JPH0191828A - Ophthalmic measuring apparatus - Google Patents

Ophthalmic measuring apparatus

Info

Publication number
JPH0191828A
JPH0191828A JP62250532A JP25053287A JPH0191828A JP H0191828 A JPH0191828 A JP H0191828A JP 62250532 A JP62250532 A JP 62250532A JP 25053287 A JP25053287 A JP 25053287A JP H0191828 A JPH0191828 A JP H0191828A
Authority
JP
Japan
Prior art keywords
eye
refractive power
examined
length
corneal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62250532A
Other languages
Japanese (ja)
Other versions
JPH07108280B2 (en
Inventor
Yoshimasa Hamano
好正 濱野
Yukitsugu Nakamura
中村 行告
Takashi Masuda
増田 高
Isao Matsumura
勲 松村
Shigeo Maruyama
茂男 丸山
Kazunobu Kobayashi
小林 萬伸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP62250532A priority Critical patent/JPH07108280B2/en
Publication of JPH0191828A publication Critical patent/JPH0191828A/en
Publication of JPH07108280B2 publication Critical patent/JPH07108280B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Eye Examination Apparatus (AREA)

Abstract

PURPOSE:To rapidly and accurately measure the refractivity of an intraocular lens, by mounting a optical measuring means for obtaining the cornea shape data of an eye to be examined and an ultrasonic measuring means for obtaining the length of the predetermined region of the eye to be examined by an ultrasonic probe. CONSTITUTION:When the shape of the cornea is measured, the cornea reflected images of light sources 7a-7d are brought to almost parallel beams by the objective lens 1 opposed to an eye E to be examined and reflected by mirrors 2, 3 to be formed into an image on an imaging element 6 by an iris 4 and a relay lens 5. Next, when the axial length of the eye to be examined is measured, the objective lens 1, the mirrors 2, 3 and the light sources 7a-7d move downwardly and an ultrasonic probe 8 advances along a slide guide member 10 guiding a probe holder 9 and approaches the cornea Ec of the eye E to be examined or is brought into contact therewith to measure the axial length of said eye. A microprocessor unit 28 calculates the refractivity of an intraocular lens from the cornea shape and eye axial length thus measured according to the predetermined operation formula written in a read-on memory 29 and the calculation result is displayed on a television monitor 25 through an image memory 24 and a mixer circuit 22.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、被検眼の角膜形状を光学的に測定すると共に
、超音波を用いて水晶体厚、硝子体長。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention optically measures the corneal shape of an eye to be examined, and also measures lens thickness and vitreous length using ultrasound.

眼軸長等の被検眼の各部の測定を行うようにした眼科計
測装置に関するものである。
The present invention relates to an ophthalmological measuring device that measures various parts of an eye to be examined, such as axial length.

[従来の技術] 従来において、例えば白内障手術後の屈折力矯正には眼
鏡レンズやコンタクトレンズが用いられていたが、近年
では除去した水晶体位置に眼内レンズを挿入することが
行われている。
[Prior Art] Conventionally, spectacle lenses or contact lenses have been used to correct refractive power, for example after cataract surgery, but in recent years, intraocular lenses have been inserted into the position of the removed crystalline lens.

この無水晶体眼の患者に適正な眼内レンズを選定するた
めには、角膜屈折力と眼軸長つまり角膜から網膜までの
長さを知ることが必要である。そこで、従来では角膜屈
折力の測定は角膜形状測定装置で行い、一方では眼軸長
は別の超音波測定装置を用いて測定し、それぞれの測定
を終えてから眼内レンズの屈折力を算出しなけらばなら
ないという不便さがあり、測定にかなりの手数と時間を
要していた。
In order to select an appropriate intraocular lens for patients with aphakic eyes, it is necessary to know the corneal refractive power and the axial length, that is, the length from the cornea to the retina. Therefore, in the past, corneal refractive power was measured using a corneal shape measuring device, while axial length was measured using a separate ultrasonic measuring device, and the refractive power of the intraocular lens was calculated after each measurement was completed. This was inconvenient and required a considerable amount of effort and time to measure.

また、これらの2つの機能を併有する装置も知られてい
るが、このような装置では角膜形状測定時に眼軸長測定
用の超音波プローブが光路中に存在するため、角膜反射
像がその超音波プローブの像によってけられ、正確な測
定がし難い等の欠点を有している。
In addition, devices that have both of these two functions are also known, but in such devices, an ultrasound probe for measuring the axial length is present in the optical path when measuring the corneal shape, so the corneal reflection image is It has drawbacks such as being eclipsed by the image of the sonic probe, making it difficult to make accurate measurements.

[発明の目的] 本発明の目的は、被検眼の角膜形状情報を得る光学測定
手段と、超音波プローブにより被検眼の所定部位の長さ
を得る超音波測定手段とを備え、被検眼の角膜屈折力と
所定部位の長さにより眼内レンズの屈折力を演算手段に
より迅速にかつ正確に計測できるようにした眼科計測装
置を提供することにある。
[Object of the Invention] An object of the present invention is to provide optical measurement means for obtaining information on the corneal shape of the eye to be examined, and ultrasonic measurement means for obtaining the length of a predetermined part of the eye to be examined using an ultrasonic probe. An object of the present invention is to provide an ophthalmological measuring device that can quickly and accurately measure the refractive power of an intraocular lens using a calculation means based on the refractive power and the length of a predetermined portion.

[発明の概要] 上述の目的栃達成するための本発明の要旨は、被検眼の
角膜形状情報を得るための光学測定手段と、超音波プロ
ーブにより被検眼の所定部位の長さ信号を得る超音波測
定手段と、前記光学測定手段と超音波測定手段とを選択
的に被検眼に対向する位置に移動させる駆動機構と、前
記角膜形状情報に基づく角膜屈折力と前記所定部位の信
号に基づく所定部位の長さを記憶する記憶手段と、該記
憶手段に記憶した角膜屈折力と所定部位の長さから眼内
レンズの屈折力を算出する演算手段と、該演算手段の出
力を表示する表示手段とを備えたことを特徴とする眼科
計測装置である。
[Summary of the Invention] The gist of the present invention to achieve the above-mentioned object is to provide an optical measuring means for obtaining information on the corneal shape of the eye to be examined, and an ultrasonic probe for obtaining a length signal of a predetermined part of the eye to be examined using an ultrasonic probe. a driving mechanism for selectively moving the optical measuring means and the ultrasonic measuring means to a position facing the eye to be examined; A storage means for storing the length of the region, a calculation means for calculating the refractive power of the intraocular lens from the corneal refractive power stored in the storage means and the length of the predetermined region, and a display means for displaying the output of the calculation means. This is an ophthalmological measuring device characterized by comprising:

[発明の実施例] 本発明を図示の実施例に基づいて詳細に説明する。[Embodiments of the invention] The present invention will be explained in detail based on illustrated embodiments.

第1図、第2図は本発明に係る眼科計測装置の光学系を
示し、第1図は角膜形状測定時の状態、第2図は眼軸長
測定時の状態を示している。第1図において、被検眼E
の角膜Ecに対向して対物レンズ1が設けられ、その後
方に光路に沿ってミラー2.3、絞り4% リレーレン
ズ5、CCD等の二次元撮像素子6が配置されている。
1 and 2 show the optical system of the ophthalmological measuring device according to the present invention, FIG. 1 shows the state when measuring the shape of the cornea, and FIG. 2 shows the state when measuring the axial length of the eye. In Figure 1, the eye to be examined E
An objective lens 1 is provided facing the cornea Ec, and a mirror 2.3, a 4% aperture relay lens 5, and a two-dimensional imaging device 6 such as a CCD are arranged behind the objective lens 1 along the optical path.

また、対物レンズ1の周辺には第3図に示すように、複
数の光源7a〜7dが配置されている。そして、対物レ
ンズl、ミラー2.3、光源1a−1dは一体構造とさ
れ、図示しない駆動機構によって第1図の状態から第2
図の状態に、或いはその逆に移動できるようになってい
る。更に、超音波プローブ8がプローブホルダ9を介し
て摺動案内部材10により、第1図の対物レンズ1の光
軸に沿って前後進自在に保持されている。
Further, a plurality of light sources 7a to 7d are arranged around the objective lens 1, as shown in FIG. The objective lens l, the mirror 2.3, and the light sources 1a to 1d are integrally constructed, and a drive mechanism (not shown) changes the state from the state shown in FIG. 1 to the second state.
It is possible to move to the state shown in the figure or vice versa. Further, an ultrasonic probe 8 is held by a sliding guide member 10 via a probe holder 9 so as to be movable back and forth along the optical axis of the objective lens 1 shown in FIG.

第1図の角膜形状測定の場合は、光源7a〜7dの角膜
反射像を被検眼Eに対向する対物レンズlにより略平行
光とし、ミラー2.3で反射させ、絞り4、リレーレン
ズ5により撮像素子6上に結像させる。この場合に、超
音波プローブ8はミラー2の背後に位置し光路から離脱
している。
In the case of the corneal shape measurement shown in FIG. An image is formed on the image sensor 6. In this case, the ultrasonic probe 8 is located behind the mirror 2 and removed from the optical path.

次に、眼軸長測定の場合は第2図に示すように、対物レ
ンズ1.ミラー2.3、光源7a〜7dが下方に移動す
ると共に、超音波プローブ8はプローブホルダ9を案内
する摺動案内部材lOに沿って前進し、被検眼Eの角膜
Ecに接近又は接触して眼軸長測定が行われる。
Next, in the case of measuring the ocular axial length, as shown in FIG. 2, the objective lens 1. As the mirror 2.3 and the light sources 7a to 7d move downward, the ultrasound probe 8 moves forward along the sliding guide member lO that guides the probe holder 9, approaches or contacts the cornea Ec of the eye E to be examined. Axial length measurements are taken.

第4図は上述の作用を行うための回路構成を示している
。ここで、二次元撮像素子6の出力は画像信号処理回路
21とミキサ回路22に接続され、画像信号処理回路2
1は内部バス23に接続されている。また、内部バス2
3には画像メモリ24が接続され、画像メモリ24の出
力はミキサ回路22に接続され、ミキサ回路22の出力
はテレビモニタ25に接続されている。超音波プローブ
8は超音波送受信回路26.超音波信号処理回路27を
介して内部バス23に接続されている。
FIG. 4 shows a circuit configuration for performing the above-described operation. Here, the output of the two-dimensional image sensor 6 is connected to an image signal processing circuit 21 and a mixer circuit 22.
1 is connected to the internal bus 23. In addition, internal bus 2
An image memory 24 is connected to 3, an output of the image memory 24 is connected to a mixer circuit 22, and an output of the mixer circuit 22 is connected to a television monitor 25. The ultrasonic probe 8 includes an ultrasonic transmitting/receiving circuit 26. It is connected to the internal bus 23 via an ultrasonic signal processing circuit 27 .

また、マイクロプロセッサユニッ) (MPU)28、
リードオンリメモリ(ROM)29、ランダムアクセス
メモリ(RAM)30、不揮発メモリ31の出力は内部
バス23に接続され、バス回路25の出力はインタフェ
イス32、プリンタ33に接続されている。更に、イン
タフェイス32に測定スイッチ34、光学測定手段と超
音波測定手段を切換えるための切換スイッチ35、光源
7a〜7d、それぞれ光学測定手段、超音波測定手段を
駆動するための電動機36.37が接続されている。
Also, microprocessor unit (MPU) 28,
The outputs of read-only memory (ROM) 29, random access memory (RAM) 30, and nonvolatile memory 31 are connected to internal bus 23, and the output of bus circuit 25 is connected to interface 32 and printer 33. Further, the interface 32 includes a measurement switch 34, a changeover switch 35 for switching between the optical measurement means and the ultrasonic measurement means, light sources 7a to 7d, and electric motors 36 and 37 for driving the optical measurement means and the ultrasonic measurement means, respectively. It is connected.

角膜形状測定を行う場合には、第5図に示すようにテレ
ビモニタ26上に写されている被検@Eの角膜像の上に
、光源7a〜7dによる角膜反射像IA〜IDが写るよ
うに調整する0次に、測定スイッチ34を押すと、イン
クフェイス32からの信号によって撮像素子6上に結像
している光源7a〜7dの角膜反射像IA〜IDが画像
メモリ24上に記憶される。この記憶された4つの角膜
反射像IA〜IDの座標を計測すれば、既知の方法によ
って角膜形状を求めることができる。
When performing corneal topography measurement, as shown in FIG. Next, when the measurement switch 34 is pressed, the corneal reflection images IA to ID of the light sources 7a to 7d, which are imaged on the image sensor 6 by the signal from the ink face 32, are stored on the image memory 24. Ru. By measuring the coordinates of the four stored corneal reflection images IA to ID, the corneal shape can be determined by a known method.

その結果、マイクロプロセッサ二二一7ト28はリード
オンリメモリ29に書込まれている所定の演算式により
、角膜形状情報である最大曲率半径、最小曲率半径、平
均曲率半径、角膜乱視度、乱視軸角度と、服属折力情報
である球面−屈折度、眼屈折乱視度、乱視軸角度を計算
し、その計算結果は画像メモリ24、ミキサ回路22を
経てテレビモニタ25に第5図に示すように数値で表示
される。この第5図において、Lは左眼、Rは右限の情
報を表している。
As a result, the microprocessor 2217 calculates corneal shape information such as maximum radius of curvature, minimum radius of curvature, average radius of curvature, degree of corneal astigmatism, and astigmatism using a predetermined calculation formula written in read-only memory 29. The axial angle, the spherical refractive power, the ocular refractive astigmatism, and the astigmatic axial angle, which are subordinate power information, are calculated, and the calculation results are displayed on the television monitor 25 via the image memory 24 and the mixer circuit 22 as shown in FIG. is displayed numerically. In FIG. 5, L represents the left eye and R represents the right limit information.

次に、超音波により被検眼Eの所定部位の長さを測定す
る場合には、第2図に示すように超音波プローブ8を被
検眼Eの角MEcに接するようにする。この際に超音波
プローブ8に超音波送受信回路26から駆動パルスが印
加され、被検眼Eの眼球内に超音波パルス信号が放射さ
れる。そして、眼球内からエコーがあれば超音波送受信
回路26によって増幅され、超音波信号処理回路27内
にあるA/D変換器によってデジタル信号に変換された
上で、内部バス23を経て画像メモリ24に書き込まれ
ることにより、テレビモニタ25に第6図に示すような
超音波反射信号Sが表示される。この場合に、被検眼E
の水晶体、網膜からのエコーが最大となるように、被検
眼Eを視軸方向へ誘導又は超音波プローブ8の角度を変
化させる。
Next, when measuring the length of a predetermined portion of the eye E to be examined using ultrasound, the ultrasound probe 8 is brought into contact with the corner MEc of the eye E to be examined, as shown in FIG. At this time, a driving pulse is applied to the ultrasound probe 8 from the ultrasound transmitting/receiving circuit 26, and an ultrasound pulse signal is emitted into the eyeball of the eye E to be examined. If there is an echo from within the eyeball, it is amplified by the ultrasonic transmitting/receiving circuit 26, converted into a digital signal by the A/D converter in the ultrasonic signal processing circuit 27, and then sent to the image memory 24 via the internal bus 23. As a result, an ultrasonic reflection signal S as shown in FIG. 6 is displayed on the television monitor 25. In this case, the eye to be examined E
The eye E to be examined is guided in the direction of the visual axis or the angle of the ultrasound probe 8 is changed so that the echoes from the crystalline lens and retina are maximized.

そこで測定スイッチ34を押すと、インタフェイス32
からの信号により被検眼Eの眼球内からのエコーが既知
の方法によって測定される。その結果、マイクロプロセ
ッサユニット28はリードオンリメモリ29に書込まれ
ている所定の演算式により、眼軸長、前房深度、水晶体
厚、硝子体厚を算出し、その結果は画像メモリ24.ミ
キサ回路22を介してテレビモニタ25に表示される。
Then, when the measurement switch 34 is pressed, the interface 32
An echo from within the eyeball of the eye E to be examined is measured using a known method. As a result, the microprocessor unit 28 calculates the axial length, anterior chamber depth, crystalline lens thickness, and vitreous thickness using a predetermined calculation formula written in the read-only memory 29, and the results are stored in the image memory 24. It is displayed on the television monitor 25 via the mixer circuit 22.

このようにして測定された角膜形状情報と眼軸長の測定
値から、マイクロプロセッサユニット28はリードオン
リメモリ29に書込まれている所定の演算式によって眼
内レンズの屈折力を計算し、その結果は画像メモリ24
、ミキサ回路22を経てテレビモニタ25上に表示され
る。
Based on the corneal shape information and the measured value of the axial length thus measured, the microprocessor unit 28 calculates the refractive power of the intraocular lens using a predetermined calculation formula written in the read-only memory 29, and calculates the refractive power of the intraocular lens. The result is image memory 24
, and is displayed on the television monitor 25 via the mixer circuit 22.

被検眼Eの角膜形状の測定と所定部位の長さの測定とは
、その何れか一方のみを選択的に行うこともできるが、
何れか一方の測定を終了した後に、自動的に他方の測定
を続行させるか或いは測定の準備をさせることが可能で
ある。また、被検眼Eの角膜屈折力と所定部位の長さが
ITIII定された場合に、次に自動的に眼内レンズの
屈折力を算出して表示するようにすることもできる。
Only one of the corneal shape measurement and the length measurement of a predetermined region of the eye E to be examined can be selectively performed;
After finishing one of the measurements, it is possible to automatically continue the measurement of the other one or prepare for the other one. Further, when the corneal refractive power and the length of the predetermined region of the eye E to be examined are ITIII determined, the refractive power of the intraocular lens can be automatically calculated and displayed next.

更に、角膜形状測定用光学系と超音波測定手段とを第1
図の状態から第2図の状態に、或いはその逆に移動させ
る駆動機構は、演算手段によって自動的に駆動すること
が可能である。
Furthermore, the optical system for measuring corneal shape and the ultrasonic measuring means are
The drive mechanism for moving from the state shown in the figure to the state shown in FIG. 2, or vice versa, can be automatically driven by a calculation means.

[発明の効果] 以上説明したように本発明に係る眼科計測装置は、1個
の装置で角膜形状測定と眼軸長等を測定できるため、例
えば眼内レンズの選択を正確にかつ迅速に行うことが可
能である。また角膜形状測定の場合は、超音波プローブ
が光路から離脱しているため角膜反射像が超音波プロー
ブの像によってけられることがなく、正確な測定を行う
ことができる。
[Effects of the Invention] As explained above, the ophthalmological measuring device according to the present invention can measure corneal shape and axial length etc. with one device, so that, for example, selecting an intraocular lens can be performed accurately and quickly. Is possible. Furthermore, in the case of corneal shape measurement, since the ultrasound probe is removed from the optical path, the corneal reflection image is not obscured by the image of the ultrasound probe, allowing accurate measurement.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明に係る眼科計測装置の実施例を示し、第1
図は角膜形状測定の状態の構成図、第2図は超音波測定
の状態の構成図、第3図は光源の配置図、第4図はブロ
ック回路構成図、第5図、第6図はテレビモニタの正面
図である。 符号1は対物レンズ、2,3はミラー%4は絞り、5は
リレーレンズ、6は二次元撮像素子。 7a〜7dは光源、8は超音波プローブ、9はプローブ
ホルダ、10は摺動案内部材、25はテレビモニタであ
る。 特許出願人   キャノン株式会社 図 面     第1図 纂2図 第3図 第4図
The drawings show an embodiment of the ophthalmological measuring device according to the present invention, and the first embodiment
The figure is a block diagram of the state of corneal topography measurement, Figure 2 is a block diagram of the state of ultrasonic measurement, Figure 3 is a light source arrangement diagram, Figure 4 is a block circuit diagram, and Figures 5 and 6 are FIG. 3 is a front view of the television monitor. 1 is an objective lens, 2 and 3 are mirrors, %4 is an aperture, 5 is a relay lens, and 6 is a two-dimensional image sensor. 7a to 7d are light sources, 8 is an ultrasonic probe, 9 is a probe holder, 10 is a sliding guide member, and 25 is a television monitor. Patent applicant Canon Co., Ltd. Drawings Figure 1 Collection 2 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】 1、被検眼の角膜形状情報を得るための光学測定手段と
、超音波プローブにより被検眼の所定部位の長さ信号を
得る超音波測定手段と、前記光学測定手段と超音波測定
手段とを選択的に被検眼に対向する位置に移動させる駆
動機構と、前記角膜形状情報に基づく角膜屈折力と前記
所定部位の信号に基づく所定部位の長さを記憶する記憶
手段と、該記憶手段に記憶した角膜屈折力と所定部位の
長さから眼内レンズの屈折力を算出する演算手段と、該
演算手段の出力を表示する表示手段とを備えたことを特
徴とする眼科計測装置。 2、前記光学測定手段と超音波測定手段との選択は、前
記光学測定手段の対物レンズ周辺の光学系を移動するこ
とにより行うようにした特許請求の範囲第1項に記載の
眼科計測装置。 3、前記角膜屈折力と所定部位の長さの何れか一方が測
定された場合に、次に他方の測定を自動的に行うように
した特許請求の範囲第1項に記載の眼科計測装置。 4、前記角膜屈折力と所定部位の長さの何れか一方が測
定された場合に、次に他方の測定の準備を自動的に行う
ようにした特許請求の範囲第1項に記載の眼科計測装置
。 5、前記所定部位の長さは眼軸長とした特許請求の範囲
第1項に記載の眼科計測装置。 6、前記角膜屈折力と眼軸長が測定された場合に、次に
眼内レンズの屈折力を算出して表示するようにした特許
請求の範囲第5項に記載の眼科計測装置。 7、前記眼内レンズの屈折力の定数を複数個記憶し、そ
れぞれの定数により眼内レンズの屈折力を算出して表示
するようにした特許請求の範囲第6項に記載の眼科計測
装置。
[Scope of Claims] 1. An optical measurement means for obtaining corneal shape information of the eye to be examined, an ultrasonic measurement means for obtaining a length signal of a predetermined part of the eye to be examined using an ultrasonic probe, and a combination of the optical measurement means and the ultrasound probe. a drive mechanism for selectively moving the acoustic wave measuring means to a position facing the subject's eye; a storage means for storing the corneal refractive power based on the corneal shape information and the length of the predetermined region based on the signal of the predetermined region; An ophthalmological measurement characterized by comprising a calculation means for calculating the refractive power of an intraocular lens from the corneal refractive power stored in the storage means and the length of a predetermined region, and a display means for displaying the output of the calculation means. Device. 2. The ophthalmological measuring device according to claim 1, wherein the selection between the optical measuring means and the ultrasonic measuring means is performed by moving an optical system around an objective lens of the optical measuring means. 3. The ophthalmological measuring device according to claim 1, wherein when either the corneal refractive power or the length of the predetermined region is measured, the other is automatically measured next. 4. Ophthalmological measurement according to claim 1, wherein when either the corneal refractive power or the length of the predetermined region is measured, preparations for the next measurement of the other are automatically performed. Device. 5. The ophthalmological measuring device according to claim 1, wherein the length of the predetermined portion is the axial length of the eye. 6. The ophthalmological measuring device according to claim 5, wherein when the corneal refractive power and the axial length are measured, the refractive power of the intraocular lens is then calculated and displayed. 7. The ophthalmological measuring device according to claim 6, wherein a plurality of constants of the refractive power of the intraocular lens are stored, and the refractive power of the intraocular lens is calculated and displayed using each constant.
JP62250532A 1987-09-30 1987-09-30 Ophthalmic measuring device Expired - Fee Related JPH07108280B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62250532A JPH07108280B2 (en) 1987-09-30 1987-09-30 Ophthalmic measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62250532A JPH07108280B2 (en) 1987-09-30 1987-09-30 Ophthalmic measuring device

Publications (2)

Publication Number Publication Date
JPH0191828A true JPH0191828A (en) 1989-04-11
JPH07108280B2 JPH07108280B2 (en) 1995-11-22

Family

ID=17209297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62250532A Expired - Fee Related JPH07108280B2 (en) 1987-09-30 1987-09-30 Ophthalmic measuring device

Country Status (1)

Country Link
JP (1) JPH07108280B2 (en)

Also Published As

Publication number Publication date
JPH07108280B2 (en) 1995-11-22

Similar Documents

Publication Publication Date Title
EP0310045B1 (en) Ophthalmologic apparatus
US6309068B1 (en) Eye examining apparatus
CN103767672B (en) The control method of Ophthalmoligic instrument and Ophthalmoligic instrument
JP3539829B2 (en) Ophthalmic measurement device
US11191431B2 (en) Ophthalmic apparatus
US9480395B2 (en) Ophthalmic device, control method, and non-transitory computer readable medium
JP2013128647A (en) Ophthalmologic apparatus and ophthalmologic control method, and program
US4529280A (en) Apparatus for subjectively measuring the refractive power of an eye
JP3399613B2 (en) Optometry device
JPH10243923A (en) Ophthalmological device
EP3888528A1 (en) Ophthalmic apparatus
JPH08103413A (en) Ophthalmological measuring instrument
JP2001231752A (en) Ophthalmometer
CN111557637A (en) Ophthalmologic measuring system
JPH0191828A (en) Ophthalmic measuring apparatus
JP5108650B2 (en) Image processing method and image processing apparatus
JPH0197434A (en) Ophthalmic measuring apparatus
JPH01300922A (en) Opthalmic measuring apparatus
JP2920885B2 (en) Eye refractive power measuring device
JPH0191833A (en) Ophthalmic apparatus
JPH0394728A (en) Ophthalmic apparatus
JPH06304140A (en) Eye examination device
JPH0191832A (en) Ophthalmic measuring apparatus
JPH0434893B2 (en)
JP2659986B2 (en) Ophthalmic equipment

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees