JPH06304140A - Eye examination device - Google Patents

Eye examination device

Info

Publication number
JPH06304140A
JPH06304140A JP5117794A JP11779493A JPH06304140A JP H06304140 A JPH06304140 A JP H06304140A JP 5117794 A JP5117794 A JP 5117794A JP 11779493 A JP11779493 A JP 11779493A JP H06304140 A JPH06304140 A JP H06304140A
Authority
JP
Japan
Prior art keywords
lens
measurement
objective
measuring
subjective
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5117794A
Other languages
Japanese (ja)
Inventor
Yasuo Maeda
康雄 前田
Hiroshi Aoki
博 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP5117794A priority Critical patent/JPH06304140A/en
Publication of JPH06304140A publication Critical patent/JPH06304140A/en
Pending legal-status Critical Current

Links

Landscapes

  • Eye Examination Apparatus (AREA)

Abstract

PURPOSE:To exactly derive a refraction value of a subjective measurement and an objective measurement by detecting an optical characteristic of a subjective measuring lens, and positioning an operating distance at the time of objective measurement in accordance with its optical characteristic. CONSTITUTION:In the eye examination device having a subjective refraction measuring means for executing the measurement by inserting subjective measuring lenses 1, 2 and an objective refraction measuring means, a position in the optical axis direction of an objective refraction measuring part 7 corresponding to an optical characteristic of the subjective measuring lenses 1, 2 is displaced by a pulse motor 8, a pinion 9 and a rack 10.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、眼科医院や眼鏡店にお
いて使用される検眼装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optometry apparatus used in an ophthalmological clinic or an eyeglass store.

【0002】[0002]

【従来の技術】[Prior art]

(1) 従来、眼屈折測定は一般に他覚測定にはオートレフ
ラクトメータを用い、自覚測定にはホロプタを用いて行
っている。このとき、オートレフラクトメータで測定し
た屈折値を自覚測定の初期値と定めて自覚測定を開始す
るが、その自覚測定は被検者の応答のみに頼って進めら
れるので、被検者によっては応答が明確でない場合もあ
り、測定値が不正確となる。その上、測定にかなりの時
間が掛かり、このため被検者の集中力が鈍ってきて測定
値が一層正確さを欠くことになりがちである。
(1) Conventionally, eye refraction measurement is generally performed using an autorefractometer for objective measurement, and a horopter for subjective measurement. At this time, the refraction value measured by the autorefractometer is set as the initial value of the subjective measurement, and the subjective measurement is started.However, since the subjective measurement proceeds only by the response of the subject, the response may vary depending on the subject. May not be clear, resulting in inaccurate measurements. Moreover, the measurement takes a considerable amount of time, which tends to make the subject less focused and less accurate in the measurements.

【0003】このような従来の状況を改善するため、種
々の屈折力を有する自覚測定レンズを光路内に挿入して
自覚測定を行う自覚測定手段と、自覚測定レンズを通し
て他覚測定を行う他覚測定手段とを備えた検眼装置が提
案されており、眼屈折測定に要する時間を短縮すると共
に、正確な測定値が得られるように改善が図られてい
る。
In order to improve such a conventional situation, subjective measuring lenses having various refractive powers are inserted into the optical path to perform subjective measuring, and objective measuring means to perform objective measuring through the subjective measuring lens. An optometry apparatus including a measuring means has been proposed, and improvements have been made so that the time required for eye refraction measurement can be shortened and an accurate measurement value can be obtained.

【0004】(2) また従来、眼屈折力を自覚的に測定す
るには、ホロプタのように被検眼の眼前に屈折力の異な
るレンズを提示できるユニットを設け、これに視力表を
組み合わせて自覚的眼屈折値を求める方法がある。この
方法では、測定準備段階でホロプタ内のレンズと被検眼
の角膜頂点距離を合わせる必要があり、検者はホロプタ
の額当てに被検者の額を当接させ、ホロプタの正面脇に
ある角膜頂点監視窓を覗きながら額当てを前後に移動さ
せ、ホロプタ内のレンズと被検眼の角膜頂点位置を正し
く合わせている。
(2) Conventionally, in order to subjectively measure the refractive power of the eye, a unit such as a horopter capable of presenting a lens having a different refractive power in front of the eye to be inspected is provided, and a unit of the visual acuity table is combined with the unit to realize the subjective perception. There is a method of obtaining the target eye refraction value. In this method, it is necessary to match the corneal apex distance between the lens in the horopter and the eye to be inspected at the measurement preparation stage, and the examiner brings the subject's forehead into contact with the forehead of the horopter, and the cornea on the front side of the horopter. The forehead support is moved back and forth while looking through the apex monitoring window to correctly align the corneal apex position of the lens in the horopter with the eye to be examined.

【0005】[0005]

【発明が解決しようとする課題】[Problems to be Solved by the Invention]

(イ) しかしながら上述の従来例(1) では、自覚測定レン
ズを通して他覚測定を行う際に、自覚測定レンズが測定
光路内に挿入されることによる光学的距離、つまり空気
換算距離の変化を補償して他覚測定を行っていないため
に、他覚測定の作動距離に正確なアライメントがなされ
ず測定値に誤差が生じ易い。
(A) However, in the above-mentioned conventional example (1), when performing the objective measurement through the subjective measurement lens, the variation in the optical distance, that is, the air-equivalent distance, due to the insertion of the subjective measurement lens in the measurement optical path is compensated for. Since the objective measurement is not performed, the working distance of the objective measurement is not accurately aligned, and an error is likely to occur in the measurement value.

【0006】(ロ) 一方、上述の従来例(2) の角膜頂点窓
による位置合わせでは、検者が見る位置によって角膜頂
点と角膜頂点窓に付いているチャートとの関係がずれ
て、正確なアライメントができない場合がある。また、
窓が小さく極めて見難いという問題も生じ、窓がホロプ
タの正面に付いているため検眼中は角膜頂点位置を確認
することが困難である。更に、もう一方の眼の角膜頂点
位置を確認するためには再度ホロプタの前に立たなけれ
ばならず、角膜頂点位置合わせが面倒であったり忘れて
しまうことがある。
(B) On the other hand, in the alignment by the corneal apex window of the above-mentioned conventional example (2), the relationship between the corneal apex and the chart attached to the corneal apex window is deviated depending on the position viewed by the examiner, and the accuracy is increased. Alignment may not be possible. Also,
There is also a problem that the window is small and extremely difficult to see, and it is difficult to confirm the position of the apex of the cornea during the optometry because the window is attached to the front of the horopter. Furthermore, in order to confirm the corneal apex position of the other eye, it is necessary to stand in front of the horopter again, and the corneal apex alignment may be troublesome or forgotten.

【0007】本発明の第1の目的は、上述の問題点(イ)
を解決し、作動距離を正確に合わせて測定精度の高い検
眼装置を提供することにある。
The first object of the present invention is the above-mentioned problem (a)
The object of the present invention is to provide an optometry apparatus with high measurement accuracy by accurately adjusting the working distance.

【0008】本発明の第2の目的は、上述の問題点(ロ)
を解消し、検眼中においても角膜頂点位置を監視し得る
検眼装置を提供することにある
A second object of the present invention is the above-mentioned problem (b).
To provide an optometry device capable of monitoring the corneal apex position even during optometry.

【0009】[0009]

【課題を解決するための手段】上述の目的を達成するた
めの第1発明の検眼装置は、種々の屈折力を有する自覚
測定レンズを光路内に挿入して自覚測定を行う自覚測定
手段と、前記自覚測定レンズを通して他覚測定を行う他
覚測定手段と、前記他覚測定時に光路内に挿入されてい
る前記自覚測定レンズの光学的特性を検出する検出手段
と、該検出手段により検出された前記自覚測定レンズの
光学的特性に応じて、前記他覚測定手段の光軸方向の位
置を変位させる駆動手段とを有することを特徴とする。
The optometry apparatus of the first invention for achieving the above object comprises subjective measuring means for performing subjective measurement by inserting subjective measuring lenses having various refractive powers in the optical path. Objective measurement means for performing objective measurement through the subjective measurement lens, detection means for detecting optical characteristics of the subjective measurement lens inserted in the optical path during the objective measurement, and detected by the detection means A driving unit that displaces the position of the objective measuring unit in the optical axis direction according to the optical characteristics of the subjective measuring lens.

【0010】また第2発明の検眼装置は、種々の屈折力
を有する自覚測定レンズを光路内に挿入して自覚測定を
行う自覚測定手段と、前記自覚測定レンズと被検眼の間
の距離を調節するレンズ装用距離調節手段と、被検眼の
前眼部をモニタで観察する前眼部観察手段とを有するこ
とを特徴とする。
The optometry apparatus of the second invention adjusts the distance between the subjective measurement lens and the subject's eye for measuring the subjective awareness by inserting subjective measurement lenses having various refractive powers into the optical path. And an anterior segment observing unit for observing the anterior segment of the subject's eye on a monitor.

【0011】更に第3発明の検眼装置は、種々の屈折力
を有する自覚測定レンズを光路内に挿入して自覚測定を
行う自覚測定手段と、前記自覚測定レンズと被検眼の間
の距離を調節するレンズ装用距離調節手段と、被検眼の
前眼部を前記自覚測定手段を分岐光路から観察する前眼
部観察手段とを有することを特徴とする。
Further, the optometry apparatus of the third invention adjusts the distance between the subjective measurement lens and the subject's eye, by inserting the subjective measurement lens having various refractive powers into the optical path to perform the subjective measurement. The lens wearing distance adjusting means and the anterior eye part observing means for observing the anterior eye part of the subject's eye from the consciousness measuring means from the branch optical path are characterized.

【0012】[0012]

【作用】上述の構成を有する第1発明の検眼装置では、
測定光路中に挿入される自覚測定レンズの屈折力等の光
学的特性を検出する検出手段を設け、この検出手段によ
り検出した自覚測定レンズの光学的特性に応じて行う他
覚測定の光軸方向の位置を変位させる駆動手段を設ける
ことにより、自覚測定レンズが挿入されても所定の作動
距離に位置合わせをして他覚測定を実施する。
In the optometry apparatus of the first invention having the above structure,
The optical axis direction of the objective measurement performed by providing the detection means for detecting the optical characteristics such as the refractive power of the subjective measurement lens inserted in the measurement optical path, and performing the objective measurement according to the optical characteristics of the subjective measurement lens detected by the detection means. By providing the driving means for displacing the position, the objective measurement is performed by aligning with the predetermined working distance even if the subjective measurement lens is inserted.

【0013】また第2発明の検眼装置では、モニタでの
角膜頂点の位置合わせを可能にしたので、検者は角膜頂
点位置合わせを行い、更に検眼中において角膜頂点位置
を監視する。
Further, in the eye examination apparatus of the second invention, since the position of the corneal apex can be adjusted on the monitor, the examiner performs the corneal apex position adjustment and further monitors the corneal apex position during the eye examination.

【0014】第2発明の検眼装置では、自覚測定手段の
光路から分岐した光路によって角膜頂点の位置合わせを
可能にしたので、検者は角膜頂点位置合わせを行い、更
に検眼中において角膜頂点位置を監視する。
In the eye examination apparatus according to the second aspect of the present invention, since the position of the corneal apex can be adjusted by the optical path branched from the optical path of the subjective measuring means, the examiner performs the corneal apex position adjustment and further the corneal apex position during the eye examination. Monitor.

【0015】[0015]

【実施例】本発明を図示の実施例に基づいて詳細に説明
する。図1において、被検眼Eの前方には、種々の屈折
力を有する多数個の自覚測定レンズ1、2を装着したタ
ーレット3、4、近赤外光を反射し可視光を透過する光
分割部材5、視標6が配列されている。光分割部材5の
反射方向には他覚屈折測定部7が配置されており、この
他覚屈折測定部7はパルスモータ8の軸8aに固定され
たピニオン9及びラック10を介して光軸方向に移動し
得るようになっている。また、他覚屈折測定部7の出力
は制御部11に接続されており、制御部11の出力はパ
ルスモータ8、12、13、フォトインタラプタ14、
15に接続されている。パルスモータ12、13はター
レット3、4をそれぞれ回転し、フォトインタラプタ1
4、15はターレット3、4の遮光部3a、4aを検知
するようになっている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail based on the illustrated embodiments. In FIG. 1, in front of the eye E to be inspected, a turret 3, 4 equipped with a large number of subjective measurement lenses 1, 2 having various refractive powers, and a light splitting member for reflecting near infrared light and transmitting visible light. 5 and optotypes 6 are arranged. An objective refraction measuring unit 7 is arranged in the reflection direction of the light splitting member 5, and the objective refraction measuring unit 7 is in the optical axis direction via a pinion 9 and a rack 10 fixed to a shaft 8a of a pulse motor 8. You can move to. Further, the output of the objective refraction measuring unit 7 is connected to the control unit 11, and the output of the control unit 11 is the pulse motors 8, 12, 13 and the photo interrupter 14,
It is connected to 15. The pulse motors 12 and 13 rotate the turrets 3 and 4, respectively, and the photo interrupter 1
Reference numerals 4 and 15 are adapted to detect the light shielding portions 3a and 4a of the turrets 3 and 4, respectively.

【0016】この実施例においては、自覚測定を始める
前段階として、図2に示すように自覚測定レンズ1、2
が光路内に挿入されていない状態とし、ターレット3、
4の遮光部3a、4aをフォトインタラプタ14、15
で検知される位置に一致させ、この状態をターレット
3、4の回転初期位置とする。ここで、他覚屈折測定部
7内の光源を点灯し、光分割部材5を介して近赤外光を
被検眼Eの眼底に投影し、その反射光を他覚屈折測定部
7内の受光部で受光し他覚屈折値を求める。
In this embodiment, the subjective measurement lenses 1, 2 as shown in FIG.
Is not inserted in the optical path, and the turret 3,
The light-shielding portions 3a and 4a of No. 4 are connected to the photo interrupters 14 and 15
The initial position of rotation of the turrets 3 and 4 is set to match the position detected by. Here, the light source in the objective refraction measuring unit 7 is turned on, near-infrared light is projected onto the fundus of the eye E through the light dividing member 5, and the reflected light is received in the objective refraction measuring unit 7. The light is received at the section and the objective refraction value is obtained.

【0017】上述の測定結果を基にして制御部11はパ
ルスモータ12、13を駆動し、ターレット3、4を回
転して自覚測定レンズ1、2の最適組合わせを選択し、
自覚測定屈折力を求める。このとき、他覚屈折測定部7
の光軸方向の位置は制御部11の出力により距離L0に設
定されている。なお、この場合の作動距離はL+L0であ
り、Lは瞳Epから光分割部材5までの距離、L0は光分割
部材5から他覚屈折測定部7までの距離である。
Based on the above measurement results, the control unit 11 drives the pulse motors 12 and 13 to rotate the turrets 3 and 4 to select the optimum combination of the subjective measurement lenses 1 and 2.
Self-measurement Determine the refractive power. At this time, the objective refraction measuring unit 7
The position in the optical axis direction of is set to the distance L0 by the output of the control unit 11. The working distance in this case is L + L0, L is the distance from the pupil Ep to the light splitting member 5, and L0 is the distance from the light splitting member 5 to the objective refraction measuring unit 7.

【0018】図3は被検眼Eが遠視眼である場合の自覚
屈折レンズ1を光路内に付加した状態を示し、他覚屈折
測定を行う場合の他覚屈折測定部7が図2の距離L0から
図3の距離L1に変化している。
FIG. 3 shows a state in which the subjective refraction lens 1 is added to the optical path when the eye E to be inspected is a hypermetropic eye, and the objective refraction measuring unit 7 for performing the objective refraction measurement has the distance L0 shown in FIG. Has changed to the distance L1 in FIG.

【0019】図4は正の自覚屈折レンズ1を付加した際
の他覚屈折測定部7の移動状態を示し、図4において他
覚屈折測定部7の光束の取出口である瞳Epの位置は光分
割部材5からLの距離にあるが、自覚屈折レンズ1を付
加することによりLからL’に距離が変化し瞳Epの位置
がずれる。
FIG. 4 shows the movement state of the objective refraction measuring unit 7 when the positive subjective refraction lens 1 is added. In FIG. 4, the position of the pupil Ep, which is the outlet of the luminous flux of the objective refraction measuring unit 7, is Although the distance is L from the light splitting member 5, the distance is changed from L to L ′ by adding the subjective refraction lens 1, and the position of the pupil Ep is displaced.

【0020】そこで、図5に示すように他覚屈折測定部
7を光分割部材5からの距離がL0からL1になるように、
ラック10及びピニオン9の噛合により移動させると、
自覚屈折レンズ1が付加された場合でも、瞳Epの位置を
正しく光分割部材5からの距離がLとなるように設定す
ることができる。
Therefore, as shown in FIG. 5, the objective refraction measuring unit 7 is arranged so that the distance from the light splitting member 5 is from L0 to L1.
When moved by the engagement of the rack 10 and the pinion 9,
Even when the subjective refraction lens 1 is added, the position of the pupil Ep can be properly set so that the distance from the light splitting member 5 is L.

【0021】図6は光路内に付加する自覚測定レンズ1
の屈折力Dと他覚屈折測定部7の初期位置L+L0からの
移動距離ΔLとの関係を表すグラフ図である。なお、自
覚屈折レンズ1又は(及び)自覚屈折レンズ2を付加し
た場合に検出した自覚屈折レンズの光学的特性を加味し
て、その時の他覚屈折測定部7の測定値を用いて被検眼
Eの屈折力を制御部11で算出する。
FIG. 6 shows a subjective measuring lens 1 added in the optical path.
7 is a graph showing the relationship between the refractive power D of the objective refraction measuring unit 7 and the moving distance ΔL of the objective refraction measuring unit 7 from the initial position L + L0. The optical characteristic of the subjective refraction lens detected when the subjective refraction lens 1 and / or the subjective refraction lens 2 is added is added, and the measured value of the objective refraction measurement unit 7 at that time is used to obtain the eye E to be inspected. The control unit 11 calculates the refractive power of.

【0022】図7は第2の実施例を示し、図1と同一の
符号は同一の部材を示している。被検眼Eの前方には、
光分割部材21、可変焦点レンズ22、光分割部材2
3、可変焦点レンズ24、光分割部材25、光分割部材
5、視標6が配列されている。可変焦点レンズ22の周
囲にはレンズ枠26が設けられ、このレンズ枠26は図
8に示すように複数個の圧電素子26a〜26lにより
構成されており、可変焦点レンズ24もその周囲に複数
個の圧電素子から成るレンズ枠27が設けられている。
FIG. 7 shows a second embodiment, and the same reference numerals as those in FIG. 1 denote the same members. In front of the eye E to be examined,
Light splitting member 21, variable focus lens 22, light splitting member 2
3, the variable focus lens 24, the light splitting member 25, the light splitting member 5, and the visual target 6 are arranged. A lens frame 26 is provided around the varifocal lens 22, and the lens frame 26 is composed of a plurality of piezoelectric elements 26a to 26l as shown in FIG. A lens frame 27 including the piezoelectric element is provided.

【0023】光分割部材5の反射方向には他覚屈折測定
部7が設けられており、この他覚屈折測定部7は制御部
11により、第1の実施例と同様に駆動されるようにな
っている。また、制御部11の出力はドライバ28、2
9を介して圧電素子の伸縮状態により可変焦点レンズ2
2、24の屈折力や円柱度の光学特性を変化するように
なっている。光分割部材21、23の入射方向には図9
に示すように例えば4個の開口部30a〜30dを有す
るマスク30、31、コリメートレンズ32、33、L
EDから成る光源34、35が設けられている。また、
光分割部材23、25の反射方向にはそれぞれ受光素子
36、37が配置されており、受光素子36、37の出
力は制御部11に接続されている。
An objective refraction measuring unit 7 is provided in the reflection direction of the light splitting member 5, and the objective refraction measuring unit 7 is driven by the control unit 11 in the same manner as in the first embodiment. Has become. The output of the control unit 11 is the drivers 28, 2
The variable focus lens 2 depending on the expansion / contraction state of the piezoelectric element via 9
The optical properties of the refracting powers of 2 and 24 and the cylindrical degree are changed. In the incident direction of the light splitting members 21 and 23, FIG.
As shown in, for example, masks 30, 31 having four openings 30a to 30d, collimating lenses 32, 33, L
Light sources 34 and 35 including EDs are provided. Also,
Light receiving elements 36 and 37 are arranged in the reflecting directions of the light splitting members 23 and 25, respectively, and outputs of the light receiving elements 36 and 37 are connected to the control unit 11.

【0024】測定に関しては、光源34の光束はコリメ
ートレンズ32を介し、マスク30の開口部30a〜3
0dを透過し、光分割部材21で反射され、可変焦点レ
ンズ22を経て更にもう一方の光分割部材23で反射さ
れ、受光素子36上に図10に示すように像36a〜3
6dを形成する。このとき、制御部11はこの受光素子
36上の像36a〜36dの位置、大きさ等から可変焦
点レンズ22の光学的特性をリアルタイムに検出し、そ
の光学的特性を可変焦点レンズ22の圧電素子26a〜
26lにフィードバックする。
Regarding the measurement, the light flux of the light source 34 passes through the collimator lens 32 and the openings 30a to 3 of the mask 30.
0d, is reflected by the light splitting member 21, is reflected by the other light splitting member 23 through the variable focus lens 22, and is reflected on the light receiving element 36 as shown in FIG.
6d is formed. At this time, the control unit 11 detects the optical characteristic of the varifocal lens 22 in real time from the position, size, etc. of the images 36a to 36d on the light receiving element 36, and the optical characteristic is detected by the piezoelectric element of the varifocal lens 22. 26a ~
Give feedback to 26l.

【0025】同様に、光源35からの光束はコリメート
レンズ33、マスク31、光分割部材23、可変焦点レ
ンズ24、光分割部材25を介して受光素子37に入射
し、可変焦点レンズ22又は(及び)可変焦点レンズ2
4の光学的特性に応じて被検眼Eの自覚測定を行う。更
に、受光素子36、37の出力により他覚屈折測定部7
を移動し、その距離を調節することにより自覚測定レン
ズ22、24を付加した状態での他覚測定も正確に行え
るようになっている。
Similarly, the light flux from the light source 35 enters the light receiving element 37 through the collimator lens 33, the mask 31, the light splitting member 23, the variable focus lens 24, and the light splitting member 25, and the variable focus lens 22 or (and ) Variable focus lens 2
The subjective measurement of the eye E is performed according to the optical characteristics of 4. Further, the objective refraction measuring unit 7 is controlled by the outputs of the light receiving elements 36 and 37.
Is moved and the distance is adjusted so that objective measurement can be accurately performed with the subjective measurement lenses 22 and 24 added.

【0026】なお、本実施例では第1の実施例のような
他覚測定の際に付加する自覚測定レンズを他覚測定毎に
固定するのではなく、可変焦点レンズ22又は(及び)
可変焦点レンズ24の光学的特性を連続的に変化させ、
この系にフィードバックをかけながら行う連続測定が可
能であり、所謂自動雲霧が可能となる。
In this embodiment, the subjective measuring lens to be added at the time of objective measurement as in the first embodiment is not fixed for each objective measurement, but the variable focus lens 22 or (and)
The optical characteristics of the variable focus lens 24 are continuously changed,
It is possible to carry out continuous measurement while feeding feedback to this system, and so-called automatic fog becomes possible.

【0027】また、第1及び第2の実施例では何れも正
の自覚測定レンズを付加して遠視眼の検出、測定を行う
場合のみを説明したが、近視眼や乱視眼等を含んだ実際
の眼屈折測定においても、付加する自覚測定レンズをそ
れに応じた特性を有する適正なレンズを選択することに
よって、自覚測定と他覚測定を適度に繰り返しながら進
めることができる。
In each of the first and second embodiments, only the case where a positive subjective measuring lens is added to detect and measure a hyperopic eye is described, but an actual case including a myopic eye, an astigmatic eye, etc. Also in the eye refraction measurement, by selecting an appropriate lens having characteristics corresponding to the subjective measurement lens to be added, it is possible to proceed while appropriately repeating the subjective measurement and the objective measurement.

【0028】図11は第3の実施例を示し、被検眼Eの
前方にはホロプタ本体41が設けられ、その内部に種々
の屈折力を有する複数個の自覚測定レンズ42、43を
挿入できるようにターレット44、45、光分割部材4
6が配置され、ホロプタ本体41の外側の透過方向に視
標47が配置されている。光分割部材46の反射方向に
は前眼部照明光源48、対物レンズ49、撮像素子50
が配置され、光分割部材46と対物レンズ49の間には
光路長を変更させるための平行平面板51が挿入、退避
できるように配置されている。撮像素子50の出力は角
膜頂点位置入力スイッチ52の出力と共にテレビモニタ
53に接続されている。更に、装置には被検者Mの額に
当接する額当て54の調節つまみ55が取り付けられて
いる。
FIG. 11 shows a third embodiment, in which a horopter main body 41 is provided in front of an eye E to be examined, and a plurality of subjective measuring lenses 42 and 43 having various refractive powers can be inserted therein. Turrets 44, 45, light splitting member 4
6 is arranged, and the visual target 47 is arranged outside the horopter main body 41 in the transmission direction. In the reflection direction of the light splitting member 46, the anterior segment illumination light source 48, the objective lens 49, the image sensor 50
Is arranged between the light splitting member 46 and the objective lens 49 so that a plane parallel plate 51 for changing the optical path length can be inserted and retracted. The output of the image pickup device 50 is connected to the television monitor 53 together with the output of the corneal vertex position input switch 52. Further, the device is provided with an adjusting knob 55 of a forehead rest 54 that abuts on the subject M's forehead.

【0029】この実施例においては、被検眼Eの角膜頂
点距離VDを調節するために、被検者Mをホロプタ本体4
1の前方に座らせ、額当て54を額に当接し、覗き窓か
ら視標47を注視するように指示する。そして、照明用
光源48を点灯し光分割部材46で反射させて被検眼E
を照明する。前眼部による反射光束は元の光路を戻り、
光分割部材46で反射してレンズ49を透過した後に撮
像素子50で受光され、その瞳像Ep’がテレビモニタ5
3に表示される。
In this embodiment, in order to adjust the corneal vertex distance VD of the eye E to be inspected, the subject M is moved to the horopter main body 4
1 is seated in front of the forehead, the forehead rest 54 is brought into contact with the forehead, and an instruction is made to gaze at the optotype 47 through the viewing window. Then, the illumination light source 48 is turned on and is reflected by the light splitting member 46 to cause the eye E to be inspected.
Illuminate. The light flux reflected by the anterior segment returns to the original optical path,
The image is picked up by the image sensor 50 after being reflected by the light splitting member 46 and transmitted through the lens 49, and its pupil image Ep ′ is displayed.
It is displayed in 3.

【0030】検者はテレビモニタ53を見ながらホロプ
タ本体41の上下、左右の調節を行って、瞳像Ep’をテ
レビモニタ53の中心にアライメントする。もし、角膜
頂点距離VDを12mmにすべき場合には、角膜頂点位置
入力スイッチ52の「12」側を押すと平行平面板51
は光路内から退避する。
The examiner adjusts the up / down and left / right of the horopter main body 41 while looking at the television monitor 53, and aligns the pupil image Ep 'with the center of the television monitor 53. If the corneal apex distance VD should be 12 mm, pressing the “12” side of the corneal apex position input switch 52 will cause the plane parallel plate 51 to move.
Escape from the optical path.

【0031】図12(a) で示すように、自覚測定レンズ
42はその後側頂点位置から被検眼Eの瞳Epの位置まで
が15mmとなる位置に、撮像素子50の共役となるよ
うに光学的に配置される。一般的に、角膜頂点Ecと瞳Ep
の光路長は3mm程度なので、瞳像Ep’の焦点合わせを
行うことにより角膜頂点距離VDを12mmにすることが
できる。また、角膜頂点距離VDを13.5mmにしたい
場合は、角膜頂点位置入力スイッチ52の「13.5」
側を押せば、平行平面板51が光路内に挿入される。平
行平面板51の厚さを4.5mm程度にすれば光路長が
1.5mm伸びるので、図12(b) で示したように、自
覚測定レンズ42の後側頂点位置から被検眼の瞳Epの位
置までの16.5mmとなる位置が撮像素子50と共役
となる。ここで、瞳像Ep’の焦点合わせを行うことによ
り、同様に角膜頂点距離VDを13.5mmにすることが
できる。
As shown in FIG. 12 (a), the subjective measuring lens 42 is optically arranged so as to be conjugate with the image pickup element 50 at a position where the distance from the rear side vertex position to the position of the pupil Ep of the eye E to be examined is 15 mm. Is located in. Generally, the corneal apex Ec and the pupil Ep
Since the optical path length is about 3 mm, the corneal vertex distance VD can be set to 12 mm by focusing the pupil image Ep '. Further, when it is desired to set the corneal vertex distance VD to 13.5 mm, "13.5" of the corneal vertex position input switch 52 is set.
If the side is pushed, the plane parallel plate 51 is inserted into the optical path. If the thickness of the plane-parallel plate 51 is set to about 4.5 mm, the optical path length is extended by 1.5 mm. Therefore, as shown in FIG. 12 (b), the pupil Ep of the eye Ep is measured from the rear vertex position of the subjective measurement lens 42. The position up to the position of 16.5 mm is conjugate with the image sensor 50. Here, by focusing the pupil image Ep ′, the corneal vertex distance VD can be similarly set to 13.5 mm.

【0032】なお、平行平面板51は角膜頂点距離VDが
13.5mmとなる厚さ4.5mmのみならず、様々の
厚さのものを用意してもよい。そして、額当て54の位
置を調節つまみ55で調節して角膜頂点距離VDを正しく
合わせた後に、自覚屈折測定を開始する。このとき、タ
ーレット44、45を回転することにより、自覚測定レ
ンズ42、43の屈折力を自在に組合わせることができ
る。検者はテレビモニタ53により容易に瞳像Ep’のピ
ントを確認できるので、被検眼Eが動いた場合でも検眼
中に角膜頂点距離VDが適正であるか否かをチェックする
ことができる。更に、もう一方の被検眼を測定する際に
も、ホロプタ本体41を移動して同様に行うことができ
る。また、角膜頂点距離VDを調節するために、額当て5
4を電気的に操作するようにすれば操作性が向上する。
The plane parallel plate 51 is not limited to a thickness of 4.5 mm at which the corneal vertex distance VD is 13.5 mm, but various thicknesses may be prepared. Then, after adjusting the position of the forehead rest 54 with the adjusting knob 55 to correctly match the corneal vertex distance VD, the subjective refraction measurement is started. At this time, by rotating the turrets 44 and 45, the refractive powers of the subjective measurement lenses 42 and 43 can be freely combined. Since the examiner can easily confirm the focus of the pupil image Ep 'on the television monitor 53, it is possible to check whether or not the corneal vertex distance VD is appropriate during the eye examination even when the eye E is moved. Further, when measuring the other eye to be inspected, the horopter main body 41 can be moved in the same manner. Also, in order to adjust the corneal apex distance VD, a forehead pad 5
If 4 is operated electrically, the operability is improved.

【0033】なお、被検眼Eの観察はテレビモニタによ
るのではなく、例えばファインダによって観察してもよ
い。
The eye E to be inspected may be observed not by a television monitor but by a finder, for example.

【0034】図13は第4の実施例を示し、前眼部観察
光学系内に他覚屈折測定部が組み込まれており、それ以
外は第3の実施例と同様であり、図11と同一の符号は
同一の部材を表している。対物レンズ49の後方には光
分割部材61、他覚屈折測定光学系62が配列され、他
覚屈折測定光学系62には近赤外光源が内蔵されてい
る。また、光分割部材61の反射方向には、反射ミラー
63、結像レンズ64、撮像素子50が配置されてい
る。
FIG. 13 shows a fourth embodiment, which is the same as the third embodiment except that the objective refraction measuring section is incorporated in the anterior ocular segment observing optical system, and is the same as FIG. 11. The reference symbols indicate the same members. A light splitting member 61 and an objective refraction measurement optical system 62 are arranged behind the objective lens 49, and the objective refraction measurement optical system 62 incorporates a near infrared light source. A reflecting mirror 63, an imaging lens 64, and an image sensor 50 are arranged in the reflecting direction of the light splitting member 61.

【0035】この実施例において、照明光源48の前眼
部による反射光束は光分割部材46で反射し、対物レン
ズ49を介して光分割部材61、反射ミラー63で反射
し、結像レンズ64を経て撮像素子50で受光され、そ
の瞳像Ep’はテレビモニタ53に表示される。また、第
3の実施例と同様にしてアライメントを行い、正しく角
膜頂点距離VDを合せた後に、自覚測定レンズ42、43
の屈折力を組み合わせて自覚屈折力を測定したり、図示
しないスイッチを押して他覚屈折測定光学系62内の近
赤外光源を点灯し、被検眼Eの眼底反射光を撮像素子5
0で受光し、他覚屈折力を測定する。
In this embodiment, the light beam reflected by the anterior segment of the illumination light source 48 is reflected by the light splitting member 46, is reflected by the light splitting member 61 and the reflecting mirror 63 through the objective lens 49, and is formed by the imaging lens 64. After that, the light is received by the image sensor 50, and the pupil image Ep 'is displayed on the television monitor 53. In addition, alignment is performed in the same manner as in the third embodiment, and after the corneal vertex distance VD is correctly adjusted, the subjective measurement lenses 42 and 43 are used.
To measure the subjective refractive power, or press a switch (not shown) to turn on the near-infrared light source in the objective refraction measuring optical system 62 to detect the fundus reflected light of the eye E to be imaged.
Light is received at 0 and the objective refracting power is measured.

【0036】図14は第5の実施例の前眼部観察光学系
を示し、図13における自覚測定レンズ42と結像レン
ズ64の間に移動手段71により光軸方向に移動できる
対物レンズ72が配置されている。
FIG. 14 shows the anterior ocular segment observation optical system of the fifth embodiment, in which an objective lens 72 which can be moved in the optical axis direction by a moving means 71 is provided between the subjective measuring lens 42 and the imaging lens 64 in FIG. It is arranged.

【0037】被検眼Eを反射した光束は、モータ等の駆
動手段により光軸上を移動可能な移動手段71を備えた
対物レンズ72によって平行光とされ、結像レンズ64
により瞳像Ep’を撮像素子50に結像させ、テレビモニ
タにより瞳像Ep' を観察する。
The light beam reflected by the eye E to be examined is made into parallel light by an objective lens 72 equipped with a moving means 71 which can move on the optical axis by a driving means such as a motor, and an image forming lens 64 is formed.
The pupil image Ep 'is imaged on the image pickup device 50 by, and the pupil image Ep' is observed on the television monitor.

【0038】角膜頂点距離VDは図15に示すキーボード
73によって数値入力を行い、キーボード73の入力値
は液晶ディスプレイ74に表示されるようになってい
る。角膜頂点距離VDを12.0mmとする場合は、キー
ボード73上で「1」、「2」、「.」、「0」と入力
すると、ディスプレイ74に「12.0」と表示され、
移動手段71がその通りに駆動される。
The corneal vertex distance VD is numerically input by the keyboard 73 shown in FIG. 15, and the input value of the keyboard 73 is displayed on the liquid crystal display 74. When the corneal vertex distance VD is set to 12.0 mm, if "1", "2", ".", And "0" are entered on the keyboard 73, "12.0" is displayed on the display 74,
The moving means 71 is driven accordingly.

【0039】このような設定により、図14(a) に示す
ように移動手段71によって対物レンズ72が移動後に
固定され、瞳像Ep’により角膜頂点距離VDが12mmに
なるように位置決めが行われる。また、角膜頂点距離VD
を13.5mmとする場合には、キーボード73で同様
に入力することにより、図14(b) に示すように移動手
段71により対物レンズ72を1.5mm移動した後に
固定し、角膜頂点距離VDの位置決めが行われる。また、
対物レンズ72の移動量と角膜頂点距離VDの変位量とは
一致しており、キーボード73で入力される任意の角膜
頂点距離VDの値を移動手段71により設定することがで
きる。
With such a setting, as shown in FIG. 14 (a), the objective lens 72 is fixed by the moving means 71 after the movement, and the pupil image Ep 'positions the corneal vertex distance VD to 12 mm. . Also, the corneal apex distance VD
When the distance is set to 13.5 mm, the objective lens 72 is moved by 1.5 mm by the moving means 71 and then fixed by the same input using the keyboard 73, and the corneal vertex distance VD is set. Is positioned. Also,
The amount of movement of the objective lens 72 and the amount of displacement of the corneal vertex distance VD match, and the value of the arbitrary corneal vertex distance VD input by the keyboard 73 can be set by the moving means 71.

【0040】以上の実施例以外にも、組合わせレンズを
挿入したり、屈折力変化レンズを使用したりなどして角
膜頂点位置を変化させる方法が考えられ、更に眼屈折力
測定部自身を移動する方法等でも前述と同様の効果が得
られる。
In addition to the above embodiments, a method of changing the corneal apex position by inserting a combination lens or using a refractive power changing lens can be considered, and the eye refractive power measuring unit itself is moved. The same effect as described above can be obtained by the method or the like.

【0041】[0041]

【発明の効果】以上説明したように第1発明に係る検眼
装置は、自覚測定レンズの光学的特性に応じて、他覚測
定時の光軸方向の位置を変位させる駆動手段を設けるこ
とにより、自覚測定レンズが挿入された状態でも、所定
の作業距離に正確に位置合わせが行え、作動距離のずれ
による他覚測定の誤差をなくすことができ、正確な他覚
測定及び自覚測定が行える。
As described above, the optometry apparatus according to the first invention is provided with the drive means for displacing the position in the optical axis direction at the time of objective measurement according to the optical characteristics of the subjective measurement lens. Even when the subjective measuring lens is inserted, the positioning can be accurately performed at a predetermined working distance, the error of the objective measurement due to the shift of the working distance can be eliminated, and the accurate objective measurement and subjective measurement can be performed.

【0042】また、第2、第3発明に係る検眼装置は、
前眼部観察手段と距離調節手段とを備え、従来では困難
であった検眼中での角膜頂点距離の確認も容易に行うこ
とができる。
Further, the optometry apparatus according to the second and third inventions,
By providing the anterior segment observation means and the distance adjustment means, it is possible to easily confirm the corneal apex distance during the optometry, which has been difficult in the past.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1の実施例の構成図である。FIG. 1 is a configuration diagram of a first embodiment.

【図2】他覚測定状態の説明図である。FIG. 2 is an explanatory diagram of an objective measurement state.

【図3】他覚測定状態の説明図である。FIG. 3 is an explanatory diagram of an objective measurement state.

【図4】動作原理図である。FIG. 4 is an operation principle diagram.

【図5】動作原理図である。FIG. 5 is an operation principle diagram.

【図6】他覚屈折測定部移動量と自覚測定レンズの屈折
力との関係図である。
FIG. 6 is a relationship diagram between the amount of movement of the objective refraction measuring unit and the refractive power of the subjective measurement lens.

【図7】第2の実施例の構成図である。FIG. 7 is a configuration diagram of a second embodiment.

【図8】可変焦点レンズの構成図である。FIG. 8 is a configuration diagram of a variable focus lens.

【図9】マスクの正面図である。FIG. 9 is a front view of the mask.

【図10】受光素子上の反射像の説明図である。FIG. 10 is an explanatory diagram of a reflected image on the light receiving element.

【図11】第3の実施例の構成図である。FIG. 11 is a configuration diagram of a third embodiment.

【図12】動作原理図である。FIG. 12 is an operation principle diagram.

【図13】第4の実施例の構成図である。FIG. 13 is a configuration diagram of a fourth embodiment.

【図14】動作原理図である。FIG. 14 is an operation principle diagram.

【図15】角膜頂点距離入力部の説明図である。FIG. 15 is an explanatory diagram of a corneal vertex distance input unit.

【符号の説明】[Explanation of symbols]

5、46 光分割部材 1、2、42、43 自覚測定レンズ 3、4、44、45 ターレット 7 他覚測定部 11 制御部 51 平行平面板 50 撮像素子 62 他覚屈折測定光学系 72 対物レンズ 5, 46 Light splitting member 1, 2, 42, 43 Subjective measuring lens 3, 4, 44, 45 Turret 7 Objective measuring unit 11 Control unit 51 Parallel plane plate 50 Image sensor 62 Objective refraction measuring optical system 72 Objective lens

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 種々の屈折力を有する自覚測定レンズを
光路内に挿入して自覚測定を行う自覚測定手段と、前記
自覚測定レンズを通して他覚測定を行う他覚測定手段
と、前記他覚測定時に光路内に挿入されている前記自覚
測定レンズの光学的特性を検出する検出手段と、該検出
手段により検出された前記自覚測定レンズの光学的特性
に応じて、前記他覚測定手段の光軸方向の位置を変位さ
せる駆動手段とを有することを特徴とする検眼装置。
1. An objective measuring means for performing an objective measurement by inserting an objective measuring lens having various refractive powers into an optical path, an objective measuring means for performing an objective measurement through the objective measuring lens, and the objective measurement. Detection means for detecting the optical characteristics of the subjective measurement lens sometimes inserted in the optical path, and the optical axis of the objective measurement means according to the optical characteristics of the subjective measurement lens detected by the detection means. An optometry apparatus comprising: a driving unit that displaces the position in the direction.
【請求項2】 前記自覚測定レンズを屈折力可変レンズ
とした請求項1に記載の検眼装置。
2. The optometry apparatus according to claim 1, wherein the subjective measurement lens is a variable refractive power lens.
【請求項3】 種々の屈折力を有する自覚測定レンズを
光路内に挿入して自覚測定を行う自覚測定手段と、前記
自覚測定レンズと被検眼の間の距離を調節するレンズ装
用距離調節手段と、被検眼の前眼部をモニタで観察する
前眼部観察手段とを有することを特徴とする検眼装置。
に記載の検眼装置。
3. A consciousness measuring means for performing consciousness measurement by inserting consciousness measuring lenses having various refractive powers into an optical path, and a lens wearing distance adjusting means for adjusting a distance between the consciousness measuring lens and an eye to be examined. And an anterior ocular segment observing means for observing the anterior ocular segment of the subject's eye on a monitor.
The optometry apparatus according to.
【請求項4】 眼屈折力を他覚的に測定する眼屈折力測
定手段を有する請求項3に記載の検眼装置。
4. The optometry apparatus according to claim 3, further comprising an eye-refractive-power measuring means for objectively measuring the eye-refractive power.
【請求項5】 種々の屈折力を有する自覚測定レンズを
光路内に挿入して自覚測定を行う自覚測定手段と、前記
自覚測定レンズと被検眼の間の距離を調節するレンズ装
用距離調節手段と、被検眼の前眼部を前記自覚測定手段
を分岐光路から観察する前眼部観察手段とを有すること
を特徴とする検眼装置。
5. A consciousness measuring means for performing a consciousness measurement by inserting consciousness measuring lenses having various refractive powers into an optical path, and a lens wearing distance adjusting means for adjusting a distance between the consciousness measuring lens and an eye to be examined. An optometry apparatus for observing the anterior ocular segment of an eye to be inspected, the anterior ocular segment observing unit observing the subjective measuring unit from a branched optical path.
JP5117794A 1993-04-21 1993-04-21 Eye examination device Pending JPH06304140A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5117794A JPH06304140A (en) 1993-04-21 1993-04-21 Eye examination device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5117794A JPH06304140A (en) 1993-04-21 1993-04-21 Eye examination device

Publications (1)

Publication Number Publication Date
JPH06304140A true JPH06304140A (en) 1994-11-01

Family

ID=14720460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5117794A Pending JPH06304140A (en) 1993-04-21 1993-04-21 Eye examination device

Country Status (1)

Country Link
JP (1) JPH06304140A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002143092A (en) * 2000-11-14 2002-05-21 Topcon Corp Subjective optometric device
JP2011194271A (en) * 2001-07-27 2011-10-06 Tracey Technologies Llc Measuring refractive characteristics of human eyes
JP2012165788A (en) * 2011-02-10 2012-09-06 Topcon Corp Subjective optometric apparatus
CN107788946A (en) * 2016-09-05 2018-03-13 尼德克株式会社 Subjective formula optometry equipment and subjective formula optometry program

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002143092A (en) * 2000-11-14 2002-05-21 Topcon Corp Subjective optometric device
JP4629853B2 (en) * 2000-11-14 2011-02-09 株式会社トプコン A subjective optometry device
JP2011194271A (en) * 2001-07-27 2011-10-06 Tracey Technologies Llc Measuring refractive characteristics of human eyes
JP2012165788A (en) * 2011-02-10 2012-09-06 Topcon Corp Subjective optometric apparatus
CN107788946A (en) * 2016-09-05 2018-03-13 尼德克株式会社 Subjective formula optometry equipment and subjective formula optometry program
CN107788946B (en) * 2016-09-05 2022-02-11 尼德克株式会社 Subjective optometry device and subjective optometry program

Similar Documents

Publication Publication Date Title
US8851672B2 (en) Fundus photographing apparatus
JP5248926B2 (en) Eye refractive power measuring device
US10188282B2 (en) Subjective optometry apparatus
US10743762B2 (en) Ophthalmologic apparatus
JPH04200436A (en) Ophthamologic apparatus
JP5342211B2 (en) Eye refractive power measuring device
JP2017086652A (en) Subjective optometry apparatus
JP3399613B2 (en) Optometry device
US6547392B2 (en) Ophthalmic apparatus
JP3655071B2 (en) Eye refractive power measurement device
JP6736356B2 (en) Ophthalmic equipment
JP6841091B2 (en) Subjective optometry device
JPH06217938A (en) Ocular refractometer
JP4851176B2 (en) Optical target presentation optical device
JPH06165758A (en) Ophthalmic apparatus
JPH06304140A (en) Eye examination device
JP2001258848A (en) Fundus camera
JPH08182651A (en) Ophthalmological device
JPH09253049A (en) Ophthalmometer
GB2129963A (en) Visual acuity tester
JP3332489B2 (en) Optometry device
EP4382031A1 (en) Apparatus and method for determining refraction error of at least an eye of a subject
JP2000079096A (en) Optometer
JP2024006535A (en) Optometer and optometry program
JP3386613B2 (en) Objective eye refractometer