JPH0197434A - Ophthalmic measuring apparatus - Google Patents
Ophthalmic measuring apparatusInfo
- Publication number
- JPH0197434A JPH0197434A JP62254890A JP25489087A JPH0197434A JP H0197434 A JPH0197434 A JP H0197434A JP 62254890 A JP62254890 A JP 62254890A JP 25489087 A JP25489087 A JP 25489087A JP H0197434 A JPH0197434 A JP H0197434A
- Authority
- JP
- Japan
- Prior art keywords
- circuit
- signal
- eye
- length
- cornea
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000005259 measurement Methods 0.000 claims abstract description 21
- 239000000523 sample Substances 0.000 claims description 13
- 230000003287 optical effect Effects 0.000 claims description 7
- 238000013500 data storage Methods 0.000 claims description 4
- 210000001508 eye Anatomy 0.000 abstract description 19
- 210000004087 cornea Anatomy 0.000 abstract description 11
- 210000005252 bulbus oculi Anatomy 0.000 abstract description 7
- 230000001360 synchronised effect Effects 0.000 abstract description 3
- 210000000695 crystalline len Anatomy 0.000 description 22
- 238000002604 ultrasonography Methods 0.000 description 13
- 230000004323 axial length Effects 0.000 description 9
- 238000010586 diagram Methods 0.000 description 8
- 238000004364 calculation method Methods 0.000 description 5
- 238000000926 separation method Methods 0.000 description 4
- 210000002159 anterior chamber Anatomy 0.000 description 3
- 201000009310 astigmatism Diseases 0.000 description 3
- 210000001525 retina Anatomy 0.000 description 2
- 206010002945 Aphakia Diseases 0.000 description 1
- 206010036346 Posterior capsule opacification Diseases 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Landscapes
- Eye Examination Apparatus (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、被検眼の角膜形状を光学的に測定すると共に
、超音波を用いて水晶体厚・硝子体長・眼軸長等の被検
眼の各部の測定を行い、眼内レンズの眼屈折力を算出す
る眼科計測装置に関するものである。Detailed Description of the Invention [Industrial Field of Application] The present invention optically measures the corneal shape of the eye to be examined, and also measures the thickness of the lens, vitreous length, axial length, etc. of the eye by using ultrasound. The present invention relates to an ophthalmological measurement device that measures each part and calculates the ocular refractive power of an intraocular lens.
[従来の技術]
従来において、例えば白内障手術後の屈折力矯正には眼
鏡レンズやコンタクトレンズが用いられていたが、近年
では除去した水晶体位置に眼内レンズを挿入することが
行われている。[Prior Art] Conventionally, spectacle lenses or contact lenses have been used to correct refractive power, for example after cataract surgery, but in recent years, intraocular lenses have been inserted into the position of the removed crystalline lens.
この無水晶体眼の患者に適正な眼内レンズを選定するた
めには、角膜屈折力と眼軸長つまり角膜から網膜までの
長さを知ることが必要である。そこで、従来では角膜屈
折力の測定は角膜形状測定装置で行い、一方では眼軸長
は別の超音波測定装置を用いて測定し、それぞれの測定
を終えてから眼内レンズの屈折力を算出しなけらばなら
ないという不便さがあり、測定にかなりの手数と時間を
要している。In order to select an appropriate intraocular lens for patients with aphakic eyes, it is necessary to know the corneal refractive power and the axial length, that is, the length from the cornea to the retina. Therefore, in the past, corneal refractive power was measured using a corneal shape measuring device, while axial length was measured using a separate ultrasonic measuring device, and the refractive power of the intraocular lens was calculated after each measurement was completed. There is the inconvenience of having to do this, and the measurement requires a considerable amount of effort and time.
また、これらの2つの機能を併有する装置も知られてい
るが、このような装置では、角膜形状測定時に眼軸長測
定用の超音波プローブが光路中に存在するため、角膜反
射像がその超音波プローブの像によってけられ、正確な
測定がなし難い等の欠点を有している。In addition, devices that have both of these two functions are also known, but in such devices, an ultrasound probe for measuring the axial length is present in the optical path when measuring the corneal shape, so the corneal reflection image is It has drawbacks such as being eclipsed by the image of the ultrasonic probe, making it difficult to make accurate measurements.
[発明の目的]
本発明の目的は、被検眼の角膜形状情報を得る光学測定
手段と、超音波探触子により被検眼の所定部位の長さを
得る超音波測定手段とを備え、被検眼の角膜屈折力と所
定部位の長さにより眼内レンズの屈折力を、同一の演算
手段により迅速にかつ正確に計測できるようにした眼科
計測装置を提供することにある。[Object of the Invention] An object of the present invention is to provide an optical measuring means for obtaining corneal shape information of the eye to be examined, and an ultrasonic measuring means for obtaining the length of a predetermined part of the eye to be examined using an ultrasonic probe. An object of the present invention is to provide an ophthalmologic measuring device that can quickly and accurately measure the refractive power of an intraocular lens using the same calculation means based on the corneal refractive power and the length of a predetermined portion.
[発明の概要]
上述の目的を達成するための本発明の要旨は、被検眼の
角膜形状情報を得る光学測定手段と、超音波探触子によ
り被検眼の所定部位の長さ信号を得る超音波測定手段と
を備え、前記角膜形状情報を得る回路と所定部位の長さ
信号を計測する回路とを共通化し、前記角膜形状情報に
よる角膜曲率半径と被検眼の所定部位の長さ・信号とか
ら眼内レンズの屈折力値を同一の演算手段によって算出
することを特徴とする眼科計測装置である。[Summary of the Invention] The gist of the present invention for achieving the above-mentioned object is to provide an optical measuring means for obtaining corneal shape information of an eye to be examined, and an ultrasonic measuring means for obtaining a length signal of a predetermined part of the eye to be examined using an ultrasonic probe. a sound wave measuring means, a circuit for obtaining the corneal shape information and a circuit for measuring the length signal of a predetermined region are shared, and the radius of corneal curvature based on the corneal shape information and the length/signal of the predetermined region of the eye to be examined are determined. This is an ophthalmological measurement device characterized in that the refractive power value of the intraocular lens is calculated from the same calculation means.
[発明の実施例] 本発明を図示の実施例に基づいて詳細に説明する。[Embodiments of the invention] The present invention will be explained in detail based on illustrated embodiments.
第1図、第2図は本発明に係る眼科計測装置の光学系を
示し、第1図は角膜形状測定時の状態、第2図は眼軸長
測定時の状態を示している。第1図において、被検眼E
の角膜Ecに対向して対物レンズ1が設けられ、その後
方に光路に沿ってミラー2.3、絞り4、リレーレンズ
5、COD等の二次元撮像素子6が配置されている。ま
た、対物レンズlの周辺には第3図に示すように、複数
の光源7a〜7dが配置されている。そして、対物レン
ズ1、ミラー2.3、光源1a〜1dは一体構造とされ
、図示しない駆動機構によって第1図の状態から第2図
の状態に、或いはその逆に移動できるようになっている
。更に、超音波プローブ8がプローブホルダ9を介して
摺動案内部材10により、第1図に示す対物レンズ1の
光軸方向に沿って前後進自在に保持されている。1 and 2 show the optical system of the ophthalmological measuring device according to the present invention, FIG. 1 shows the state when measuring the shape of the cornea, and FIG. 2 shows the state when measuring the axial length of the eye. In Figure 1, the eye to be examined E
An objective lens 1 is provided facing the cornea Ec, and a mirror 2.3, an aperture 4, a relay lens 5, and a two-dimensional imaging device 6 such as a COD are arranged behind the objective lens 1 along the optical path. Further, as shown in FIG. 3, a plurality of light sources 7a to 7d are arranged around the objective lens l. The objective lens 1, mirror 2.3, and light sources 1a to 1d are integrally constructed, and can be moved from the state shown in FIG. 1 to the state shown in FIG. 2, or vice versa, by a drive mechanism (not shown). . Furthermore, an ultrasonic probe 8 is held by a sliding guide member 10 via a probe holder 9 so as to be movable back and forth along the optical axis direction of the objective lens 1 shown in FIG.
第1図の角膜形状測定の場合は、光源7a〜7dの角膜
反射像を被検眼Eに対向する対物レンズ1により略平行
光とし、ミラー2.3で反射させ、絞り4、リレーレン
ズ5により撮像素子6上に結像させる。この場合に、超
音波プローブ8はミラー2の背後に位置している。In the case of the corneal shape measurement shown in FIG. An image is formed on the image sensor 6. In this case, the ultrasound probe 8 is located behind the mirror 2.
次に、眼軸長測定の場合は第2図に示すように、対物レ
ンズ1、ミラー2.3、光源7a〜7dが下方に移動す
ると共に、超音波プローブ8はプローブホルダ9を案内
する摺動案内部材10に沿って前進し、被検眼Eの角膜
Ecに接近又は接触して眼軸長測定が行われる。Next, in the case of axial length measurement, as shown in FIG. The eyepiece moves forward along the motion guide member 10, approaches or contacts the cornea Ec of the eye E, and measures the axial length.
第4図は信号処理を行うための回路構成を示している。FIG. 4 shows a circuit configuration for signal processing.
ここで、二次元撮像素子6の出力は画像信号処理回路2
1とミキサ回路22と同期分離回路23に接続され、画
像信号処理回路21の出力は共通回路24を介して内部
バス25に接続されている。また、内部バス25には画
像メモリ26が接続され、この画像メモリ26の出力は
ミキサ回路22を介してテレビモニタ27に接続されて
いる。同期分離回路23の出力は記録回路28、記憶回
路29を介して内部バス25に接続されている。超音波
プローブ8の出力は超音波送受信回路30、共通回路2
4を介して内部バス25に接続されている。また内部バ
ス25には、マイクロプロセッサユニット(MPU)3
1. リードオンリメモリ(ROM)32.ランダムア
クセスメモリ(RAM)33、不揮発メモリ34が接続
され、内部バス25の出力はインタフェイス35、プリ
ンタ36に接続されている。更に、インタフェイス35
に測定スイッチ37、光源7a〜7dが接続されている
。Here, the output of the two-dimensional image sensor 6 is output from the image signal processing circuit 2.
1, a mixer circuit 22, and a synchronous separation circuit 23, and the output of the image signal processing circuit 21 is connected to an internal bus 25 via a common circuit 24. Further, an image memory 26 is connected to the internal bus 25, and the output of this image memory 26 is connected to a television monitor 27 via a mixer circuit 22. The output of the synchronization separation circuit 23 is connected to the internal bus 25 via a recording circuit 28 and a storage circuit 29. The output of the ultrasonic probe 8 is transmitted through the ultrasonic transmitter/receiver circuit 30 and the common circuit 2.
4 to the internal bus 25. The internal bus 25 also includes a microprocessor unit (MPU) 3.
1. Read-only memory (ROM)32. A random access memory (RAM) 33 and a nonvolatile memory 34 are connected, and the output of the internal bus 25 is connected to an interface 35 and a printer 36. Furthermore, the interface 35
A measurement switch 37 and light sources 7a to 7d are connected to.
第5図は共通回路24の回路構成図であり1画像値号処
理回路21、超音波送受信回路30の出力はそれぞれコ
ンパレータ38.39を経てゲート回路40に接続され
ている。ゲート回路40にはクロック信号発生回路41
の出力が接続されており、またゲート回路40の出力は
4個の計数回路42〜45に接続され、これらの計数回
路42〜45の出力はそれぞれデータ記憶回路46〜4
9を介して内部バス25に接続されている。FIG. 5 is a circuit diagram of the common circuit 24, in which the outputs of the one-image value processing circuit 21 and the ultrasonic transmitting/receiving circuit 30 are connected to a gate circuit 40 via comparators 38 and 39, respectively. The gate circuit 40 includes a clock signal generation circuit 41
The output of gate circuit 40 is connected to four counting circuits 42-45, and the outputs of these counting circuits 42-45 are connected to data storage circuits 46-4, respectively.
9 to the internal bus 25.
角膜形状測定を行う際には、第6図に示すようにテレビ
モニタ27上に写されている被検眼Eの角膜上に4つの
光源7a〜7dによる輝点が写るように調整する0次に
、測定スイッチ37を押すと、結像している光源7a〜
7dの反射像の第7図(a)に示す二次元撮像素子6の
画像信号aは画像信号処理回路21、コンパレータ38
を経て所定基準信号と比較され、第7図(b)のような
デジタル信号すに変換される。このデジタル信号すがゲ
ート回路40に入力され、第7図(d)〜(g)に示す
ようなゲート信号d−gを発生する。ゲート回路40の
出力信号d−gはそれぞれ計数回路42〜45に入力さ
れ、この間だけクロックパルス発生回路41からの第7
図(h)に示すクロックパルス数を計数し、第7図(b
)に示す反射像のデジタル信号の立上り時のクロックパ
ルス数と立下り時のクロックパルス数をデータ記憶回路
46〜49に記憶し、これらのクロックパルス数から4
つの輝点の水平方向の座標を算出する。When performing corneal shape measurement, the zero order is adjusted so that a bright spot from the four light sources 7a to 7d appears on the cornea of the eye E shown on the television monitor 27 as shown in FIG. , when the measurement switch 37 is pressed, the imaged light sources 7a~
The image signal a of the two-dimensional image sensor 6 shown in FIG.
The signal is then compared with a predetermined reference signal and converted into a digital signal as shown in FIG. 7(b). This digital signal is input to the gate circuit 40, which generates gate signals dg as shown in FIGS. 7(d) to 7(g). The output signals d-g of the gate circuit 40 are input to the counting circuits 42 to 45, respectively, and only during this period the seventh signal dg from the clock pulse generation circuit 41 is
The number of clock pulses shown in Figure 7(h) is counted, and the number of clock pulses shown in Figure 7(b) is counted.
) The number of clock pulses at the rising edge and the number of clock pulses at the falling edge of the digital signal of the reflected image shown in ) are stored in data storage circuits 46 to 49, and 4 is calculated from these clock pulse numbers.
Calculate the horizontal coordinates of the two bright spots.
垂直方向の座標は二次元撮像素子6の画像信号aから同
期分離回路23によって水平同期信号を分離し、計数回
路27によって第7図(c)に示す水平同期信号Cを計
数し、デジタル信号が検出された場合に内部バス25に
よって水平同期信号Cが取り込まれ、垂直方向の座標を
算出する。そして、これらの座標により既知の方法によ
る角膜形状の測定が行われる。The vertical coordinate is determined by separating the horizontal synchronization signal from the image signal a of the two-dimensional image sensor 6 by the synchronization separation circuit 23, and counting the horizontal synchronization signal C shown in FIG. When detected, the horizontal synchronization signal C is taken in by the internal bus 25, and the vertical coordinates are calculated. The corneal shape is then measured using these coordinates using a known method.
リードオンリメモリ32に書き込まれている所定の演算
式により、角膜形状情報である最大曲率半径・最小曲率
半径・平均曲率半径・角膜乱視度・乱視軸角度と、眼屈
折力情報である球面屈折度・眼屈折乱視度・乱視軸角度
を計算し、その結果は画像メモリ26、ミキサ回路22
を介してテレビモニタ27に表示される。A predetermined calculation formula written in the read-only memory 32 calculates the maximum radius of curvature, minimum radius of curvature, average radius of curvature, degree of corneal astigmatism, and astigmatic axis angle, which are corneal shape information, and the spherical refractive power, which is eye refractive power information. - Calculate the eye refractive astigmatism degree and astigmatism axis angle, and the results are stored in the image memory 26 and mixer circuit 22
is displayed on the television monitor 27 via.
超音波により所定部位の長さを測定する際には、超音波
プローブ8を被検眼Eの角膜に接触するようにする。こ
の際に、超音波プローブ8に超音波送受信回路30から
駆動パルスが印加され、超音波パルス信号が眼球内で反
射される。眼球内からの第9図(a)に示すエコー信号
aは超音波送受信回路30により増幅され、共通回路2
4内にあるコンパレータ39によって第9図(b)に示
すようにデジタル信号とされ、このデジタル信号すがデ
ータ回路40に入力され、第9図(c)〜(e)に示す
ようなデータ信号c−eを発生する。ゲート信号Cは眼
球における前房深度を示すゲート信号であり、ゲート信
号dは水晶体厚を示すゲート信号であり、ゲート信号e
は硝子体厚を示すゲート信号である。これらのゲート出
力信号c−eはそれぞれ計数回路42〜44に入力され
、この間だけクロックパルス発生器41からの第9図(
Dに示すクロックパルスを計数し、これらのクロックパ
ルス数を記憶回路46〜48に記憶し、眼球内の所定部
位の長さを算出する。また、増幅されたエコー信号aは
共通回路24内にあるA/D変換器によってデジタル信
号され、内部バス25を経て、画像メモリ26に書き込
まれて、テレビモニタ27に上に超音波反射波信号が第
8図に示すように被検眼Eの各部に対応して表示される
。このとき、水晶体・網膜からのエコー信号aが最大と
なるように、被検眼Eを視軸方向へ誘導又は超音波プロ
ーブ8の角度を変化させる。When measuring the length of a predetermined region using ultrasound, the ultrasound probe 8 is brought into contact with the cornea of the eye E to be examined. At this time, a drive pulse is applied to the ultrasound probe 8 from the ultrasound transmission/reception circuit 30, and the ultrasound pulse signal is reflected within the eyeball. The echo signal a shown in FIG. 9(a) from within the eyeball is amplified by the ultrasonic transmitting/receiving circuit 30, and then sent to the common circuit 2.
The comparator 39 in FIG. 9 converts the digital signal into a digital signal as shown in FIG. Generate c-e. The gate signal C is a gate signal indicating the anterior chamber depth in the eyeball, the gate signal d is a gate signal indicating the crystalline lens thickness, and the gate signal e is a gate signal indicating the anterior chamber depth in the eyeball.
is a gate signal indicating the vitreous thickness. These gate output signals ce are input to the counting circuits 42 to 44, respectively, and only during this time the clock pulse generator 41 outputs the signals shown in FIG.
The clock pulses shown in D are counted, the number of clock pulses is stored in the memory circuits 46 to 48, and the length of a predetermined region within the eyeball is calculated. Further, the amplified echo signal a is converted into a digital signal by an A/D converter in the common circuit 24, is written into an image memory 26 via an internal bus 25, and is displayed as an ultrasonic reflected wave signal on a television monitor 27. are displayed corresponding to each part of the eye E as shown in FIG. At this time, the eye E to be examined is guided in the visual axis direction or the angle of the ultrasound probe 8 is changed so that the echo signal a from the crystalline lens and retina becomes maximum.
ここで測定スイッチ37を押すと、インタフェイス35
からの信号により眼球内からのエコー信号aが既知の手
段により測定される。マイクロプロセッサユニット31
はリードオンリメモリ32に書き込まれている所定の演
算式により、眼軸長・前房深度・水晶体厚・硝子体厚を
計算し、その結果は画像メモリ26、ミキサ回路22を
介してテレビモニタ27に表示される。If you press the measurement switch 37 here, the interface 35
An echo signal a from within the eyeball is measured by known means. Microprocessor unit 31
calculates the axial length, anterior chamber depth, crystalline lens thickness, and vitreous thickness using a predetermined calculation formula written in the read-only memory 32, and the results are sent to the television monitor 27 via the image memory 26 and mixer circuit 22. will be displayed.
また、前述のようにして得られた被検眼Eの角膜形状情
報と所定部位長さの測定値からマイクロプロセッサユニ
ット31はリードオンリメモリ32に書き込まれている
所定の演算式により、眼内レンズの屈折力を算出し、そ
の結果は画像メモリ26、ミキサ回路22を介してテレ
ビモニタ27に表示される。Further, the microprocessor unit 31 uses the corneal shape information of the eye E to be examined obtained as described above and the measured value of the length of the predetermined region to determine the size of the intraocular lens according to a predetermined calculation formula written in the read-only memory 32. The refractive power is calculated and the result is displayed on the television monitor 27 via the image memory 26 and the mixer circuit 22.
[発明の効果]
以上説明したように本発明に係る眼科測定装置は、1個
の装置で角膜形状及び眼軸長等を測定でき、適正な眼内
レンズの選択を迅速に行うことを可能とし、回路を共有
化することにより低コスト化を実現できる。[Effects of the Invention] As explained above, the ophthalmological measurement device according to the present invention can measure corneal shape, axial length, etc. with one device, and can quickly select an appropriate intraocular lens. , cost reduction can be achieved by sharing circuits.
図面は本発明に係る眼科計測装置の実施例を示し、第1
図は角膜形状測定の状態の構成図、第2図は超音波測定
の状態の構成図、第3図は光源の配置図、第4図はブロ
ック回路構成図、第5図は共通回路の回路構成図、第6
図はテレビモニタの正面図、第7図は角膜形状測定時の
各回路の出力波形図、第8図は超音波計測時のモニタの
正面図、第9図は超音波測定時の各回路の出力波形図で
ある。
符号1は対物レンズ、6は二次元撮像素子、7a〜7d
は光源、8は超音波プローブ、21は画像信号処理回路
、22はミキサ回路、23は同期分離回路、24は共通
回路、25は内部バス、26は画像メモリ、27はテレ
ビモニタ、28.42〜45は計数回路、30は超音波
送受信口路、31はマイクロプロセッサユニット、32
はリードオンリメモリ、33はランダムアクセスメモリ
、34は不揮発性メモリ、37は測定スイッチ、46〜
49はデータ記憶回路である。
特許出願人 キャノン株式会社The drawings show an embodiment of the ophthalmological measuring device according to the present invention, and the first embodiment
The figure is a block diagram of the state of corneal shape measurement, Figure 2 is a block diagram of the state of ultrasound measurement, Figure 3 is the arrangement of the light source, Figure 4 is the block circuit diagram, and Figure 5 is the common circuit. Configuration diagram, No. 6
The figure is a front view of the TV monitor, Figure 7 is a diagram of the output waveforms of each circuit during corneal shape measurement, Figure 8 is a front view of the monitor during ultrasound measurement, and Figure 9 is a diagram of each circuit during ultrasound measurement. It is an output waveform diagram. Reference numeral 1 is an objective lens, 6 is a two-dimensional image sensor, and 7a to 7d.
8 is a light source, 8 is an ultrasound probe, 21 is an image signal processing circuit, 22 is a mixer circuit, 23 is a synchronous separation circuit, 24 is a common circuit, 25 is an internal bus, 26 is an image memory, 27 is a television monitor, 28.42 -45 is a counting circuit, 30 is an ultrasonic transmitting/receiving port path, 31 is a microprocessor unit, 32
is a read-only memory, 33 is a random access memory, 34 is a non-volatile memory, 37 is a measurement switch, 46-
49 is a data storage circuit. Patent applicant Canon Co., Ltd.
Claims (1)
波探触子により被検眼の所定部位の長さ信号を得る超音
波測定手段とを備え、前記角膜形状情報を得る回路と所
定部位の長さ信号を計測する回路とを共通化し、前記角
膜形状情報による角膜曲率半径と被検眼の所定部位の長
さ信号とから眼内レンズの屈折力値を同一の演算手段に
よって算出することを特徴とする眼科計測装置。 2、前記共通化した回路を複数個の計数回路とデータ記
憶回路により構成した特許請求の範囲第1項に記載の眼
科計測装置。[Scope of Claims] 1. Optical measurement means for obtaining corneal shape information of the eye to be examined; and ultrasonic measurement means for obtaining a length signal of a predetermined part of the eye to be examined using an ultrasonic probe; The refractive power value of the intraocular lens can be calculated in the same way from the corneal curvature radius based on the corneal shape information and the length signal of the predetermined part of the eye. An ophthalmological measuring device characterized by calculating by a means. 2. The ophthalmological measuring device according to claim 1, wherein the common circuit is constituted by a plurality of counting circuits and a data storage circuit.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62254890A JPH0197434A (en) | 1987-10-09 | 1987-10-09 | Ophthalmic measuring apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62254890A JPH0197434A (en) | 1987-10-09 | 1987-10-09 | Ophthalmic measuring apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0197434A true JPH0197434A (en) | 1989-04-14 |
Family
ID=17271261
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62254890A Pending JPH0197434A (en) | 1987-10-09 | 1987-10-09 | Ophthalmic measuring apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0197434A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0503111A1 (en) * | 1991-03-13 | 1992-09-16 | Toyohiko Kashiwagi | Aspherical lens, method of producing the lens and apparatus for producing the lens |
-
1987
- 1987-10-09 JP JP62254890A patent/JPH0197434A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0503111A1 (en) * | 1991-03-13 | 1992-09-16 | Toyohiko Kashiwagi | Aspherical lens, method of producing the lens and apparatus for producing the lens |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0836830B1 (en) | Ophthalmic refraction measurement apparatus | |
JP3539829B2 (en) | Ophthalmic measurement device | |
EP2767220B1 (en) | Ophthalmic optical coherence tomography system and imaging method for quick switching to realize anterior and posterior eye segments imaging | |
US8733932B2 (en) | Ophthalmic ultrasonic diagnosing apparatus | |
JP3599523B2 (en) | Ophthalmic equipment | |
US4529280A (en) | Apparatus for subjectively measuring the refractive power of an eye | |
JP3560746B2 (en) | Eye refractive power measuring device | |
JPH0197434A (en) | Ophthalmic measuring apparatus | |
US5400091A (en) | Ophthalmic instrument | |
CN113889269A (en) | Eye refractive health monitoring and early warning system and method | |
JP5108650B2 (en) | Image processing method and image processing apparatus | |
JPH0191828A (en) | Ophthalmic measuring apparatus | |
JPH01198527A (en) | Apparatus for measuring refractivity of eye | |
JPH0464347A (en) | Ophthalmological ultrasonic diagnosing apparatus | |
JPH01153138A (en) | Medical measuring apparatus | |
JPH08308800A (en) | Ophthalmologic apparatus | |
Hoffer | Corneal Power: Manual Keratometry and Instrumentation | |
JPS6153055B2 (en) | ||
JPS63216529A (en) | Ophthalmic apparatus | |
Prahs | A computerized method to analyse echograms for the calculation of intraocular lenses | |
JP2975393B2 (en) | Eye measurement device | |
JPS6129727B2 (en) | ||
JPH03202044A (en) | Ophthalmic device | |
JPH01300922A (en) | Opthalmic measuring apparatus | |
JPH0191832A (en) | Ophthalmic measuring apparatus |