.8vol溶出区分はD−パントテン酸濃度が0.9w/v%(移行量4%)、水分含量が0.05w/v%であった。
【0008】
溶出液の親水性有機溶媒濃度およびD−パントテン酸濃度は、のちの晶出操作における晶出効率に関連して、溶媒濃度は、通常80〜98v/v%、好ましくは85〜95%、さらに好ましくは90〜92%であり、D−パントテン酸濃度は7w/v%以上が好ましい。従って上記の1.5vol溶出区分はそのまま中和して晶出原液とすることができる。
ついで溶出液はカルシウムを含むアルカリ剤で中和する。このアルカリ剤は、溶出液に含まれるD−パントテン酸を中和するに十分なカルシウムを含むものであればどのようなものでもよいが、水酸化カルシウムが好適である。より実用的には、溶出液にD−パントテン酸に対してほぼ等モルの粉末状水酸化カルシウムを加える。未反応の水酸化カルシウム微粉末がでる場合は、濾過して除去するのがよい。中和は、D−パントテン酸カルシウムの結晶析出を防ぐため、液温を15℃以上に保持するのがよい。
【0009】
このようにして調製された晶出原液を10℃以下、望ましくは5℃以下に冷却後D−パントテン酸カルシウムに対し種晶を約0.2%添加し0〜5℃で攪拌しながら好ましくは10時間以上放置すればパントテン酸カルシウムの結晶を収率良く得ることができる。晶出スラリーを常法の遠心脱水機などによる遠心分離あるいはフィルタープレスなどの濾過により採取して湿結晶を得る。
メチルアルコールを溶出溶媒として用いたとき、該湿結晶は約25w/w%のメチルアルコール、約5w/w%の水分を含有する。湿結晶はそのまま70〜80℃の減圧乾燥すると、水分約0.5%まで乾燥することができる、さらに必要に応じ調湿空気(80℃, RH20%)を用いて乾燥すれば、水分約2%に調湿することができ、実質的にメチルアルコールを含まないD−パントテン酸カルシウム粉末を得ることができる。また湿結晶を水に溶解し濃度約50w/v%まで濃縮・脱溶媒した溶液を常法のスプレードライヤーにより噴霧乾燥してD−パントテン酸カルシウム粉末を得ることもできる。乾燥品の結晶形はすべて無晶形に転換する。
上記のごとく、本方法は活性炭カラムにD−パントテン酸を含む溶液を通液することにより活性炭にD−パントテン酸を飽和吸着させ、同時に無機イオン, 糖類が効果的に分離除去でき、アルコールなどの親水性有機溶媒で溶出して溶媒濃度、D−パントテン酸濃度を考慮した区分を選択すればそのまま中和、晶出工程の出発原液とすることができ、さらに晶出後の分離、採取も容易であるなど極めて効率的な高純度D−パントテン酸カルシウムの製造法である。
【0010】
【実施例】
以下に実施例をもって本発明の内容をより具体的に説明するがこれらはいずれも本発明の内容を例示するものにすぎず、本発明の範囲を限定するものではない。 実施例1
エシェリヒア・コリIFO 814/pFV31株を、グルコースを炭素源とする培地を用いて5リットル容ジャーファメンターで常法により培養して2.5リットルのD−パントテン酸直接発酵液を得た。細孔径0.1μのセラミックフィルター(東芝セラミック社製)を使用して40℃で濾過し、菌体などの不溶性固形物を除いた濾液1.67リットルを得た。本液にはD−パントテン酸が38.5mg/ml(64.3g)、糖(フェノール硫酸法による全糖)が10.3mg/ml(D−パントテン酸あたり約27%)含まれていた。本濾液を脱色用活性炭K−1(武田薬品製, 細孔容積1.12cc/g、平均孔径32Å)を充填した内径70mm、高さ130mmのカラム(充填容積500ml)に通液し、水洗液と合わせて脱色率99.5%の液2.4リットルを得た。本液に濃塩酸56mlを加えpHを3.0に調整し、液相分離用活性炭・LH2C炭(粒状・水蒸気賦活炭、武田薬品製)を充填した内径50mm、高さ100mmのカラム(充填容積200ml)2塔(AおよびB塔)を直列に繋ぎ連続して通液した。A塔への飽和吸着点までの通液量は2.2リットルであった。この操作によりA塔にはD−パントテン酸が29g(145g/リットル−LH2C炭)吸着されたことになる。飽和吸着点以降A塔とB塔を切り離し、残りの液はB塔に通液する。A塔は600mlの水で洗浄後メチルアルコールでD−パントテン酸の溶出を行った。すなわち最初の0.7vol・140mlは捨て(D−パントテン酸の損失は2%)、次の1.5vol・300ml(D−パントテン酸移行量約90%)を晶出工程に進めた。また最後の0.8vol・160ml(D−パントテン酸移行量4%)は次塔の溶出剤として使用しD−パントテン酸を回収した。
上記1.5vol・300ml区分のD−パントテン酸含量は8.7w/v%(26.3g)、全糖含量は0.43w/v%(D−パントテン酸当たり5%)、またメチルアルコール濃度は92.5v/v%であった。本溶出区分に水酸化カルシウム粉末4.8gを加え十分に攪拌しD−パントテン酸を中和しカルシウム塩(D−パントテン酸カルシウム28.6g)とした。次にケイソウ土をプレコートしたヌッチェで濾過し晶出原液とした。これらの操作は20〜25℃で行った。晶出原液を攪拌機のついた丸底フラスコに移し5℃まで冷却後57mg(対D−パントテン酸カルシウム0.2%)の種晶を加えさらに2℃まで冷却し、15時間保持して晶出を行った。晶出スラリーを3Gのガラスフィルターで濾過し、5℃のメチルアルコールを噴霧して洗浄し4分子のMeOH、1分子のH2OをもつMeOH含量26%、水分4%の湿結晶36.6gを得た(D−パントテン酸カルシウム34.4g:晶出収率90%)。本湿結晶を常法の80℃減圧乾燥、さらに80℃・RH20%の調湿空気乾燥により水分2.4%のD−パントテン酸カルシウム乾燥粉末26.1gを得た。本製品は溶状(清澄度、色)、カルシウム含量、窒素含量、比旋光度、結晶型などについての日本、米国、英国規格に適合した。
【0011】
【発明の効果】
本発明によれば、微生物が直接発酵生産したD−パントテン酸を含む溶液を活性炭に接触させてD−パントテン酸を飽和吸着させることにより不純物特に糖を効率的に除去し、その後メチルアルコールなどの親水性有機溶媒で溶出してそのまま晶出操作を行うことにより発酵濾液から非常に効率的かつ高収率で高品質のD−パントテン酸カルシウムを得ることができる。
【図面の簡単な説明】
【図1】 活性炭充填カラムA塔、B塔を直列に連結した固定床の模式図であり、(i)〜(vi)は通液路を示す。
【図2】 被処理液をLH2C炭カラムに通液したときの成分漏出曲線で、細実線AはD−パントテン酸の破過曲線、太実線Bは糖の破過曲線を示す。(a)はD−パントテン酸の破過吸着点、(b)はD−パントテン酸の飽和吸着点を示す。
【図3】 メチルアルコールを溶出溶媒とするLH2C炭カラムからの成分溶出曲線を示す。細実線AはD−パントテン酸、太実線Bは水分、点線Cは糖の溶出曲線である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a process for producing calcium D-pantothenate from a D-pantothenic acid fermentation broth produced directly by a microorganism. Calcium D-pantothenate is a useful vitamin widely used in the pharmaceutical, food and feed fields.
[0002]
[Prior art]
Conventionally, the manufacturing method of calcium pantothenate is roughly divided into a chemical synthesis method and a direct fermentation method. As a chemical synthesis method, D, L-pantolactone synthesized using isobutyraldehyde as a starting material is optically resolved by a chemical or enzymatic method, and the obtained D-pantolactone is condensed with β-alanine calcium to form D. -The process of obtaining calcium pantothenate is widely practiced on an industrial scale. As a direct fermentation method, a new production method in which D-pantothenic acid is directly produced by a microorganism using sugar and β-alanine as a raw material has recently been reported (Japanese Patent Laid-Open No. Hei 6-261773). Among them, as a method for producing calcium D-pantothenate from D-pantothenic acid direct fermentation broth, it was neutralized after desalting with an ion exchange resin and concentrated as a calcium salt, and after addition of methyl alcohol (methyl alcohol concentration 83v / V%) D-calcium pantothenate crystals are precipitated.
[0003]
[Problems to be solved by the invention]
The direct fermentation method is more efficient than the chemical synthesis method because it does not require optical resolution, but the fermented liquid is insoluble matter such as D-pantothenic acid and other monosaccharides, oligosaccharides, organic acids, proteins Since it contains various soluble impurities such as inorganic salts (cations, anions), the biggest problem is how to separate and purify high-purity calcium D-pantothenate from this fermentation broth with high yield. Met. In the method described in the published patent publication, after desalting with an ion exchange resin, D-pantothenic acid is neutralized and concentrated as a calcium salt, methyl alcohol is added (methyl alcohol concentration 83%), and D-pantothenic acid is added. A production method for precipitating calcium crystals has been described. (1) Monosaccharides and oligosaccharides contained in the fermentation broth cannot be separated and removed by ion-exchange resin treatment, and there are about 10% per pantothenic acid at the stage of the crystallization raw solution. Therefore, it causes color development due to heat at the time of concentration of the ion exchange resin treatment solution, and causes a decrease in the crystallization yield at the time of crystallization. Furthermore, in order to obtain a high crystallization yield, (2) Before adding methyl alcohol, increase the concentration of aqueous eluate so that the concentration of calcium pantothenate is 7 w / v% or higher and the methyl alcohol concentration is about 90 v / v% (D-calcium pantothenate about 50 w / v). ) It is necessary to concentrate, the viscosity of the D- calcium pantothenate solution in the vicinity of this concentration has drawbacks such fairly high concentration operation is difficult.
[0004]
[Means for Solving the Problems]
The inventors of the present invention have earnestly devised a method for producing high-quality calcium D-pantothenate efficiently and in a high yield from a culture solution obtained by a direct fermentation method and containing impurities such as sugar in addition to D-pantothenic acid. As a result of research, the present invention has been completed.
That is, the present invention is such that a solution containing D-pantothenic acid directly produced by fermentation by microorganisms is brought into contact with activated carbon to adsorb D-pantothenic acid on the activated carbon, and then eluted with a hydrophilic organic solvent, and then an alkali containing calcium. A method for producing calcium D-pantothenate, which comprises collecting calcium D-pantothenate that is neutralized with an agent and precipitated.
The solution containing D-pantothene produced directly by the microorganism in the present invention is a microorganism having the ability to synthesize D-pantothenic acid as described in JP-A-6-261773, for example, the intestinal bacterium Escherichia coli 814 / pFV31 ( IFO 15374, FERM BP4401) can be obtained, for example, by culturing in a medium using glucose as a sugar raw material, and contacting with β-alanine. At this time, the production amount of D-pantothenic acid is usually 40 g / liter. The solution is usually removed by removing insoluble solids such as bacterial cells by a method such as centrifugation or filtration to remove insoluble solids in the liquid, thereby preventing charcoal contamination in the subsequent activated carbon treatment, extending the life of the charcoal, etc. From the point of view is desirable.
The solution containing D-pantothenic acid from which insoluble solids such as bacterial cells have been removed is adjusted to a pH of usually 1 to 5, preferably pH 2 to 4, with an inorganic acid such as hydrochloric acid or sulfuric acid. When the pH is less than 1, the decomposition of D-pantothenic acid is likely to occur and the yield is lowered. When the pH is more than 5, the amount of D-pantothenic acid adsorbed on the activated carbon decreases, while the sugar adsorption power increases. The separation and removal of saccharides is worsened.
[0005]
The activated carbon used in the present invention is not particularly limited, and any commercially available carbon can be used as long as it is usually marketed for liquid phase separation. For example, the total pore volume of pores having a diameter of 300 mm or less (hereinafter simply referred to as “pore volume”) is 0.4 cc / g or more and the average pore diameter of pores having a diameter of 300 mm or less (hereinafter simply referred to as “average pore diameter”). And activated carbon having a pore characteristic of 17 mm or more. The activated carbon having such specific pore characteristics is, for example, 1) after immersing wood raw materials such as wood pieces and coconut husks in chemicals such as zinc chloride, phosphoric acid, calcium chloride and baking at about 600 to 700 ° C. For example, by desorbing and washing additive chemicals with an acid such as hydrochloric acid, or 2) treating mineral raw materials such as coal and petroleum pitch with alkali, and then using 750-900 with steam, carbon dioxide gas, etc. It is obtained by activating at ° C. The activated carbon may be in the form of powder, granule or granule, but when packed in a column, it is preferably granule or granule in order to suppress tower pressure. Specific examples of the activated carbon include granular white KLH (manufactured by Takeda Pharmaceutical, pore volume 1.09cc / g, average pore diameter 32mm), granular white powder W (manufactured by Takeda Pharmaceutical, pore volume 0.49cc / g, average pore diameter 18mm) , Granular white LH2C (manufactured by Takeda Pharmaceutical, pore volume 0.74cc / g, average pore diameter 19mm), CAL (produced by Calgon Corporation, pore volume 0.55cc / g, average pore diameter 21mm), granular activated carbon Diahop 008 (Mitsubishi Chemical) Manufactured, pore volume 0.61 cc / g, average pore diameter 20 mm).
As a method of bringing the liquid to be treated into contact with the activated carbon, for example, a fixed bed adsorption method, that is, a method of flowing the liquid to be treated through the activated carbon packed in the column is suitable. According to this method, impurities can be separated and removed in a chromatographic manner, and fractionation of the eluate of D-pantothenic acid with a hydrophilic organic solvent can be facilitated. Practically, so-called series adsorption is preferred in which the liquid to be treated is passed through two or more activated carbon packed columns in series to adsorb D-pantothenic acid to the activated carbon.
[0006]
The adsorption treatment method will be described taking the case of using two columns as an example, that is, as shown in FIG. 1, the activated carbon packed column A column and B column are connected in series and the liquid passage (i) → (ii) → (iv) The liquid to be treated is flowed in the order of (v) → (vi) and passed until the pantothenic acid concentration at the outlet of the A tower becomes the same as the concentration at the inlet of the A tower. If the concentrations at the outlet and the inlet are the same, the tower A and the tower B are separated, the liquid flow is switched to the tower B, another activated carbon tower is connected to the tower B in series, and the pantothenic acid concentrations at the outlet and the inlet of the tower B are the same. Pass until it becomes.
Fig. 2 shows D-pantothenic acid when D-pantothenic acid direct fermentation broth is decolorized with activated carbon for cell separation and decolorization and passed through a solution containing D-pantothenic acid adjusted to pH 3 with hydrochloric acid. And the component leakage curve of saccharides. The point where the concentration of pantothenic acid at the outlet of the tower A is the same as that at the inlet is the saturated adsorption point (b), which is about 1.5 when compared with the breakthrough adsorption point shown by (a) where there is no leakage of D-pantothenic acid. Double D-pantothenic acid is adsorbed (about 200 g / liter-LH2C). D-pantothenic acid that has started to leak after the breakthrough adsorption point is adsorbed in the next column. At this time, the adsorption power of saccharides and other impurities coexisting in the liquid to be treated to activated carbon is weaker than that of D-pantothenic acid, so it is expelled by D-pantothenic acid during the passage and the leakage rate reaches 250% and then reaches the saturated adsorption point. It has been found that 90% or more of the sugars in the liquid to be treated are separated and removed by the treatment. This was a completely unexpected new finding for those skilled in the art. In addition, inorganic salts (cations and anions) contained in the liquid to be treated can be separated and removed by flowing into the adsorption waste liquid without being adsorbed on the activated carbon.
[0007]
Next, a hydrophilic organic solvent is passed through the activated carbon column on which D-pantothenic acid is saturated and adsorbed to elute D-pantothenic acid. As the hydrophilic organic solvent, a lower alcohol having 1 to 5 carbon atoms such as methyl alcohol, ethyl alcohol, isopropyl alcohol and the like can be advantageously used, but methyl alcohol is particularly advantageous for crystallization in a subsequent step. That is, the crystals of calcium D-pantothenate are in a polymorphic form, depending on the solvent environment, α, β, γ crystals, 4 molecules of MeOH · 1 molecule of H 2 O (4MeOH · 1H 2 O crystal), and amorphous form. However, the 4MeOH · 1H 2 O crystals precipitated from the crystallization stock solution when methyl alcohol is used as the elution solvent are granular and have very good separability. The elution temperature is 10 to 30 ° C, preferably 20 to 30 ° C.
The situation in which D-pantothenic acid is eluted from the activated carbon column using methyl alcohol will be described with reference to FIG. 3 showing the component elution curve in Example 1.
The first 0.7 vol elution section (vs. LH2C charcoal) was the section where the water retained in the column was pushed out, and the D-pantothenic acid concentration in this section was only 0.4% w / v%. In the next 1.5 vol elution section, the D-pantothenic acid concentration was 8.7 w / v% (migration amount 90%), and the water content was 7.5 w / v%. Since the D-pantothenic acid concentration of the liquid to be treated was 2.6 w / v%, this elution section was concentrated about 3.4 times by adsorption and elution. Furthermore, the last 0.8 vol elution section had a D-pantothenic acid concentration of 0.9 w / v% (migration amount 4%) and a water content of 0.05 w / v%.
[0008]
The hydrophilic organic solvent concentration and the D-pantothenic acid concentration in the eluate are usually 80 to 98 v / v%, preferably 85 to 95%, more preferably 85 to 95% in relation to the crystallization efficiency in the subsequent crystallization operation. Preferably, it is 90 to 92%, and the D-pantothenic acid concentration is preferably 7 w / v% or more. Therefore, the 1.5 vol elution section can be neutralized as it is to obtain a crystallization stock solution.
Next, the eluate is neutralized with an alkaline agent containing calcium. Any alkaline agent may be used as long as it contains sufficient calcium to neutralize D-pantothenic acid contained in the eluate, but calcium hydroxide is preferred. More practically, approximately equimolar powdered calcium hydroxide is added to the eluate with respect to D-pantothenic acid. When unreacted calcium hydroxide fine powder appears, it is better to remove it by filtration. Neutralization should keep the liquid temperature at 15 ° C. or higher in order to prevent crystal precipitation of calcium D-pantothenate.
[0009]
The crystallization undiluted solution thus prepared is preferably cooled to 10 ° C. or lower, desirably 5 ° C. or lower, and about 0.2% of seed crystals are added to calcium D-pantothenate and stirred at 0 to 5 ° C. If left for 10 hours or longer, calcium pantothenate crystals can be obtained in good yield. The crystallization slurry is collected by centrifugal separation using a conventional centrifugal dehydrator or the like, or filtration using a filter press to obtain wet crystals.
When methyl alcohol is used as the elution solvent, the wet crystals contain about 25 w / w% methyl alcohol and about 5 w / w% moisture. The wet crystals can be dried to a moisture content of about 0.5% when dried under reduced pressure at 70 to 80 ° C. If the moisture crystals are further dried using humidity-controlled air (80 ° C., RH 20%), the moisture content is about 2%. % D-calcium pantothenate powder substantially free of methyl alcohol can be obtained. Alternatively, a solution obtained by dissolving wet crystals in water and concentrating / desolving to a concentration of about 50 w / v% can be spray-dried by a conventional spray dryer to obtain calcium D-pantothenate powder. All crystal forms of the dried product are converted to amorphous forms.
As described above, this method allows saturated adsorption of D-pantothenic acid on activated carbon by passing a solution containing D-pantothenic acid through an activated carbon column, and at the same time, can effectively separate and remove inorganic ions and saccharides. Elution with a hydrophilic organic solvent and selecting a category taking into consideration the solvent concentration and D-pantothenic acid concentration can be used as a starting stock solution for the neutralization and crystallization process, and separation and collection after crystallization are easy. This is an extremely efficient method for producing high-purity calcium D-pantothenate.
[0010]
【Example】
The contents of the present invention will be described more specifically with reference to the following examples. However, these are only examples of the contents of the present invention and do not limit the scope of the present invention. Example 1
Escherichia coli IFO 814 / pFV31 strain was cultured in a conventional manner in a 5-liter jar fermenter using a medium containing glucose as a carbon source to obtain 2.5 liters of a D-pantothenic acid direct fermentation broth. Filtration was performed at 40 ° C. using a ceramic filter (manufactured by Toshiba Ceramics Co., Ltd.) having a pore size of 0.1 μm to obtain 1.67 liters of filtrate from which insoluble solids such as bacterial cells were removed. This liquid contained 38.5 mg / ml (64.3 g) of D-pantothenic acid and 10.3 mg / ml of sugar (total sugar by phenol sulfuric acid method) (about 27% per D-pantothenic acid). The filtrate was passed through a column (packing volume 500 ml) with an inner diameter of 70 mm and a height of 130 mm packed with activated carbon K-1 for decolorization (manufactured by Takeda Pharmaceutical, pore volume 1.12 cc / g, average pore diameter 32 mm) and washed with water. In addition, 2.4 liters of a liquid having a decolorization rate of 99.5% was obtained. Concentrated hydrochloric acid (56 ml) was added to this solution to adjust the pH to 3.0, and a column (packing volume) with an inner diameter of 50 mm and a height of 100 mm packed with activated carbon for liquid phase separation and LH2C charcoal (granular, steam activated charcoal, manufactured by Takeda Pharmaceutical). 200 ml) 2 towers (A and B towers) were connected in series and passed continuously. The amount of liquid passing through the tower A up to the saturation adsorption point was 2.2 liters. By this operation, 29 g (145 g / liter-LH2C charcoal) of D-pantothenic acid was adsorbed on the A column. The tower A and the tower B are separated after the saturation adsorption point, and the remaining liquid is passed through the tower B. Tower A was washed with 600 ml of water, and D-pantothenic acid was eluted with methyl alcohol. That is, the first 0.7 vol · 140 ml was discarded (D-pantothenic acid loss was 2%), and the next 1.5 vol · 300 ml (D-pantothenic acid transfer amount was about 90%) was advanced to the crystallization step. The final 0.8 vol · 160 ml (4% transfer amount of D-pantothenic acid) was used as an eluent for the next column to recover D-pantothenic acid.
D-pantothenic acid content of the above 1.5 vol. 300 ml section is 8.7 w / v% (26.3 g), total sugar content is 0.43 w / v% (5% per D-pantothenic acid), and methyl alcohol concentration Was 92.5 v / v%. 4.8 g of calcium hydroxide powder was added to this elution section and stirred sufficiently to neutralize D-pantothenic acid to obtain a calcium salt (28.6 g of calcium D-pantothenate). Next, it was filtered through a Nutsche pre-coated with diatomaceous earth to obtain a crystallization stock solution. These operations were performed at 20 to 25 ° C. Transfer the crystallized stock solution to a round bottom flask equipped with a stirrer, cool to 5 ° C, add 57 mg of seed crystals (0.2% calcium D-pantothenate), cool to 2 ° C, hold for 15 hours and crystallize. Went. The crystallization slurry was filtered through a 3G glass filter, sprayed with methyl alcohol at 5 ° C., washed, 46.6 MeOH with one molecule of H 2 O, 36.6 g of wet crystals with a MeOH content of 26% and a moisture content of 4%. (34.4 g of calcium D-pantothenate: crystallization yield 90%) was obtained. The wet crystals were dried at 80 ° C. under reduced pressure in the usual manner, and further air-conditioned at 80 ° C./RH 20% to obtain 26.1 g of a D-calcium pantothenate dry powder having a moisture content of 2.4%. This product complies with Japanese, US and UK standards for solution (clarity, color), calcium content, nitrogen content, specific rotation, crystal form, etc.
[0011]
【The invention's effect】
According to the present invention, a solution containing D-pantothenic acid directly produced by fermentation by a microorganism is brought into contact with activated carbon to efficiently adsorb D-pantothenic acid, thereby efficiently removing impurities, particularly sugars, and then methyl alcohol and the like. By eluting with a hydrophilic organic solvent and performing the crystallization operation as it is, high-quality calcium D-pantothenate can be obtained from the fermentation filtrate with high efficiency and high yield.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of a fixed bed in which activated carbon packed columns A column and B column are connected in series, and (i) to (vi) indicate liquid flow paths.
FIG. 2 is a component leakage curve when a liquid to be treated is passed through an LH2C charcoal column. A thin solid line A shows a breakthrough curve for D-pantothenic acid, and a thick solid line B shows a breakthrough curve for sugar. (a) shows the breakthrough adsorption point of D-pantothenic acid, and (b) shows the saturated adsorption point of D-pantothenic acid.
FIG. 3 shows a component elution curve from an LH2C charcoal column using methyl alcohol as an elution solvent. The thin solid line A is D-pantothenic acid, the thick solid line B is moisture, and the dotted line C is a sugar elution curve.

Claims (5)

微生物により直接発酵生産されたD−パントテン酸の発酵液から不溶物を分離し;
活性炭を用いて発酵液を脱色して、D−パントテン酸を含む溶液を得;
D−パントテン酸を含む溶液のpHを1〜5に調整し;
D−パントテン酸を含む溶液を、糖類がD−パントテン酸よりも低い吸着力を有し、2基以上直列に連結したカラムに充填した粒状または顆粒状活性炭と連続して接触させて、D−パントテン酸を活性炭に飽和吸着点まで吸着させ;
親水性有機溶媒でD−パントテン酸を溶出させ;
カルシウムを含むアルカリ剤で溶出液を中和し、D−パントテン酸カルシウムを析出させ;
D−パントテン酸カルシウムを採取する、
工程を含むことを特徴とするD−パントテン酸カルシウムの製造法。
Separating insolubles from the fermentation broth of D-pantothenic acid directly fermented by microorganisms;
Decolorizing the fermentation broth using activated carbon to obtain a solution containing D-pantothenic acid;
Adjusting the pH of the solution containing D-pantothenic acid to 1-5;
A solution containing D-pantothenic acid is continuously brought into contact with granular or granular activated carbon packed in a column in which two or more saccharides have lower adsorption power than D-pantothenic acid and are connected in series. Adsorb pantothenic acid on activated carbon to the saturation adsorption point;
Eluting D-pantothenic acid with a hydrophilic organic solvent;
Neutralize the eluate with an alkaline agent containing calcium to precipitate calcium D-pantothenate;
Collecting calcium D-pantothenate;
The manufacturing method of the calcium D-pantothenate characterized by including a process.
親水性有機溶媒が炭素数1〜5の低級アルコールである請求項1記載の製造法。  The process according to claim 1, wherein the hydrophilic organic solvent is a lower alcohol having 1 to 5 carbon atoms. 低級アルコールがメチルアルコールである請求項2記載の製造法。  The process according to claim 2, wherein the lower alcohol is methyl alcohol. カルシウムを含むアルカリ剤が水酸化カルシウムである請求項1記載の製造法。  The process according to claim 1, wherein the alkaline agent containing calcium is calcium hydroxide. 親水性有機溶媒がメチルアルコールであり、カルシウムを含むアルカリ剤が水酸化カルシウムであって、D−パントテン酸カルシウムを4分子のメチルアルコール、1分子の水をもつ結晶として採取する請求項1記載の製造法。  The hydrophilic organic solvent is methyl alcohol, the alkaline agent containing calcium is calcium hydroxide, and the calcium D-pantothenate is collected as a crystal having 4 molecules of methyl alcohol and 1 molecule of water. Manufacturing method.
JP9658096A 1995-04-21 1996-04-18 Method for producing D-calcium pantothenate Expired - Fee Related JP3776160B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9658096A JP3776160B2 (en) 1995-04-21 1996-04-18 Method for producing D-calcium pantothenate

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7-97268 1995-04-21
JP9726895 1995-04-21
JP9658096A JP3776160B2 (en) 1995-04-21 1996-04-18 Method for producing D-calcium pantothenate

Publications (2)

Publication Number Publication Date
JPH09286A JPH09286A (en) 1997-01-07
JP3776160B2 true JP3776160B2 (en) 2006-05-17

Family

ID=26437771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9658096A Expired - Fee Related JP3776160B2 (en) 1995-04-21 1996-04-18 Method for producing D-calcium pantothenate

Country Status (1)

Country Link
JP (1) JP3776160B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111748591B (en) * 2019-03-29 2022-04-01 安徽华恒生物科技股份有限公司 Production method of D-pantoic acid lactone

Also Published As

Publication number Publication date
JPH09286A (en) 1997-01-07

Similar Documents

Publication Publication Date Title
KR100282076B1 (en) Process for producing calcium d-pantothenate
RU2460799C2 (en) Method of producing crystals of basic amino acid hydrochloride
KR890001245B1 (en) Process for purifying tryptophan
WO2017159555A1 (en) Crystal of reduced-form glutathione and method for producing same
US6150364A (en) Purification and crystallization of riboflavin
JP6936320B2 (en) Method for purifying allulose conversion reaction product
CN112592378B (en) Method for preparing high-purity crystalline tagatose
HU202282B (en) Process for separating 2-keto-l-gulonic acid from fermentation juice
JP3776160B2 (en) Method for producing D-calcium pantothenate
CN105238841B (en) Cephalosporin adsorbs the recycling of DCPC and method for transformation in waste liquid
JP2001258583A (en) Method for purifying shikimic acid
GB2152030A (en) Isolating L-amino acids by ion exchange
US4288619A (en) Process for the recovery of α-hydroxy- and α-amino-carboxylic acids from sugar-containing media
US6087139A (en) Process for producing citric acid and/or citrates
JPS6338B2 (en)
CN112391424A (en) Clean extraction process of L-aspartic acid
CN114213276B (en) Method for extracting and purifying theanine from enzyme catalytic reaction
RU2114173C1 (en) Method of crystalline tylosin preparing
JPH0564627B2 (en)
JPH0513632B2 (en)
JP3719309B2 (en) Manufacturing method of ribitol
CN116621760A (en) Purification method of L-tryptophan for cell culture medium
CN116768944A (en) Purification method of N-acetylneuraminic acid
CA3156624A1 (en) Improved method for manufacturing allulose
CN115710595A (en) Method for recovering 7-aminodesacetoxycephalosporanic acid and D-p-hydroxyphenylglycine from cefadroxil crystallization mother liquor

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050705

A601 Written request for extension of time

Effective date: 20051003

Free format text: JAPANESE INTERMEDIATE CODE: A601

A602 Written permission of extension of time

Effective date: 20051011

Free format text: JAPANESE INTERMEDIATE CODE: A602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20060214

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060222

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees