JPH01165390A - Method for purifying dideoxyinosine - Google Patents

Method for purifying dideoxyinosine

Info

Publication number
JPH01165390A
JPH01165390A JP62324531A JP32453187A JPH01165390A JP H01165390 A JPH01165390 A JP H01165390A JP 62324531 A JP62324531 A JP 62324531A JP 32453187 A JP32453187 A JP 32453187A JP H01165390 A JPH01165390 A JP H01165390A
Authority
JP
Japan
Prior art keywords
dideoxyinosine
ddi
resin
action
porous resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62324531A
Other languages
Japanese (ja)
Other versions
JPH0691830B2 (en
Inventor
Toshiya Tanabe
田辺 俊哉
Masaru Otani
勝 大谷
Toshihide Yugawa
湯川 利秀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ajinomoto Co Inc
Original Assignee
Ajinomoto Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Co Inc filed Critical Ajinomoto Co Inc
Priority to JP62324531A priority Critical patent/JPH0691830B2/en
Publication of JPH01165390A publication Critical patent/JPH01165390A/en
Priority to US08/161,071 priority patent/US6306647B1/en
Publication of JPH0691830B2 publication Critical patent/JPH0691830B2/en
Priority to US08/385,888 priority patent/USRE35609E/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Abstract

PURPOSE:To simply and efficiently separate and purify dideoxyinosine at a low cost, by treating 2',3'-dideoxyinosine produced by action of a microorganism or enzyme with a nonpolar porous resin. CONSTITUTION:A solution containing unpurified 2',3'-dideoxyinosine produced by action of a microorganism or enzyme is subjected to, e.g., sterilization, deproteinization and decoloring treatment, and then brought into contact with a nonpolar porous resin, e.g., styrene-divinylbenzene based copolymer or a derivative thereof, to adsorb the 2',3'-dideoxyinosine on the above-mentioned resin. An aqueous solution of a lower aliphatic alcohol is subsequently used as an eluent to elute the 2',3'-dideoxyinosine from the afore-mentioned resin and the eluate is preferably concentrated to crystallize the aimed 2',3'-dideoxyinosine.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、微生物又は酵素の作用により生産された22
3/−ジデオキシイノシン(以下、DDIと略す、)の
新規精製法に関するものでろる。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to
This article relates to a new method for purifying 3/-dideoxyinosine (hereinafter abbreviated as DDI).

DDIは抗ウイルス剤等医薬品として使用されるもので
らる。
DDI is used as a medicine such as an antiviral agent.

〔従来の技術〕[Conventional technology]

従来のDDIの製造方法としては、ヌクレオシド類の2
′位めるいは3′位の脱酸素反応が行われている( C
hem、Pharm、Bull、 、 22.128(
1974) )が、以下のような理由により、報告例は
少ない。
Conventional methods for producing DDI include two types of nucleosides:
Deoxygenation reaction at the ’ or 3’ position is taking place (C
hem, Pharm, Bull, , 22.128 (
(1974)), but there are few reported cases for the following reasons.

■ 反応に先立ち保護基を導入しなければならないこと
■ Protecting groups must be introduced prior to the reaction.

■ 2′位、3′位は立体障害が大きく反応が起きKく
いこと。
■ The 2' and 3' positions are highly sterically hindered, making it difficult for reactions to occur.

又 2′,3′−ジデオキシアデノシン(以下、 DD
Aと略す、)を原料として、酵素を利用したデアミネー
シ、ンによる方法も報告されている(Bioahim。
Also, 2',3'-dideoxyadenosine (hereinafter referred to as DD
A deaminating method using enzymes using A) as a raw material has also been reported (Bioahim).

Biophs、 Acts、、 566(2) 、 2
59(1979))、しかし、このDDAも上記の理由
により製造が困難な為、デアミネージョンによる方法の
報告例も少ない。
Biophs, Acts, 566(2), 2
59 (1979)), however, this DDA is also difficult to manufacture due to the above-mentioned reasons, and there are few reports of methods using deamination.

この為、単離精製法についても、わずかに実験室レベル
で液体又は薄層クロマトグラフィーによる分取の繰シ返
し精製が実施されている程度で、工業的に利用できる精
製方法は未だ確立していなかった。
For this reason, with regard to isolation and purification methods, only repeated preparative purifications using liquid or thin layer chromatography have been carried out at the laboratory level, and purification methods that can be used industrially have not yet been established. There wasn't.

2′,3′−ジデオキシウリジン(以下、DDUと略す
。)又は、2,3−ジデオキシリゲースー1−リン酸を
基質として微生物又は酵素の作用により生産された酵素
反応液中には、目的生成物であるDDIの他に、未反応
基質のDDUとヒポキサンチン(以下、H7pと略す。
The enzyme reaction solution produced by the action of microorganisms or enzymes using 2',3'-dideoxyuridine (hereinafter abbreviated as DDU) or 2,3-dideoxyligase-1-phosphate as a substrate contains the desired substance. In addition to the product DDI, there are unreacted substrates DDU and hypoxanthine (hereinafter abbreviated as H7p).

)、基質分解物のウラシル(以下、Uraと略す、)及
び若干の副生核酸類が含まれている。
), uracil (hereinafter abbreviated as Ura), a substrate decomposition product, and some by-product nucleic acids.

この反応液中から効率良く、高純度のDDIを取得する
為には、一般的に知られている濃縮晶析等の手段だけの
処理では不適当であった。その理由は、濃縮晶析等の際
、Ura + Hyp等の不純物は目的物質であるDD
Iよシも溶解度が低い為、DDI結晶中に不純物として
混入し、精製を困難にしているからである。
In order to efficiently obtain DDI of high purity from this reaction solution, treatment using only generally known means such as concentration crystallization is inadequate. The reason for this is that during concentration crystallization, impurities such as Ura + Hyp are not absorbed by the target substance DD.
This is because both I and I have low solubility, so they are mixed into DDI crystals as impurities, making purification difficult.

また、DDIは散性もしくは中性条件下において加水分
解を受け、2,3−ジデオキシIJ 、y−ス残基とヒ
ポキサンチン残基とが容易に切断されるため、酸を必要
とするイオン交換樹脂処理による分離精製も困難であっ
た。
In addition, DDI undergoes hydrolysis under dispersive or neutral conditions, and the 2,3-dideoxy IJ, y-su residue and hypoxanthine residue are easily cleaved, so ion exchange that requires acid is difficult. Separation and purification by resin treatment was also difficult.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記の欠点を解消するよりなりDIの工業上優れた精製
方法、即ち、簡便かつ低コストで精製できる方法の開発
が望まれていた。
It has been desired to develop an industrially superior purification method for DI that eliminates the above-mentioned drawbacks, that is, a simple and low-cost purification method.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは、上記問題点を解決すぺく、鋭意検討した
結果、未精製のDDIを含有する溶液を、例えば、除菌
、除蛋白、脱色処理した後、非極性多孔質樹脂で処理す
ることによ、15DDIをUra、Hyp等の不純物か
ら分離でき、好ましくは晶析分離工程を組合わせること
によfi DDU等の不純物から分離できることを見出
し、これらの発見に基づいて本発明を完成するに到った
In order to solve the above-mentioned problems, the present inventors have conducted intensive studies and found that a solution containing unpurified DDI is treated with a non-polar porous resin after, for example, sterilization, protein removal, and decolorization treatment. In particular, we have discovered that 15DDI can be separated from impurities such as Ura and Hyp, and preferably from impurities such as fi DDU by combining a crystallization separation process, and based on these discoveries, we have completed the present invention. reached.

即ち、本発明は、微生物又は酵素の作用により生産され
、又はそれ由来の未精製DDIを精製するに際し、 D
DIを非極性多孔質樹脂に吸着せしめる処理法、好まし
くはこれと晶析法とを組み合わせることを特徴とするD
DIの精製方法である。
That is, the present invention provides, when purifying unpurified DDI produced by or derived from the action of microorganisms or enzymes, D
D, characterized by a treatment method for adsorbing DI to a non-polar porous resin, preferably combining this with a crystallization method.
This is a method for purifying DI.

本発明の出発物質は未精製のDDIであればよく純度の
程度は問わない。微生物又は酵素の作用により、例えば
、2,3−ジデオキシリゲース残基とヒポキサンチン残
基を結合せしめた反応溶液やその中間処理物が採用され
る。
The starting material of the present invention may have any degree of purity as long as it is unpurified DDI. For example, a reaction solution in which a 2,3-dideoxyligase residue and a hypoxanthine residue are combined by the action of a microorganism or an enzyme, or an intermediate treatment product thereof is employed.

微生物としては、エシェリヒア属、フラボバクテリウム
属、セラチア属、エンテロパl#−R、エルビニア属、
シトロバクター属、コリネバクテリウム属、ハフニア属
、クルイヘラ属、サルモネラ属、又は、キサントモナス
属等DDIを生産できるものであればよい。又、酵素は
、上記微生物が有しているもの、その他同−機能を有す
るものであれば特に制限されない。
Microorganisms include Escherichia genus, Flavobacterium genus, Serratia genus, Enteropa l#-R, Erwinia genus,
Any member of the genus Citrobacter, Corynebacterium, Hafnia, Kluichella, Salmonella, or Xanthomonas that can produce DDI may be used. Further, the enzyme is not particularly limited as long as it is possessed by the above-mentioned microorganisms or has the same function.

本発明に用いるDDI反応液は、不純物であるDDU 
e Hyp + Ura *若干の副生成する核酸類の
うち、いずれを含有していてもよい、また、この溶液の
DDIII度は、DDIの溶解度以下であれば制限され
るものではな論。
The DDI reaction solution used in the present invention contains DDU, which is an impurity.
e Hyp + Ura *It may contain any of some by-product nucleic acids, and the DDIII degree of this solution is not limited as long as it is below the solubility of DDI.

次に、ここで用いる非極性多孔質樹脂は、例えハソの母
体が、スチレン−ジビエルベンゼン系の共重合体又は、
その誘導体例えばこれにハロゲン化し高比重化したポリ
マーである物質であれ、いずれも使用可能である。例え
ば、ダイヤイオンBPシリーズ、SPシリーズ(以上、
三菱化成工業)。
Next, the non-polar porous resin used here may be made of a styrene-diverbenzene copolymer or
Any of its derivatives, such as halogenated polymers with high specific gravity, can be used. For example, Diaion BP series, SP series (and above,
Mitsubishi Chemical Industries).

XAD−4(o−ム−7:yド・ハース社) 、0C1
031(バイエル社)等が利用できるが、その他の非極
性多孔質樹脂であっても同等の性質を有するものであれ
ばいずれであっても良い。特に高比重化した5P207
 (三菱化成工業)が、DDI含有溶液をフィードした
時に樹脂が浮上したりすることなく、操作性が良い点で
適している。
XAD-4 (o-mu-7:Yde Haas), 0C1
031 (Bayer) etc., but any other non-polar porous resin may be used as long as it has equivalent properties. Especially high specific gravity 5P207
(Mitsubishi Chemical Industries, Ltd.) is suitable because the resin does not float when a DDI-containing solution is fed and it has good operability.

非極性多孔質樹脂とDDI含有溶液との接液方法は、パ
ッチ式とカラム式があるが、カラム式の方が操作上簡便
で好ましい。
There are two methods for contacting the non-polar porous resin with the DDI-containing solution: a patch method and a column method, but the column method is preferred because it is easier to operate.

カラムへの通液速度は、特に制限はなく、通常SV= 
0.5〜4.0、好ましくは5v=1〜2程度カ!イ。
There is no particular restriction on the flow rate of liquid to the column, and usually SV=
0.5 to 4.0, preferably about 5v=1 to 2! stomach.

カラムにフィードするDDI含有溶液の体積負荷量は、
DDI含有溶液の濃度によりて異なり、同時にDDIの
樹脂負荷量(11#−R)は5〜401/l−n、好ま
しくは10〜30I!/iRが分離性及び経済性の点で
適している。
The volumetric loading of the DDI-containing solution fed to the column is:
It varies depending on the concentration of the DDI-containing solution, and at the same time, the resin loading amount of DDI (11#-R) is 5 to 401/l-n, preferably 10 to 30 I! /iR is suitable in terms of separation and economy.

カラムへの接液温度については、10〜50℃であれば
特に制限されない。この温度ではDDIと溶液中の不純
物H)’p+ TJraとの分離性の相違は殆んどない
The temperature of the liquid in contact with the column is not particularly limited as long as it is 10 to 50°C. At this temperature, there is almost no difference in the separation between DDI and the impurity H)'p+ TJra in the solution.

又、DDIの安定性の点から、樹脂へのフィード液の−
はアルカリ側が良く、好ましくはp)18.0〜10.
0が良い。かつ、温度も50℃以下が安定性の点からも
適している。
In addition, from the viewpoint of stability of DDI, the feed liquid to the resin is
is preferably on the alkaline side, preferably p) 18.0 to 10.
0 is good. In addition, a temperature of 50° C. or lower is suitable from the viewpoint of stability.

次に、カラムからのDDI溶離方法に関して記述する。Next, a method of elution of DDI from the column will be described.

溶離剤は、低級脂肪族アルコール水溶液が適している。As the eluent, a lower aliphatic alcohol aqueous solution is suitable.

例えば、メチルアルコール、エチルアルコール、イソ7
’oピルアルコール等の水溶液である。溶離速度は、通
常の5V=1〜2程度が良い。
For example, methyl alcohol, ethyl alcohol, iso7
It is an aqueous solution such as 'o-pyl alcohol. The elution rate is usually about 5V=1 to 2.

笑際の非極性多孔質樹脂を用いた精製操作は次の様にす
ると良い。すなわち、当該樹脂を充填したカラムK D
DI含有溶液を一定量フイード後、水神によl) Ur
nと)Iypを溶離する。次にアルコール水溶液を用い
てDDIとDDUを溶離する。
The purification operation using a non-polar porous resin may be carried out as follows. That is, the column K D filled with the resin
After feeding a certain amount of DI-containing solution, send it to Suishin.
n and) Iyp. DDI and DDU are then eluted using an aqueous alcohol solution.

次に、当該DDIとDDUを含む画分を濃縮して、DD
Iを晶析後、冷却することKより、DDUとDDIを分
離させ、高純度のDDIを取得することができる。
Next, the fraction containing the DDI and DDU is concentrated to
By cooling K after crystallizing I, DDU and DDI can be separated and highly purified DDI can be obtained.

晶析時の濃縮液の−は、アルカリ側、好ましくはpH8
〜10に保てばDDIの分解が抑制され、晶析率を向上
させることが可能である。
- of the concentrated solution during crystallization is on the alkaline side, preferably pH 8
If the ratio is maintained at 10 to 10, decomposition of DDI can be suppressed and the crystallization rate can be improved.

ま九、必要ならば以上の処理法に加えて溶媒抽出法や液
体クロマトグラフィーの処理をしてもよい。
(9) If necessary, in addition to the above-mentioned treatment methods, a solvent extraction method or a liquid chromatography treatment may be performed.

〔実施例〕 以下、実施例により本発明の詳細な説明する。〔Example〕 Hereinafter, the present invention will be explained in detail with reference to Examples.

実施例1 酵母エキス5001R9/dl、ペプトン1000即/
dt、悶エキス10001119/dlおよびNaCl
200119/dlを含む培地(pH7,0) 501
nlt−500,d容肩付フラスコに分注し殺菌した。
Example 1 Yeast extract 5001R9/dl, peptone 1000 instant/
dt, Agony extract 10001119/dl and NaCl
Medium containing 200119/dl (pH 7,0) 501
The mixture was dispensed into nlt-500, d shoulder flasks and sterilized.

この培地に、ブイヨン寒天培地にて30℃、16時間前
培譬したエシェリヒアコリATCC10798を1白金
耳ずつ接種し、30℃にて16時間振とり培養した。得
られた培賽液よシ菌体を遠心分離により分離した後、0
.05Mリン酸バッファー(pH7,0)で洗浄し、更
に遠心分離することによ)洗浄菌体をmMした。
One platinum loop of Escherichia coli ATCC 10798, which had been previously cultured on a bouillon agar medium at 30°C for 16 hours, was inoculated into this medium, and cultured with shaking at 30°C for 16 hours. After separating the obtained culture solution and bacterial cells by centrifugation,
.. By washing with 05M phosphate buffer (pH 7.0) and further centrifugation), the washed bacterial cells were made into mM.

このエシェリヒアコリATCC10798の洗浄菌体を
、20mMのDDUと20mMのHypとを含む100
mMのリン酸バッファ −(P)(= 7.0 ) 1
1に、14になるように添加し、50℃、24時間反応
させた。この結果、’l0m9/diのDDIが生成し
ていた。
The washed bacterial cells of Escherichia coli ATCC 10798 were washed with
mM phosphate buffer - (P) (= 7.0) 1
1 to 14, and reacted at 50°C for 24 hours. As a result, a DDI of 'l0m9/di was generated.

(回収率15憾) α この溶液を遠心分離(7000G、40分ンで除菌後、
除菌液に活性炭(白すギ炭、太田薬品工業)を濾過(孔
径0.45μmフィルタ)した。ν液をlNNaOHを
用AてpH8に調整後、100ゴまで濃縮し、非極性多
孔質吸着樹脂S、P2O7(三菱化成工業)65Ml 
(力9 A $XL =20mX210m) K 5V
=1でフィード後、水神を300m行った(sv=2)
、(画分−1とする)。次に、204エチルアルコール
水溶液2604で溶離し7’j(SV=2)、(画分−
2とすル)シ樹脂処理時の温度はすべて30℃で行った
(Recovery rate: 15) α This solution was centrifuged (7000G, 40 minutes to sterilize it,
The disinfectant solution was filtered with activated carbon (white cedar charcoal, Ota Pharmaceutical Co., Ltd.) (pore size 0.45 μm filter). After adjusting the pH of the ν solution to 8 using 1N NaOH, it was concentrated to 100% and added with 65 ml of non-polar porous adsorption resin S, P2O7 (Mitsubishi Chemical Industries).
(Force 9 A $XL = 20m x 210m) K 5V
After feeding with =1, I went to Suishin for 300m (sv=2)
, (referred to as fraction -1). Next, it was eluted with 204 ethyl alcohol aqueous solution 2604 to give 7'j (SV=2), (fraction -
2) The temperature during the resin treatment was all 30°C.

それぞれの画分を、液体クロマトグラフィー分析で測定
したところ、画分−1にUraとHypが検出され、回
収率はそれぞれ99.984又、画分−2にはDDIと
DDUがそれぞれ回収率98憾、95憾で含まれていた
When each fraction was measured by liquid chromatography analysis, Ura and Hyp were detected in fraction-1, each with a recovery rate of 99.984, and DDI and DDU were detected in fraction-2, each with a recovery rate of 98.984. Sorry, it was included with 95 regrets.

この両分−2をI N NaOHで−=8に調整後、濃
縮し、晶析によυ高純度のDDE結晶410ηを取得し
た。取得したDDIの元素分析値は表−1のとおシであ
る。
Both fractions -2 were adjusted to -=8 with IN NaOH, concentrated, and crystallized to obtain υ highly pure DDE crystals of 410η. The elemental analysis values of the obtained DDI are as shown in Table 1.

表−1 元素分析値 (壬) CHN 理論値 50.84 5.12 23.72元素分析値
   50.86  5.12  23.91実施例2 実施例1と同様に処理し取得したDDI濃縮液100d
(DDI700ダ/dt)を非極性多孔質吸着樹脂5p
207(三菱化成工業)65m(カラムφXL=20t
mx210+u)に5V=1にフィード後、水神を25
04行った(SV=2)、(画分−1とする)。次に、
10幅イソプロピルアルコール水溶液200−で溶離し
た(SV=2)、(画分−2とする)。樹脂処理時の温
度はすべて30℃で行った。
Table-1 Elemental analysis value (壬) CHN Theoretical value 50.84 5.12 23.72 Elemental analysis value 50.86 5.12 23.91 Example 2 100 d of DDI concentrate obtained by processing in the same manner as Example 1
(DDI700 da/dt) with 5p of non-polar porous adsorption resin
207 (Mitsubishi Chemical Industries) 65m (column φXL=20t
After feeding 5V=1 to mx210+u), set Suijin to 25
04 was carried out (SV=2), (set as fraction -1). next,
It was eluted with a 200% aqueous solution of isopropyl alcohol (SV=2) (referred to as fraction-2). The temperature during all resin treatments was 30°C.

それぞれの画分を液体クロマトグラフィー分析で測定し
たところ、画分−1には、UraとH3’pが検出され
、回収率はそれぞれ99.9796であシ、画分−2に
はDDIとDDUがそれぞれ回収率98憾。
When each fraction was measured by liquid chromatography analysis, Ura and H3'p were detected in fraction-1, with a recovery rate of 99.9796, respectively, and DDI and DDU were detected in fraction-2. The recovery rate for each was 98.

95qbで含まれていた。It contained 95qb.

この画分−2をlNNaOHで−=8に調整後濃縮し、
晶析により高純度のDDI結晶440m9を取得した。
This fraction -2 was adjusted to -=8 with IN NaOH and concentrated.
440m9 of highly pure DDI crystals were obtained by crystallization.

取得したDDIの元素分析値は表−2のとおシである。The elemental analysis values of the obtained DDI are shown in Table 2.

表−2 C)l        N 理論値 50.84 5.12 23.72〔発明の効
果〕 以上述べた如く1本発明によれば非極性多孔質樹脂処理
法、好ましくはこれと晶析法を組み合わせることにより
 DDEを効率的に分離精製できるので、工業化への道
が大いに期待されるものである。
Table 2 C)l N Theoretical value 50.84 5.12 23.72 [Effect of the invention] As stated above, according to the present invention, a non-polar porous resin treatment method, preferably a combination of this and a crystallization method As a result, DDE can be efficiently separated and purified, and there are great expectations that it will lead to industrialization.

Claims (5)

【特許請求の範囲】[Claims] (1)微生物又は酵素の作用により生産された2′,3
′−ジデオキシイノシンを精製するに際し、2′,3′
−ジデオキシイノシンを非極性多孔質樹脂に吸着せしめ
ることを特徴とする2′,3′−ジデオキシイノシンの
精製法。
(1) 2', 3 produced by the action of microorganisms or enzymes
When purifying ′-dideoxyinosine, 2′, 3′
- A method for purifying 2',3'-dideoxyinosine, which comprises adsorbing dideoxyinosine onto a non-polar porous resin.
(2)さらに晶析工程を組み合わせることを特徴とする
特許請求の範囲第(1)項記載の方法。
(2) The method according to claim (1), further comprising a crystallization step.
(3)2′,3′−ジデオキシイノシンの生産反応が2
,3−ジデオキシリボース残基とヒポキサンチン残基を
微生物又は酵素の作用により結合せしめるものである特
許請求の範囲第(1)項記載の方法。
(3) The production reaction of 2',3'-dideoxyinosine is 2
, 3-dideoxyribose residue and hypoxanthine residue are bonded by the action of a microorganism or an enzyme, the method according to claim (1).
(4)被精製物が不純物として2′,3′−ジデオキシ
ウリジン、ヒポキサンチン及びウラシルの少なくとも一
種を含有することを特徴とする特許請求の範囲第(1)
項記載の方法。
(4) Claim (1) characterized in that the product to be purified contains at least one of 2',3'-dideoxyuridine, hypoxanthine, and uracil as impurities.
The method described in section.
(5)非極性多孔質樹脂がスチレン−ジビエルベンゼン
系の共重合体、又はその誘導体を含有するものである特
許請求の範囲第(1)項記載の方法。
(5) The method according to claim (1), wherein the non-polar porous resin contains a styrene-diverbenzene copolymer or a derivative thereof.
JP62324531A 1987-06-16 1987-12-22 Purification method of dideoxyinosine Expired - Fee Related JPH0691830B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP62324531A JPH0691830B2 (en) 1987-12-22 1987-12-22 Purification method of dideoxyinosine
US08/161,071 US6306647B1 (en) 1987-06-16 1993-12-03 Process for producing and purifying 2′,3′-dideoxynucleosides, and process for producing 2′,3′-dideoxy-2′,3′-didehydronucleosides
US08/385,888 USRE35609E (en) 1987-06-16 1995-02-09 Process for purifying 2',3'-dideoxynucleosides

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62324531A JPH0691830B2 (en) 1987-12-22 1987-12-22 Purification method of dideoxyinosine

Publications (2)

Publication Number Publication Date
JPH01165390A true JPH01165390A (en) 1989-06-29
JPH0691830B2 JPH0691830B2 (en) 1994-11-16

Family

ID=18166845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62324531A Expired - Fee Related JPH0691830B2 (en) 1987-06-16 1987-12-22 Purification method of dideoxyinosine

Country Status (1)

Country Link
JP (1) JPH0691830B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0582157A1 (en) * 1992-07-27 1994-02-09 Ajinomoto Co., Inc. Method of purifying nucleoside derivatives

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0582157A1 (en) * 1992-07-27 1994-02-09 Ajinomoto Co., Inc. Method of purifying nucleoside derivatives

Also Published As

Publication number Publication date
JPH0691830B2 (en) 1994-11-16

Similar Documents

Publication Publication Date Title
US10676770B2 (en) Separation of 2′-FL from a fermentation broth
EP2910543B1 (en) Method for purifying 1,4-diaminobutane, 1,4-diaminobutane purified by said method, and polyamide prepared therefrom
JPH0645626B2 (en) How to collect ceftazidime
JPS63177796A (en) Purification of tryptophan
JPH01165390A (en) Method for purifying dideoxyinosine
JP2001258583A (en) Method for purifying shikimic acid
US3157636A (en) Method for purification of 5'-purine-nucleotides
JP2001011034A (en) Separation and recovery of optically active amino acid and optically active amino acid amide
JPH0198496A (en) Purification of dideoxyadenosine
US3655746A (en) Process for producing monosodium glutamate
JPH07113024B2 (en) Method for purifying pyrroloquinoline quinone
KR101803810B1 (en) Refining method of organic amine, organic amine refined by the method, and polyamide prepared therefrom
CN114213276B (en) Method for extracting and purifying theanine from enzyme catalytic reaction
EP0351853B1 (en) Method of manufacturing trifluorothymidine
JPH01175991A (en) Purifying method of dideoxyinosine
KR860001821B1 (en) Method of isolating l-amino acids
JPS604168A (en) Crystallization of tryptophan
JPH06345683A (en) Purification of pyruvic acid
JP3719309B2 (en) Manufacturing method of ribitol
JPS6348262A (en) Method for eluting l-tryptophan adsorbed on active carbon
JPH1042900A (en) Purification of raffinose solution
JPS58155096A (en) Preparation of d-alpha-amino-epsilon-caprolactam
JPH01175990A (en) Purifying method of dideoxyadenosine
CN117964672A (en) Macroporous adsorption resin separation and purification method for beta-nicotinamide mononucleotide
JPS62484A (en) Antibiotic lysocellin b and production thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees