JPH0710236B2 - Purification method of dideoxyadenosine - Google Patents

Purification method of dideoxyadenosine

Info

Publication number
JPH0710236B2
JPH0710236B2 JP25700287A JP25700287A JPH0710236B2 JP H0710236 B2 JPH0710236 B2 JP H0710236B2 JP 25700287 A JP25700287 A JP 25700287A JP 25700287 A JP25700287 A JP 25700287A JP H0710236 B2 JPH0710236 B2 JP H0710236B2
Authority
JP
Japan
Prior art keywords
dda
dideoxyadenosine
fraction
solution
ddu
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25700287A
Other languages
Japanese (ja)
Other versions
JPH0198496A (en
Inventor
勝 大谷
俊哉 田辺
利秀 湯川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ajinomoto Co Inc
Original Assignee
Ajinomoto Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Co Inc filed Critical Ajinomoto Co Inc
Priority to JP25700287A priority Critical patent/JPH0710236B2/en
Publication of JPH0198496A publication Critical patent/JPH0198496A/en
Priority to US08/161,071 priority patent/US6306647B1/en
Publication of JPH0710236B2 publication Critical patent/JPH0710236B2/en
Priority to US08/385,888 priority patent/USRE35609E/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Saccharide Compounds (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、微生物又は酵素の作用により生産された
2′,3′−ジデオキンアデノシン(以下、DDAと略
す。)の新規精製方法に関するものである。
TECHNICAL FIELD The present invention relates to a novel method for purifying 2 ′, 3′-didequinadenosine (hereinafter abbreviated as DDA) produced by the action of microorganisms or enzymes. It is a thing.

〔従来の技術〕[Conventional technology]

従来のDDAの製造方法としては、ヌクレオシド類の2′
位あるいは3′位の脱酸素反応が行われている(Chem.P
harm.Bull.,22,128(1974))が、以下のような理由に
より、報告例は少ない。
The conventional method for producing DDA is 2'of nucleosides.
Or 3'-position deoxidation reaction is performed (Chem.P
harm.Bull., 22,128 (1974)), but there are few reports for the following reasons.

反応に先立ち保護基を導入しなければならないこ
と。
Protecting groups must be introduced prior to reaction.

2′位,3′位は立体障害が大きく反応が起きにくい
こと。
The 2'-position and the 3'-position have large steric hindrance and reaction is difficult to occur.

この為、単離精製法についても、わずかに実験室レベル
で液体クロマトグラフィーによる分取の繰り返し精製が
実施されている程度で、工業的に利用できる精製方法は
未だ確立していなかった。
For this reason, as for the isolation and purification method, the purification method that can be industrially used has not been established yet, because the purification method by fractionation by liquid chromatography is slightly performed at the laboratory level.

2′,3′−ジデオキシウリジン(以下、DDUと略す。)
又は2,3−ジデオキシリボース−1−リン酸を基質とし
て微生物又は酵素の作用により生産された酵素反応液中
には、目的生成物のDDAの他に不純物として未反応基質
であるDDUとアデニン(以下Adと略す。)及び基質の分
解物であるウラシル(以下Uと略す。)、他若干の副生
する核酸類が含まれている。
2 ', 3'-dideoxyuridine (hereinafter abbreviated as DDU)
Alternatively, in the enzymatic reaction solution produced by the action of the microorganism or the enzyme using 2,3-dideoxyribose-1-phosphate as a substrate, DDA and adenine which are unreacted substrates as impurities in addition to DDA of the target product ( Hereinafter, abbreviated as Ad), uracil (hereinafter abbreviated as U) which is a decomposition product of a substrate, and some other by-produced nucleic acids.

この反応液中から効率良く、高純度のDDAを取得する為
に、一般的に用いられている濃縮晶析等の手段だけでは
不適当であった。その理由として、Ad,Uは共に溶解度が
小さいため濃縮によってある程度は除去できるのである
が、未反応DDUと目的生成物であるDDAは共に溶解度が高
いため分離精製が困難だからである。
In order to efficiently obtain high-purity DDA from this reaction solution, generally used means such as concentrated crystallization is not suitable. The reason for this is that both Ad and U have low solubilities and can be removed to some extent by concentration, but unreacted DDU and DDA, which is the target product, have high solubilities, making separation and purification difficult.

またDDAは、酸性条件下において加水分解を受け、2,3−
ジデオキシリボース残基とアデニン基とが容易に切断さ
れるため、酸を必要とするイオン交換樹脂処理による分
離精製も困難であった。
DDA undergoes hydrolysis under acidic conditions to give 2,3-
Since the dideoxyribose residue and the adenine group are easily cleaved, it was also difficult to separate and purify by treatment with an ion exchange resin which requires an acid.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

上記の欠点を解消するようなDDAの工業上優れた精製方
法の開発が望まれている。
It is desired to develop an industrially excellent purification method for DDA that solves the above-mentioned drawbacks.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは、前記問題点を解決すべく鋭意検討した結
果、DDA含有溶液を例えば除菌、除蛋白、脱色後に濃縮
し、過した後、液(以下、DDA濃縮液と略す。)を
非極性多孔質樹脂で処理することにより、DDAをAd,U,DD
U等の不純物から分離し、高純度のDDAを分取できること
を見い出し、この発見に基づいて本発明を完成するに到
った。
As a result of diligent studies to solve the above problems, the present inventors concentrated the DDA-containing solution after, for example, sterilization, deproteinization, and decolorization, and after passing the solution (hereinafter, abbreviated as DDA concentrated solution). By treating with non-polar porous resin, DDA can be treated with Ad, U, DD
It was found that high-purity DDA can be separated by separating from impurities such as U, and the present invention has been completed based on this discovery.

即ち、本発明は、微生物又は酵素の作用により生産され
たDDAを精製するに際し、DDAを非極性多孔質樹脂に吸着
せしめることを特徴とするDDAの精製方法である。
That is, the present invention is a method for purifying DDA, which comprises adsorbing DDA to a nonpolar porous resin when purifying DDA produced by the action of a microorganism or an enzyme.

本発明の出発物質は未精製のDDAであればよく純度の程
度は問わない。微生物又は酵素の作用により、例えば、
2,3−ジデオキシリボース残基とアデニン残基を結合せ
しめた反応溶液やその中間処理物が採用される。
The starting material of the present invention may be unpurified DDA and its purity does not matter. By the action of microorganisms or enzymes, for example,
A reaction solution in which a 2,3-dideoxyribose residue and an adenine residue are bound to each other or an intermediate treatment product thereof is adopted.

微生物としては、エシェリヒア属、フラボバクテリウム
属、セラチア属、エンテロバクター属、エルビニア属、
シトロバクター属、コリネバクテリウム属、ハフニア
属、クルイヘラ属、サルモネラ属、又は、キサントモナ
ス属等DDAを生産できるものであればよい。又、酵素
は、上記微生物が有しているもの、その他同一機能を有
するものであれば特に制限されない。
As microorganisms, Escherichia, Flavobacterium, Serratia, Enterobacter, Erwinia,
Any one capable of producing DDA such as Citrobacter, Corynebacterium, Hafnia, Kluyhera, Salmonella, or Xanthomonas can be used. In addition, the enzyme is not particularly limited as long as it has the above-mentioned microorganism and other enzymes having the same function.

本発明に用いるDDA濃縮液は、不純物であるDDU,Ad,U,若
干の副生成する核酸類のうち、いずれを含有していても
よい。また、この溶液のDDA濃度は、DDAの溶解度以下で
あれば制限されるものではない。
The DDA concentrate used in the present invention may contain any of DDU, Ad, U, which are impurities, and some by-produced nucleic acids. Further, the DDA concentration of this solution is not limited as long as it is not higher than the solubility of DDA.

次に、ここで用いる非極性多孔質樹脂は、例えばその母
体が、スチレン−ジビニルベンゼン系の共重合体又は、
その誘導体例えばこれにハロゲン化し高比重化したポリ
マーである物質であれ、いずれも使用可能である。例え
ば、ダイヤイオンHPシリーズ,SPシリーズ(以上、三菱
化成工業),XAD−4(ローム・アンド・ハース社)、OC
1031(バイエル社)等が利用できるが、その他の非極性
多孔質樹脂であっても同等の性質を有するものであれば
いずれであっても良い。特に高比重化したSP207(三菱
化成工業)が、DDAの濃縮液をフィードした時に樹脂が
浮上したりすることなく、操作性が良い点で適してい
る。
Next, the non-polar porous resin used here, for example, the matrix is a styrene-divinylbenzene-based copolymer or,
Any derivative thereof, for example, a substance which is a polymer obtained by halogenating the derivative and increasing the specific gravity thereof can be used. For example, Diaion HP series, SP series (above, Mitsubishi Kasei), XAD-4 (Rohm and Haas), OC
Although 1031 (Bayer Co., Ltd.) and the like can be used, any other nonpolar porous resin may be used as long as it has equivalent properties. In particular, SP207 (Mitsubishi Kasei), which has a high specific gravity, is suitable because the resin does not float when the DDA concentrate is fed and the operability is good.

非極性多孔質樹脂とDDA濃縮液との接液方法は、バッチ
式とカラム式があるが、カラム式の方が操作上簡便で好
ましい。
The liquid contacting method of the non-polar porous resin and the DDA concentrated liquid includes a batch method and a column method, but the column method is preferable in terms of operation and is preferable.

カラムへの通液速度は、特に制限はなく、通常SV=0.5
〜4.0、好ましくはSV=1〜2程度がよい。
There is no particular restriction on the flow rate through the column, and usually SV = 0.5
˜4.0, preferably about SV = 1˜2.

カラムにフィードするDDA濃縮液の体積負荷量としてはD
DA濃縮液の濃度によって異なり、DDAの樹脂負荷量(g/l
−R)は5〜40g/l−R、好ましくは10〜30g/l−Rが分
離性及び経済性の点で適している。
The volume loading of the DDA concentrate to feed the column is D
DDA resin load (g / l
-R) is suitably 5 to 40 g / l-R, preferably 10 to 30 g / l-R in terms of separability and economy.

カラムへの接液温度については、10〜60℃であれば特に
制限されない。この温度ではDDAと濃縮液中の不純物Ad,
U,DDUとの分離性の相違は殆んどない。
The liquid contact temperature to the column is not particularly limited as long as it is 10 to 60 ° C. At this temperature, DDA and the impurities Ad in the concentrate,
There is almost no difference in separability from U and DDU.

次に、カラムからのDDA溶離方法に関して記述する。溶
離剤は、低級脂肪族アルコール水溶液が適している。例
えば、メチルアルコール、エチルアルコール、イソプロ
ピルアルコール等の水溶液である。溶離速度は、通常の
SV=1〜2程度が良い。
Next, the method for eluting DDA from the column will be described. A suitable lower aliphatic alcohol aqueous solution is suitable as the eluent. For example, it is an aqueous solution of methyl alcohol, ethyl alcohol, isopropyl alcohol, or the like. The elution rate is
SV = 1-2 is good.

実際の非極性多孔質樹脂を用いた精製操作は次の様にす
ると良い。すなわち、当該樹脂を充填したカラムにDDA
濃縮液を一定量フィード後、水押し、Uを溶離する。次
に、アルコール水溶液を用いて、DDU,Adを溶離し、更に
アルコール濃度を上げることによりDDAを溶離する。そ
して、このDDA画分を濃縮し、晶析後、冷却することに
より、高純度のDDAを分取せしめることができる。
The actual refining operation using a non-polar porous resin may be as follows. That is, the column packed with the resin is used for DDA.
After feeding a fixed amount of the concentrated liquid, water is pushed to elute U. Next, DDU and Ad are eluted with an aqueous alcohol solution, and DDA is eluted by further increasing the alcohol concentration. Then, the DDA fraction can be concentrated, crystallized, and then cooled to separate high-purity DDA.

〔実施例〕〔Example〕

以下、実施例により本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail with reference to examples.

実施例1 酵母エキス0.5g/dl、ペプトン1.0g/dl、肉エキス1.0g/d
lおよびNaCl0.5g/dlを含む培地(pH7.0)50mlを500ml容
肩付フラスコに分注し殺菌した。この培地に、ブイヨン
寒天培地にて30℃、16時間前培養したエシェリヒアコリ
ATCC10798を1白金耳ずつ接種し、30℃にて16時間振と
う培養した。得られた培養液より菌体を遠心分離により
分離した後、0.05Mリン酸バッファー(pH7.0)で洗浄
し、更に遠心分離することにより洗浄菌体を調製した。
Example 1 Yeast extract 0.5 g / dl, peptone 1.0 g / dl, meat extract 1.0 g / d
50 ml of a medium (pH 7.0) containing 1 and NaCl 0.5 g / dl was dispensed into a 500 ml shoulder flask and sterilized. Escherichia coli pre-incubated in broth agar medium at 30 ° C for 16 hours was added to this medium.
One platinum loop of ATCC10798 was inoculated and shake-cultured at 30 ° C for 16 hours. The cells were separated from the obtained culture broth by centrifugation, washed with 0.05 M phosphate buffer (pH 7.0), and further centrifuged to prepare washed cells.

このエシェリヒアコリATCC10798の洗浄菌体を、20mMのD
DUと20mMのAdとを含む100mMのリン酸バッファー(pH=
7.0)1に、1%になるように添加し、50℃、24時間
反応させた。この結果、85mg/dlのDDAが生成していた。
(回収率18%) この溶液を遠心分離(7000G,40分)で除菌後、除菌液に
活性炭(白サギ炭、武田薬品工業)を50mg添加し、除蛋
白、脱色(50℃,1hr)後、過(孔径0.45μmフィル
タ)した。液を15mlまで濃縮後、過(No.5C紙)
した。このDDA濃縮液13ml(DDA6.2g/dl)を非極性多孔
質合成吸着樹脂SP207(三菱化成工業)65ml(φ×L=2
0mm×210mm)にSV=1でフィード後、水押を260ml行っ
た(SV=2),(画分−1とする)。次に、10%エチル
アルコール−水溶液390mlで溶離した(SV=2),(画
分−2とする)。最後に、20%エチルアルコール−水溶
液390mlで溶離した(SV=2),(画分−3とする)。
Wash Escherichia coli ATCC 10798 washed cells with 20 mM D
100 mM phosphate buffer containing DU and 20 mM Ad (pH =
7.0) 1 was added to 1% so as to react at 50 ° C. for 24 hours. As a result, 85 mg / dl of DDA was produced.
(Recovery rate 18%) After sterilizing this solution by centrifugation (7000G, 40 minutes), add 50mg of activated carbon (white heron charcoal, Takeda Pharmaceutical Co., Ltd.) to the sterilization solution to remove protein and decolorize (50 ℃, 1hr) ), Followed by filtration (pore size 0.45 μm filter). After concentrating the liquid to 15 ml, excess (No.5C paper)
did. 13 ml of this DDA concentrate (DDA 6.2 g / dl) was added to 65 ml of non-polar porous synthetic adsorption resin SP207 (Mitsubishi Kasei Co., Ltd.) (φ × L = 2).
After feeding SV = 1 to 0 mm × 210 mm), 260 ml of water pressing was carried out (SV = 2) ((fraction-1)). Then, elution was carried out with 390 ml of 10% ethyl alcohol-water solution (SV = 2), (designated as fraction-2). Finally, it was eluted with 390 ml of 20% ethyl alcohol-water solution (SV = 2), (designated as fraction-3).

各画分を液体クロマトグラフィー分析で測定した。その
結果、画分−1にはUのみ検出され回収率は99%、画分
−2にはAd,DDU、若干のDDAが含まれておりAdとDDUのそ
れぞれ回収率は99%,98%,画分−3にはDDAが含まれて
おり回収率95%であった。
Each fraction was measured by liquid chromatography analysis. As a result, only U was detected in Fraction-1 with a recovery rate of 99%, and Fraction-2 contained Ad, DDU and some DDA, and the recovery rates of Ad and DDU were 99% and 98%, respectively. , Fraction-3 contained DDA and the recovery rate was 95%.

画分−3を濃縮し、DDAを晶析後、10℃まで冷却し、高
純度のDDA600mgを取した。取得したDDAの元素分析値
は表−1のとおりである。
Fraction -3 was concentrated and DDA was crystallized and then cooled to 10 ° C to obtain 600 mg of highly pure DDA. Table 1 shows the obtained elemental analysis values of DDA.

実施例2 実施例1と同様に処理し取得したDDA濃縮液13ml(DDA6.
2g/dl)を、非極性多孔質合成吸着樹脂SP207(三菱化成
工業)65ml(φ×L=20mm×210mm)にSV=1でフィー
ド後、水押をSV=2で260ml行つた。(画分−1とす
る)。次に、20%メチルアルコール−水溶液520mlで溶
離した(SV=2),(画分−2とする)。最後に、40%
メチルアルコール−水溶液390mlで溶離した(SV=
2),(画分−3とする)。
Example 2 13 ml of DDA concentrate obtained by treating in the same manner as in Example 1 (DDA6.
2 g / dl) was fed to non-polar porous synthetic adsorption resin SP207 (Mitsubishi Kasei Kogyo) 65 ml (φ × L = 20 mm × 210 mm) at SV = 1, and then water pushing was performed at 260 V at SV = 2. (As fraction 1). Next, it was eluted with 520 ml of 20% methyl alcohol-water solution (SV = 2), (designated as fraction-2). Finally, 40%
Elution with 390 ml of methyl alcohol-water solution (SV =
2), (designated as Fraction-3).

各画分を液体クロマトグラフィー分析によって測定し
た。その結果、画分−1にはUのみ検出され回収率は98
%、画分−2にはAd,DDU若干のDDAが含まれており、Ad
とDDUのそれぞれ回収率が98%,98%、画分−3にはDDA
が含まれており回収率93%であった。画分−3を濃縮
し、DDAを晶析後、10℃まで冷却し、高純度のDDA580mg
を取した。取得したDDAの元素分析値は表−2のとお
りである。
Each fraction was measured by liquid chromatography analysis. As a result, only U was detected in fraction-1 and the recovery rate was 98.
%, Fraction-2 contains Ad, DDU and some DDA.
And DDU recoveries of 98% and 98%, respectively.
Was included and the recovery rate was 93%. Fraction -3 was concentrated and DDA was crystallized and then cooled to 10 ° C to obtain 580 mg of high-purity DDA.
I took it. Table 2 shows the elemental analysis values of the obtained DDA.

〔発明の効果〕 以上述べた如く、本発明は非極性樹脂処理によりDDAを
効率的に分離精製できるので、工業化への道が大いに期
待されるものである。
[Effects of the Invention] As described above, the present invention is capable of efficiently separating and purifying DDA by treatment with a nonpolar resin, and therefore, a road to industrialization is greatly expected.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】微生物又は酵素の作用により生産された
2′,3′−ジデオキシアデノシンを精製するに際し、
2′,3′−ジデオキシアデノシンを非極性多孔質樹脂に
吸着せしめることを特徴とする2′,3′−ジデオキシア
デノシンの精製方法。
1. When purifying 2 ', 3'-dideoxyadenosine produced by the action of a microorganism or an enzyme,
A method for purifying 2 ', 3'-dideoxyadenosine, characterized in that 2', 3'-dideoxyadenosine is adsorbed on a non-polar porous resin.
【請求項2】2′,3′−ジデオキシアデノシンの生産反
応が2,3−ジデオキシリボース残基とアデニン残基を微
生物又は酵素の作用により結合せしめるものである特許
請求の範囲第(1)項記載の方法。
2. The method according to claim 1, wherein the production reaction of 2 ', 3'-dideoxyadenosine binds the 2,3-dideoxyribose residue and the adenine residue by the action of a microorganism or an enzyme. The method described.
【請求項3】被精製物が不純物として2′,3′−ジデオ
キシウリジン、アデニン及びウラシルの少なくとも一種
を含有することを特徴とする特許請求の範囲第(1)項
記載の方法。
3. The method according to claim 1, wherein the substance to be purified contains at least one of 2 ', 3'-dideoxyuridine, adenine and uracil as impurities.
【請求項4】非極性多孔質樹脂がスチレン−ジビニルベ
ンゼン系の共重合体、又はその誘導体を含有するもので
ある特許請求の範囲第(1)項記載の方法。
4. The method according to claim 1, wherein the non-polar porous resin contains a styrene-divinylbenzene copolymer or a derivative thereof.
JP25700287A 1987-06-16 1987-10-12 Purification method of dideoxyadenosine Expired - Fee Related JPH0710236B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP25700287A JPH0710236B2 (en) 1987-10-12 1987-10-12 Purification method of dideoxyadenosine
US08/161,071 US6306647B1 (en) 1987-06-16 1993-12-03 Process for producing and purifying 2′,3′-dideoxynucleosides, and process for producing 2′,3′-dideoxy-2′,3′-didehydronucleosides
US08/385,888 USRE35609E (en) 1987-06-16 1995-02-09 Process for purifying 2',3'-dideoxynucleosides

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25700287A JPH0710236B2 (en) 1987-10-12 1987-10-12 Purification method of dideoxyadenosine

Publications (2)

Publication Number Publication Date
JPH0198496A JPH0198496A (en) 1989-04-17
JPH0710236B2 true JPH0710236B2 (en) 1995-02-08

Family

ID=17300359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25700287A Expired - Fee Related JPH0710236B2 (en) 1987-06-16 1987-10-12 Purification method of dideoxyadenosine

Country Status (1)

Country Link
JP (1) JPH0710236B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5451671A (en) * 1992-07-27 1995-09-19 Ajinomoto Co., Inc. Method of purifying 2',3'-dideoxynucleosides
WO2001023400A1 (en) * 1999-09-30 2001-04-05 Yamasa Corporation Highly pure guanosine 5'-diphosphate fucose and process for producing the same

Also Published As

Publication number Publication date
JPH0198496A (en) 1989-04-17

Similar Documents

Publication Publication Date Title
EP0822989B1 (en) Process for producing calcium d-pantothenate
USRE35609E (en) Process for purifying 2',3'-dideoxynucleosides
US5434255A (en) Process for purifying fructose 1,6-diphosphate
JPH0710236B2 (en) Purification method of dideoxyadenosine
JP2001258583A (en) Method for purifying shikimic acid
JP4361641B2 (en) Separation and recovery method of optically active amino acid and optically active amino acid amide
JPH0691830B2 (en) Purification method of dideoxyinosine
JPH03294281A (en) Method for producing oxazopyrroloquinolines
US3655746A (en) Process for producing monosodium glutamate
JPH1198980A (en) Production of nucleoside derivative
US4992368A (en) Novel process for producing oxetanocin G
EP0533115A1 (en) Process for production of hydroxocobalamin
JPH0826020B2 (en) Purification method of dideoxyinosine
CN114213276B (en) Method for extracting and purifying theanine from enzyme catalytic reaction
JPH0764845B2 (en) Purification method of dideoxyadenosine
US6306647B1 (en) Process for producing and purifying 2′,3′-dideoxynucleosides, and process for producing 2′,3′-dideoxy-2′,3′-didehydronucleosides
EP0009363B1 (en) Method of separating cephalosporins
JP2625129B2 (en) Enzyme activity inhibitor and method for producing the same
JPH036139B2 (en)
KR910003112A (en) Method for obtaining, separating and purifying epidermin
KR860001821B1 (en) Method of isolating l-amino acids
US5026640A (en) Process for the conversion of corrinoids produced by microorganisms into cyanocorrinoids
JPH04187092A (en) Purification of mitomycin c
JPS6348262A (en) Method for eluting l-tryptophan adsorbed on active carbon
JP3719309B2 (en) Manufacturing method of ribitol

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees