JP5342211B2 - Eye refractive power measuring device - Google Patents

Eye refractive power measuring device Download PDF

Info

Publication number
JP5342211B2
JP5342211B2 JP2008283626A JP2008283626A JP5342211B2 JP 5342211 B2 JP5342211 B2 JP 5342211B2 JP 2008283626 A JP2008283626 A JP 2008283626A JP 2008283626 A JP2008283626 A JP 2008283626A JP 5342211 B2 JP5342211 B2 JP 5342211B2
Authority
JP
Japan
Prior art keywords
eye
refractive power
distance
subject
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008283626A
Other languages
Japanese (ja)
Other versions
JP2010110388A (en
JP2010110388A5 (en
Inventor
規二 河合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidek Co Ltd
Original Assignee
Nidek Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidek Co Ltd filed Critical Nidek Co Ltd
Priority to JP2008283626A priority Critical patent/JP5342211B2/en
Publication of JP2010110388A publication Critical patent/JP2010110388A/en
Publication of JP2010110388A5 publication Critical patent/JP2010110388A5/ja
Application granted granted Critical
Publication of JP5342211B2 publication Critical patent/JP5342211B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To easily recognize whether an additional degree is necessary or not for a subject's eye when the visual acuity is measured for myopia, and to measure the visual acuity for myopia with the addition of the additional degree in a short period of time. <P>SOLUTION: The eye refractive power measuring apparatus includes a refractive power measuring means for measuring the refractive power of the subject's eye by projecting a measuring target on the ocular fundus and receiving the light flux reflected from the ocular fundus by a light receiving element; and a visual target presenting optical system for changing the visual target to be presented to the subject's eye from the hyperopic distance to the myopic distance. The eye refractive power measuring apparatus also includes: an input means for inputting a transfer signal to the measurement of the visual acuity for myopia; a control means for switching the visual target of the visual target presenting optical system to the myopic distance in the measurement of the visual acuity for myopia; a conducting means for measuring the refractive power by the refractive power measuring means when the visual acuity is measured for myopia; and a determining means for finding the refractive power necessary for the subject's eye to see the visual target in the myopic distance, comparing the found refractive power with the refractive power for myopia obtained by the measuring means, determining whether the additional degree is necessary for the subject's eye in the measurement of the visual acuity for myopia, and announcing the result of the determination. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、被検者眼の眼屈折力を測定する眼屈折力測定装置に関する。   The present invention relates to an eye refractive power measuring apparatus that measures the eye refractive power of a subject's eye.

被検者の眼底に測定指標を投影し、眼底からの反射光束を受光素子に受光し、受光素子の出力に基づいて被検者眼の屈折力を他覚的に測定する眼屈折力測定装置が知られている(例えば、特許文献1参照)。この装置は被検者眼に呈示する固視標の呈示距離を可変にした視標呈示光学系を持ち、雲霧を掛けた状態で遠用距離の屈折力が測定される。また、視標呈示光学系に乱視及び球面の屈折力を矯正する矯正光学系を持つ自覚屈折力測定機能が付加された装置がある(例えば、特許文献2、3参照)。この装置においては、視標呈示光学系の視標を所定の近用距離に呈示し、矯正光学系の駆動制御により遠用矯正状態に対して加入度を加えた状態での近用視力測定(近用視力検査)も可能にされている。
特開2004−129711号公報 特開昭59−80227号公報 特開2006−280613号公報
An eye refractive power measuring device that projects a measurement index onto the fundus of the subject, receives a reflected light beam from the fundus on a light receiving element, and objectively measures the refractive power of the subject's eye based on the output of the light receiving element. Is known (see, for example, Patent Document 1). This apparatus has a visual target presenting optical system in which the presenting distance of a fixation target presented to the subject's eye is variable, and the refractive power at a distance is measured in a clouded state. In addition, there is an apparatus in which a subjective refractive power measurement function having a correction optical system that corrects astigmatism and spherical refractive power is added to a target presentation optical system (see, for example, Patent Documents 2 and 3). In this apparatus, the visual acuity of the visual target presenting optical system is presented at a predetermined near distance, and the near visual acuity measurement in a state in which the addition is added to the corrected state for distance by driving control of the correcting optical system ( Near vision test) is also possible.
JP 2004-129711 A JP 59-80227 A JP 2006-280613 A

しかしながら、被検者眼がどの程度の調節力を持つかは分らないため、近用視力測定時に被検者眼が加入度を必要とするか否かについて、検者は被検者の応答を待って判断するしかなかった。加入度を加えた近用視力測定が必要である場合にも、従来は加入度をある一定値から始めるか、被検者の年齢を推測し、経験的に年齢に応じた加入度の初期値に設定されていた。また、検者は、被検者の見え具合を確認しながら加入度を調整するが、被検者眼が必要とする加入度が初期値より大きく離れている場合、適切な加入度を加えた近用視力測定に時間を要し、被検者及び検者の負担の増大となる。また、加入度の有無による見え方の確認においても、適切な加入度の決定に時間を要していた。   However, since the degree of accommodation of the subject's eye is unknown, the examiner can respond to the subject's response as to whether or not the subject's eye needs additional power when measuring near vision. I had to wait and judge. Even when near vision measurement with addition is required, conventionally, the addition is started from a certain value, or the age of the subject is estimated and the initial value of the addition according to the age is empirically determined. Was set to. In addition, the examiner adjusts the addition while confirming the appearance of the subject, but when the addition required by the examinee's eye is far from the initial value, an appropriate addition was added. It takes time to measure near vision and increases the burden on the subject and the examiner. In addition, it takes time to determine an appropriate addition in the confirmation of the appearance based on the presence or absence of the addition.

本発明は、上記従来技術の問題点に鑑み、近用視力測定時に被検者眼が加入度を必要とするか否かを容易に知ることができ、また、加入度を加えた近用視力測定を短時間で行うことができる眼屈折力測定装置を提供することを技術課題とする。   In view of the above-described problems of the prior art, the present invention can easily know whether or not the subject's eye needs addition at the time of measuring near vision, and near vision with added addition It is an object of the present invention to provide an eye refractive power measuring device capable of performing measurement in a short time.

上記課題を解決するために、本発明は以下のような構成を備えることを特徴とする。   In order to solve the above problems, the present invention is characterized by having the following configuration.

(1) 被検者の眼底に測定指標を投影し、眼底からの反射光束を受光素子で受光して被検者眼の屈折力を得る眼屈折力測定手段と、被検者眼に呈示する視標を遠用距離から近用距離まで可変させる視標呈示光学系とを備え、前記視標呈示光学系により雲霧が掛けられる遠用距離に視標を呈示して遠用屈折力を得る眼屈折力測定装置において、
所定の近用距離に視標が呈示された状態において前記眼屈折力測定手段により屈折力測定を実行する近用屈折力測定実行手段と、
被検者眼の遠用屈折力と前記近用距離とに基づいて被検者眼が前記近用距離の視標を見るために必要な屈折力を求め、該求めた屈折力と前記近用屈折力測定実行手段により得られた近用の屈折力とを比較し、被検者眼が加入度を必要とするか否か判断してその結果を報知する判断手段と、を備え
前記判断手段は、前記比較結果の度数が眼の調節ラグの所定度数を超えている場合に被検者眼が加入度を必要とすると判断することを特徴とする。
(2) 被検者眼の乱視屈折力及び球面屈折力を矯正する矯正光学系と、被検者眼の近用距離に視標を呈示する視標呈示手段と、を備え、前記被検者眼の眼屈折力を測定する眼屈折力測定装置であって、
被検者の眼底に測定指標を投影し、眼底からの反射光束を受光素子で受光して被検者眼の屈折力を得る眼屈折力測定手段と、被検者眼に呈示する視標を遠用距離から前記近用距離まで可変させる視標呈示光学系と、を備える他覚式眼屈折力測定装置であって、前記遠用距離または前記近用距離に視標が呈示された状態において、前記眼屈折力測定手段により遠用屈折力および近用屈折力とをそれぞれ測定する他覚式眼屈折力測定装置によって得られた前記遠用屈折力と前記近用距離とに基づいて求められた、被検者眼が前記近用距離の視標を見るために必要な屈折力と前記近用屈折力とを比較し、被検者眼が加入度を必要とするか否か判断してその結果を報知する判断手段と、を備え、
前記判断手段は、前記比較結果の度数が眼の調節ラグの所定度数を超えている場合に被検者眼が加入度を必要とすると判断することを特徴とする。
(1) An eye refractive power measuring means for projecting a measurement index onto the fundus of the subject and receiving a reflected light beam from the fundus with a light receiving element to obtain the refractive power of the subject's eye, and presenting it to the subject's eye An eye for providing a distance refractive power by presenting the target at a distance for which a cloud is fogged by the target presenting optical system. In the refractive power measurement device,
And the near-distance use refractive power measurement means for executing the refractive power measured by Oite the eye refractive power measuring means in a state where target is presented to the predetermined near distance,
Based on the distance refractive power of the subject's eye and the near distance, the subject's eye calculates the refractive power necessary for viewing the target at the near distance, and the calculated refractive power and the near distance Comparing the refractive power for near use obtained by the refractive power measurement execution means, and determining whether or not the eye of the subject needs addition, and notifying the result ,
The determining means is the eye is characterized that you determined to require diopter when the frequency of the comparison result exceeds a predetermined power adjustment lug of the eye.
(2) a correction optical system that corrects astigmatism refractive power and spherical refractive power of a subject's eye, and a target presentation means for presenting a target at a near distance of the subject's eye; An eye refractive power measuring device for measuring eye refractive power of an eye,
An eye refractive power measuring means for projecting a measurement index onto the fundus of the subject and receiving a reflected light beam from the fundus with a light receiving element to obtain the refractive power of the subject's eye, and a target to be presented to the subject's eye An optotype eye refractive power measurement device comprising: an optotype presenting optical system that varies from a distance for a distance to a distance for a near distance, wherein the target is presented at the distance for distance or near distance The distance refractive power and the near distance obtained by the objective eye refractive power measuring device for measuring the distance refractive power and the near refractive power by the eye refractive power measuring means, respectively. The subject eye compares the refractive power necessary for viewing the near-distance target and the near refractive power, and determines whether or not the subject eye requires addition power. Judgment means for informing the result, and
The determination means determines that the eye of the subject needs addition when the frequency of the comparison result exceeds a predetermined frequency of the eye adjustment lag.

本発明によれば、近用視力測定時に被検者眼が加入度を必要とするか否かを容易に知ることができ、また、加入度を加えた近用視力測定を短時間で行うことができる。   According to the present invention, it is possible to easily know whether or not the subject's eye needs an addition during near vision measurement, and to perform near vision measurement with addition in a short time. Can do.

以下、本発明の実施形態を図面に基づいて説明する。図1は本実施形態に係る他覚式眼屈折力測定装置の外観構成図である。他覚式眼屈折力測定装置100は、基台1と、基台1に取り付けられた顔支持ユニット2と、基台1上に移動可能に設けられた移動台3と、移動台3に移動可能に設けられ、後述する光学系を収納する測定部4を備える。測定部4は、移動台3に設けられた駆動部6により、被検者眼Eに対して左右方向(X方向)、上下方向(Y方向)及び前後方向(Z方向)に移動される。移動台3は、ジョイスティック5の操作により、基台1上を左右方向及び前後方向に移動される。また、回転ノブ5aの回転操作により、測定部4は駆動部6の駆動で上下方向に移動される。ジョイスティック5の頂部には、測定開始スイッチ5bが設けられている。移動台3には、表示モニタ7が設けられている。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is an external configuration diagram of an objective eye refractive power measurement apparatus according to this embodiment. The objective eye refracting power measuring apparatus 100 moves to the base 1, the face support unit 2 attached to the base 1, the moving base 3 movably provided on the base 1, and the moving base 3. The measuring unit 4 is provided so as to accommodate an optical system described later. The measuring unit 4 is moved in the left-right direction (X direction), the up-down direction (Y direction), and the front-rear direction (Z direction) with respect to the subject eye E by the driving unit 6 provided on the moving table 3. The movable table 3 is moved on the base 1 in the left-right direction and the front-rear direction by operating the joystick 5. Further, the measurement unit 4 is moved in the vertical direction by the drive of the drive unit 6 by the rotation operation of the rotary knob 5a. A measurement start switch 5 b is provided on the top of the joystick 5. A display monitor 7 is provided on the movable table 3.

図2は、装置の光学系及び制御系の概略構成図である。眼屈折力測定光学系10は、被検者眼Eの瞳孔中心部を介して眼底Efにスポット状の測定指標を投影する投影光学系10aと、眼底Efから反射された眼底反射光を瞳孔周辺部を介してリング状に取り出し、二次元受光素子の撮像素子にリング状の眼底反射像を撮像させる受光光学系10bと、から構成される。   FIG. 2 is a schematic configuration diagram of an optical system and a control system of the apparatus. The eye refractive power measurement optical system 10 includes a projection optical system 10a that projects a spot-like measurement index on the fundus oculi Ef through the center of the pupil of the subject eye E, and fundus reflection light reflected from the fundus oculi Ef. And a light receiving optical system 10b that picks up a ring-shaped fundus reflection image on the imaging element of the two-dimensional light receiving element.

投影光学系10aは、測定光学系10の光軸L1上に配置された測定光源11,リレーレンズ12,ホールミラー13,及び測定用対物レンズ14を含む。測定光源11は、正視眼の眼底Efと光学的に共役な位置関係に配置されている。また、ホールミラー13の開口は、被検者眼Eの瞳孔と光学的に共役な位置関係にされている。   The projection optical system 10 a includes a measurement light source 11, a relay lens 12, a hall mirror 13, and a measurement objective lens 14 disposed on the optical axis L <b> 1 of the measurement optical system 10. The measurement light source 11 is arranged in a positional relationship optically conjugate with the fundus oculi Ef of the normal eye. The opening of the Hall mirror 13 is optically conjugate with the pupil of the subject's eye E.

受光光学系10bは、投影光学系10aの対物レンズ14、ホールミラー13が共用され、ホールミラー13の反射方向の光軸L1上に配置されたリレーレンズ16及び全反射ミラー17と、全反射ミラー17の反射方向の光軸上に配置された受光絞り18、コリメータレンズ19、リングレンズ20、及び二次元受光素子である撮像素子22を含む。受光絞り18及び撮像素子22は、眼底Efと光学的に共役な位置関係に配置されている。リングレンズ20は、透明平板状に円筒レンズがリング状に形成されたレンズ部と、リング状のレンズ部分以外が遮光された遮光部と、から構成されている。リングレンズ20は、対物レンズ14からコリメータレンズ19までの光学系を介して、被検者眼Eの瞳孔と光学的に共役な位置関係にされている。撮像素子22からの出力は制御部70に入力される。また、投影光学系10aの測定光源11,受光光学系10bのコリメータレンズ19、リングレンズ20、及び撮像素子22とは、移動機構23により一体的に光軸方向に移動される。なお、眼屈折力測定光学系10は、周知のものが使用可能である。   In the light receiving optical system 10b, the objective lens 14 and the hall mirror 13 of the projection optical system 10a are shared, and the relay lens 16 and the total reflection mirror 17 disposed on the optical axis L1 in the reflection direction of the hall mirror 13, and the total reflection mirror. 17 includes a light receiving stop 18, a collimator lens 19, a ring lens 20, and an imaging element 22 that is a two-dimensional light receiving element. The light receiving diaphragm 18 and the image sensor 22 are disposed in a positional relationship optically conjugate with the fundus oculi Ef. The ring lens 20 includes a lens portion in which a cylindrical lens is formed in a ring shape on a transparent flat plate, and a light shielding portion where light is shielded except for the ring-shaped lens portion. The ring lens 20 is optically conjugate with the pupil of the eye E through an optical system from the objective lens 14 to the collimator lens 19. An output from the image sensor 22 is input to the control unit 70. Further, the measurement light source 11 of the projection optical system 10a, the collimator lens 19, the ring lens 20, and the image sensor 22 of the light receiving optical system 10b are integrally moved by the moving mechanism 23 in the optical axis direction. As the eye refractive power measuring optical system 10, a well-known one can be used.

対物レンズ14と被検者眼Eとの間には、視標呈示光学系30からの視標光束を被検者眼Eに導き、被検者眼Eの前眼部からの反射光を観察光学系50に導くダイクロイックミラー29が配置されている。ダイクロイックミラー29は、測定光学系10に用いられる測定光束の波長を透過する。   Between the objective lens 14 and the subject eye E, the target luminous flux from the target presentation optical system 30 is guided to the subject eye E, and the reflected light from the anterior eye part of the subject eye E is observed. A dichroic mirror 29 leading to the optical system 50 is disposed. The dichroic mirror 29 transmits the wavelength of the measurement light beam used in the measurement optical system 10.

被検者眼Eの前眼部の前方には、アライメント指標投影光学系40が配置されている。アライメント指標投影光学系40は、被検者眼Eの角膜にリング指標を投影するリング指標投影光学系41と、角膜Ecに2つ輝点の無限遠指標を投影する指標投影光学系42と、を備える。指標投影光学系42は、観察光軸に対して左右対称に配置されている。リング指標投影光学系41は、被検者眼Eの前眼部を照明する前眼部照明としても用いられる。   An alignment index projection optical system 40 is disposed in front of the anterior segment of the subject's eye E. The alignment index projection optical system 40 includes a ring index projection optical system 41 that projects a ring index on the cornea of the subject's eye E, an index projection optical system 42 that projects an infinite index of two bright spots on the cornea Ec, Is provided. The index projection optical system 42 is arranged symmetrically with respect to the observation optical axis. The ring index projection optical system 41 is also used as anterior segment illumination that illuminates the anterior segment of the subject's eye E.

観察光学系50は、ハーフミラー53の反射方向の光軸上に配置された撮像レンズ51及び二次元撮像素子52を備える。撮像素子52からの出力は、制御部70に入力される。これにより、被検者眼Eの前眼部像は二次元撮像素子52により撮像され、モニタ7上に表示される。また、観察光学系50は、アライメント指標投影光学系40により被検眼Eの角膜に形成されるアライメント指標像を検出する光学系を兼ね、制御部70によるアライメント指標像の位置検出に基づいてアライメント状態の適否が判定される。   The observation optical system 50 includes an imaging lens 51 and a two-dimensional imaging element 52 arranged on the optical axis in the reflection direction of the half mirror 53. An output from the image sensor 52 is input to the control unit 70. As a result, the anterior segment image of the subject's eye E is captured by the two-dimensional image sensor 52 and displayed on the monitor 7. The observation optical system 50 also serves as an optical system that detects an alignment index image formed on the cornea of the eye E by the alignment index projection optical system 40, and is in an alignment state based on the position detection of the alignment index image by the control unit 70. The suitability is determined.

視標呈示光学系30は、観察光学系50の対物レンズ39が共用され、ダイクロイックミラー29により光軸L1と同軸にされた光軸L2上に配置されたLED等の光源31,視標板32,リレーレンズ33、反射ミラー36を含む。また、視標呈示光学系30は被検者眼の屈折力を矯正するための屈折力矯正光学系と共用され、反射ミラー36とリレーレンズ33との間には乱視矯正光学系34が配置されている。   The optotype presenting optical system 30 shares the objective lens 39 of the observation optical system 50, and includes a light source 31 such as an LED disposed on the optical axis L <b> 2 coaxial with the optical axis L <b> 1 by the dichroic mirror 29, and a target plate 32. , Relay lens 33 and reflecting mirror 36. The optotype presenting optical system 30 is shared with the refractive power correcting optical system for correcting the refractive power of the subject's eye, and the astigmatism correcting optical system 34 is disposed between the reflecting mirror 36 and the relay lens 33. ing.

視標板32には、他覚屈折力測定時に被検者眼Eに雲霧を行うための固視標と、自覚屈折力測定時に使用される視力検査用視標を含む複数の視標32aが同心円上に配置されている。視力検査視標は、視力値毎の視標(視力値0.1、0.3、・・・、1.5)が用意されている。視標板32はモータ37によって回転され、視標32aが視標呈示光学系30の光軸L2上に切換え配置される。光源31によって照明された視標32aの視標光束は、リレーレンズ33からダイクロイックミラー29までの光学部材を介して被検者眼Eに向かう。   The target plate 32 has a plurality of targets 32a including a fixation target for performing clouding on the subject's eye E during objective refractive power measurement and a visual test for visual acuity used during subjective refractive power measurement. They are arranged on concentric circles. As the visual acuity test target, visual targets for each visual acuity value (visual acuity values 0.1, 0.3,..., 1.5) are prepared. The optotype plate 32 is rotated by a motor 37, and the optotype 32a is switched and disposed on the optical axis L2 of the optotype presenting optical system 30. The target luminous flux of the target 32a illuminated by the light source 31 travels toward the subject's eye E via an optical member from the relay lens 33 to the dichroic mirror 29.

光源31及び視標板32(視標32a)は、モータ及びスライド機構からなる駆動機構38により光軸L2の方向に一体的に移動される。光源31及び視標32aが移動されることにより、視標の呈示位置(呈示距離)が遠用距離から近用距離まで光学的に変えられる。これにより、他覚屈折力測定時には被験者眼Eに雲霧が掛けられ、また、自覚屈折力測定時には被検者眼の球面屈折力が矯正される。すなわち、対物レンズ39、リレーレンズ33、光源31及び視標32aの移動により、球面度数の矯正光学系が構成される。球面度数の矯正光学系は、光軸方向に移動可能なリレーレンズを視標呈示光学系に追加する構成でも可能である。   The light source 31 and the target plate 32 (target 32a) are integrally moved in the direction of the optical axis L2 by a drive mechanism 38 including a motor and a slide mechanism. By moving the light source 31 and the target 32a, the target display position (presentation distance) is optically changed from the distance to the near distance. As a result, cloud is applied to the subject eye E during objective refractive power measurement, and the spherical refractive power of the subject's eye is corrected during subjective refractive power measurement. That is, a correction optical system having a spherical power is configured by the movement of the objective lens 39, the relay lens 33, the light source 31, and the target 32a. The correction optical system having a spherical power may be configured by adding a relay lens that can move in the optical axis direction to the visual target presenting optical system.

乱視矯正光学系34は、焦点距離の等しい、2枚の正の円柱レンズ34a,34bから構成される。円柱レンズ34a,34bは、それぞれ回転機構35a、35bの駆動により、光軸L2を中心に各々独立して回転される。矯正光学系は、矯正レンズを視標呈示光学系の光路に出し入れする構成でも良い。   The astigmatism correction optical system 34 includes two positive cylindrical lenses 34a and 34b having the same focal length. The cylindrical lenses 34a and 34b are independently rotated about the optical axis L2 by driving the rotation mechanisms 35a and 35b, respectively. The correction optical system may have a configuration in which the correction lens is taken in and out of the optical path of the optotype presenting optical system.

制御部70は、撮像素子22に接続され、撮像素子22の出力に基づいて屈折力の演算処理を行う。また、制御部70は、撮像素子52、移動機構23、駆動機構38、モータ37、光源31、回転機構35a,35b、表示モニタ7、各種設定に用いられるスイッチ部80、測定開始スイッチ5b、画像メモリ75、駆動部6、プリンタ90等に接続されている。   The control unit 70 is connected to the image sensor 22 and performs a refractive power calculation process based on the output of the image sensor 22. The control unit 70 includes an image sensor 52, a moving mechanism 23, a driving mechanism 38, a motor 37, a light source 31, rotating mechanisms 35a and 35b, a display monitor 7, a switch unit 80 used for various settings, a measurement start switch 5b, and an image. The memory 75, the drive unit 6, the printer 90, and the like are connected.

図3は、スイッチ部80のスイッチ構成とモニタ7の表示の説明図である。図3のモニタ7の画面は、自覚の視力測定画面200の例である。スイッチ部80には8個のスイッチ80a〜80hが配置されている。各スイッチは、測定モードの選択によって切換えられるモニタ7の画面に応じて、各スイッチ信号の機能が切換えられる。   FIG. 3 is an explanatory diagram of the switch configuration of the switch unit 80 and the display on the monitor 7. The screen of the monitor 7 in FIG. 3 is an example of the subjective visual acuity measurement screen 200. In the switch unit 80, eight switches 80a to 80h are arranged. The function of each switch signal is switched in accordance with the screen of the monitor 7 that is switched by selecting the measurement mode.

次に、以上のような構成を備える装置の測定動作について説明する。装置が起動されたときは、遠用での他覚屈折力測定モードに設定される。この場合、視標呈示光学系30の視標32aは、雲霧を掛けるための固視標(例えば、風景視標)が光路にセットされる。検者は被検者の顔を顔支持ユニット2に固定させ、被検者眼には測定部4の測定窓4a(図1参照)を介して測定部4内に配置された固視標を固視させる。   Next, the measurement operation of the apparatus having the above configuration will be described. When the device is activated, it is set to the objective power measurement mode for distance use. In this case, as the visual target 32a of the visual target presenting optical system 30, a fixation target (for example, a landscape visual target) for applying cloud fog is set in the optical path. The examiner fixes the subject's face to the face support unit 2, and a fixation target arranged in the measurement unit 4 via the measurement window 4 a (see FIG. 1) of the measurement unit 4 is applied to the subject's eyes. Let me fix it.

他覚屈折力測定に際して、被検者眼Eの前眼部は、観察光学系50の撮像素子52により撮像され、モニタ7に前眼部像が映し出される。また、リング投影光学系41によって投影されたリング指標像及び指標投影光学系42によって投影された無限遠の指標像が撮像素子52により撮像される。これらのアライメント指標像もモニタ7に表示される。検者は、モニタ7上の前眼部像、アライメント視標像、レチクルを観察し、測定部4及び移動台3をジョイスティック5等の操作により移動して、被検者眼と装置の光学系とを所定の位置関係にアライメントする。アライメント完了後、測定開始スイッチ5bから測定開始信号が入力されると、屈折力測定が行われる。   When measuring objective refractive power, the anterior segment of the subject's eye E is imaged by the imaging element 52 of the observation optical system 50, and an anterior segment image is displayed on the monitor 7. In addition, the ring index image projected by the ring projection optical system 41 and the index image at infinity projected by the index projection optical system 42 are captured by the image sensor 52. These alignment index images are also displayed on the monitor 7. The examiner observes the anterior segment image, alignment target image, and reticle on the monitor 7, moves the measurement unit 4 and the moving table 3 by operating the joystick 5, etc. Are aligned in a predetermined positional relationship. When the measurement start signal is input from the measurement start switch 5b after the alignment is completed, the refractive power is measured.

図示を略すスイッチにより、自動アライメントモードが設定されている場合、撮像素子52により撮像されたアライメント指標像に基づき、制御部70によりアライメント状態が検出される。上下左右方向のアライメント状態は、リング投影光学系41によるリング指標像の中心位置と光軸との位置関係により検出される。作動距離方向のアライメント状態は、作動距離が変化しても指標投影光学系42による無限遠指標は変化せず、リング指標の所定経線方向の像間隔は変化するという特性を利用して、検出される(特開平6−46999号参照)。これらのアライメント指標像の検出結果に基づいて駆動部6が駆動され、アライメント状態が適正になるように測定部4が移動される。アライメントが完了すると、制御部70により自動的に測定開始信号のトリガが発せられ、遠用の屈折力測定が行われる。   When the automatic alignment mode is set by a switch (not shown), the control unit 70 detects the alignment state based on the alignment index image captured by the image sensor 52. The alignment state in the vertical and horizontal directions is detected by the positional relationship between the center position of the ring index image by the ring projection optical system 41 and the optical axis. The alignment state in the working distance direction is detected by utilizing the characteristic that the infinity index by the index projection optical system 42 does not change even if the working distance changes, and the image interval in the predetermined meridian direction of the ring index changes. (See JP-A-6-46999). Based on the detection results of these alignment index images, the drive unit 6 is driven, and the measurement unit 4 is moved so that the alignment state is appropriate. When the alignment is completed, a trigger for a measurement start signal is automatically issued by the control unit 70, and the distance power measurement is performed.

光源11から出射された測定光は、リレーレンズ12からダイクロイックミラー29までを介して眼底Efに投影され、眼底Ef上でスポット状の点光源像を形成する。眼底Ef上に形成された点光源像の光は、眼底により反射・散乱されて被検者眼Eを射出し、対物レンズ14、ホールミラー13、リレーレンズ16及び全反射ミラー17までの光学系を介して受光絞り18の開口上で再び集光され、コリメータレンズ19にて略平行光束(正視眼の場合)とされる。リングレンズ20によってリング状光束として取り出され、リング像として撮像素子22に受光される。   The measurement light emitted from the light source 11 is projected onto the fundus oculi Ef via the relay lens 12 to the dichroic mirror 29, and forms a spot-like point light source image on the fundus oculi Ef. The light of the point light source image formed on the fundus oculi Ef is reflected and scattered by the fundus occupying the subject eye E, and the optical system up to the objective lens 14, the hall mirror 13, the relay lens 16 and the total reflection mirror 17. Then, the light is condensed again on the aperture of the light receiving diaphragm 18 and is made into a substantially parallel light beam (in the case of a normal eye) by the collimator lens 19. It is taken out as a ring-shaped light beam by the ring lens 20 and received by the image sensor 22 as a ring image.

遠用の他覚眼屈折力の測定においては、はじめに眼屈折力の予備測定が行われ、予備測定の結果に基づいて光源31及び固視標板32が光軸L2方向に移動されることにより、被検眼Eに対して雲霧がかけられる。その後、雲霧がかけられた被検眼に対して眼屈折力の本測定が行われる。本測定では、リングレンズ20によるリング像は撮像素子22に撮像され、撮像素子22からの出力信号は、画像メモリ75に画像データ(測定画像)として記憶される。その後、制御部70は、画像メモリ75に記憶されたリング像を画像解析して各経線方向の屈折力の値を求める。制御部70は、この屈折力に所定の処理を施すことによって遠用時での被検者眼のS(球面度数)、C(乱視度数)、A(乱視軸角度)の他覚値を得る。得られた遠用時での他覚値はメモリ75に記憶される。   In the measurement of the distance objective eye refractive power, first, preliminary measurement of eye refractive power is performed, and the light source 31 and the fixation target plate 32 are moved in the direction of the optical axis L2 based on the result of the preliminary measurement. The cloud E is applied to the eye E. Thereafter, the main measurement of the eye refractive power is performed on the eye to be inspected with fog. In this measurement, a ring image by the ring lens 20 is picked up by the image pickup device 22, and an output signal from the image pickup device 22 is stored in the image memory 75 as image data (measurement image). Thereafter, the control unit 70 performs image analysis on the ring image stored in the image memory 75 to obtain the value of refractive power in each meridian direction. The control unit 70 obtains objective values of S (spherical power), C (astigmatic power), and A (astigmatic axis angle) of the subject's eye during distance use by performing a predetermined process on the refractive power. . The objective value obtained at the time of distance use is stored in the memory 75.

なお、眼屈折力測定光学系10は、上記のようにリング状の指標像を利用する構成に限られず、眼底に測定指標を投影し、眼底からの反射光束を受光素子で受光し、少なくとも3経線方向の屈折力を得る光学系であれば良く、これは周知のものが使用可能である。   The eye refractive power measurement optical system 10 is not limited to the configuration using the ring-shaped index image as described above, and projects the measurement index on the fundus, receives the reflected light beam from the fundus with the light receiving element, and at least 3 Any optical system that obtains the refractive power in the meridian direction can be used, and a known one can be used.

遠用での他覚屈折力測定が完了し、スイッチ80aが押されると、自覚の遠用視力測定(自覚屈折力測定)モードに切換えられ、モニタ7の画面は他覚屈折力測定モードの画面(図示せず)から図3の自覚の遠用視力測定画面200に切換えられる。制御部70は、遠用の他覚屈折力測定で得られた被検者眼の屈折度数(球面度数S、乱視度数C、乱視軸角度A)に基づいて矯正光学系を駆動し、被検者眼の屈折力誤差を矯正する。すなわち、遠用の他覚屈折力測定における球面度数Sに基づいて光源31及び視標板32が光軸L2方向に移動されて、球面屈折力Sの屈折力誤差が補正された状態にされる。また、乱視度数C及び乱視軸角度Aに基づいて乱視矯正光学系34が駆動され、乱視の屈折力誤差が補正された矯正状態とされる。また、制御部70はモータ37の回転制御によって視標板32を回転させ、光軸L2上に所定の視力値視標32aを配置させる(例えば、視力値0.8の視標)。   When the objective power measurement for distance use is completed and the switch 80a is pressed, the monitor 7 switches to the subjective distance vision measurement (objective power measurement) mode, and the screen of the monitor 7 is the screen of the objective power measurement mode. (Not shown) is switched to the subjective distance vision measurement screen 200 shown in FIG. The control unit 70 drives the correction optical system based on the refractive power (spherical power S, astigmatism power C, astigmatism shaft angle A) of the subject's eye obtained by measuring the objective refractive power for distance use. Correct the refractive error of the human eye. That is, the light source 31 and the target plate 32 are moved in the direction of the optical axis L2 based on the spherical power S in the distance objective refractive power measurement, so that the refractive power error of the spherical refractive power S is corrected. . Further, the astigmatism correction optical system 34 is driven based on the astigmatism power C and the astigmatism axis angle A, and a correction state in which the refractive power error of astigmatism is corrected is obtained. Further, the control unit 70 rotates the target plate 32 by controlling the rotation of the motor 37, and arranges a predetermined visual acuity value visual target 32a on the optical axis L2 (for example, a visual target having a visual acuity value 0.8).

以上のように、被検者眼に初期呈示視標が呈示されたら、検者は被検者の遠用視力測定を行う。視力値のUP及びDOWNする表示202a及び202bに対応したスイッチ80b及び80cが押されると、呈示される視力値視標が切換えられる。検者は、被検者の回答が正答の場合には、スイッチ80bを選択して1段階高い視力値の視標に切換える。一方、被検者の回答が誤答の場合にはスイッチ80cを選択して1段階低い視力値の視標に切換える。制御部70は、スイッチ80b又は80cによる視力値変更の信号入力に基づいて視標板32を回転させ、視標呈示光学系の光軸上の視力値視標32aを切換える。検者は、以上の手順を繰返すことで被検者が判読可能な限界の最高視力を求める。   As described above, when the initial presentation target is presented to the subject's eye, the examiner measures the distance vision of the subject. When the switches 80b and 80c corresponding to the UP and DOWN displays 202a and 202b of the visual acuity value are pressed, the visual acuity value target to be presented is switched. If the examinee's answer is correct, the examiner selects the switch 80b to switch to a visual target having a higher visual acuity value. On the other hand, if the subject's answer is an incorrect answer, the switch 80c is selected to switch to a target with a visual acuity value that is one step lower. The control unit 70 rotates the visual target plate 32 based on a signal input for changing the visual acuity value by the switch 80b or 80c, and switches the visual acuity value visual target 32a on the optical axis of the visual target presenting optical system. The examiner obtains the maximum visual acuity that can be read by the subject by repeating the above procedure.

他覚屈折力測定結果の矯正度数による遠用の最高視力値が得られたら、検者は被検者が最高視力値を得られる最もプラスよりの球面度数(最弱の度数)に調節するため、図3における球面度数を変更するUP/DOWNの表示204a及び204bに対応するスイッチ80f,80gの操作によって球面度数Sを変更する。スイッチ80fまたはスイッチ80eが選択されると、光源31及び視標板32が光軸L2方向に移動されて球面度数が変更される。これにより、最高視力が得られる最も弱い球面度数Sが決定され、眼鏡レンズ又はコンタクトレンズ等の遠用矯正度数を処方する際の参考値が得られる。   When the maximum vision value for distance using the correction power of the objective refractive power measurement result is obtained, the examiner adjusts the spherical power (the weakest power) from the most plus that allows the subject to obtain the highest vision value. The spherical power S is changed by operating the switches 80f and 80g corresponding to the UP / DOWN displays 204a and 204b for changing the spherical power in FIG. When the switch 80f or the switch 80e is selected, the light source 31 and the target plate 32 are moved in the direction of the optical axis L2, and the spherical power is changed. As a result, the weakest spherical power S at which the highest visual acuity is obtained is determined, and a reference value for prescribing the distance correction power such as a spectacle lens or a contact lens is obtained.

次に、検者は呈示視標を近用距離に移動させた近用視力測定を行う。近用視力測定モードに移行する信号を入力するスイッチ80hが押されると、モニタ7には近用視力測定画面が表示される。図4は近用視力測定画面220の表示例である。近用視力測定画面220では、「ADD」表示221がスイッチ80dに対応され、近用視力測定時にはスイッチ80dにより加入度を付加させる指令信号が入力される。また、視力値UP/DOWNの表示202a及び202bがスイッチ80b及びスイッチ80cに対応される。また、加入度の度数を変更するUP/DOWNの表示224a及び224bがスイッチ80f及びスイッチ80gにそれぞれ対応される。また、画面220上の表示欄230には近用視力測定での近用距離が表示される。モニタ7の中央の表示欄231には、加入度が表示される。また、測定結果の表示欄240には、遠用での矯正度数(S、C、A)の値が表示される。そして、表示欄240の横の表示欄241には、近用での他覚屈折力測定結果(S,C,A)の値が表示される。   Next, the examiner performs near vision measurement by moving the presented visual target to the near distance. When the switch 80h for inputting a signal for shifting to the near vision measurement mode is pressed, a near vision measurement screen is displayed on the monitor 7. FIG. 4 is a display example of the near vision measurement screen 220. In the near vision measurement screen 220, the “ADD” display 221 corresponds to the switch 80d, and a command signal for adding power is added by the switch 80d when the near vision is measured. The visual acuity value UP / DOWN displays 202a and 202b correspond to the switch 80b and the switch 80c. In addition, UP / DOWN displays 224a and 224b for changing the power of addition correspond to the switches 80f and 80g, respectively. The display field 230 on the screen 220 displays the near distance in the near vision measurement. The addition level is displayed in the display field 231 in the center of the monitor 7. In the measurement result display column 240, the correction power values (S, C, A) for distance use are displayed. In the display field 241 next to the display field 240, the value of the objective refractive power measurement result (S, C, A) for near use is displayed.

前述のスイッチ80hにより、近用視力測定モードに切換えられると、駆動機構38の駆動により光源31及び視標板32が光軸L2上を移動され、視標板32による視標の呈示距離が所定の近用距離に移動される。例えば、視標は33cmの近用距離に相当する位置に設定される。33cmの近用距離は、屈折力換算で−3.0D(ディオプター)に相当される。制御部70は、遠用の矯正度数(遠用の他覚屈折力測定又は遠用の視力測定で決定された遠用矯正度数)の位置を基準にして、3.0D(ディオプター)分だけ近方に近づけた位置に視標板32を移動させる。すなわち、遠用の矯正度数に対して、−3.0D(ディオプター)の球面度数を加えた度数とされる。例えば、被検者眼の遠用球面度数が−2.0Dの場合には、これに−3.0Dが加えられ、33cmの近用距離での度数は、−5.0Dとされる。なお、近用視力測定モードへ移行するためのスイッチ80hが押された時点では、加入度が無し(0.00D)の状態である。なお、近用測定においても、遠用の他覚屈折力測定の結果に基づいて乱視矯正光学系が駆動されていることにより、乱視の屈折誤差が矯正された状態にされている。これにより、被検者眼は、乱視屈折誤差の影響を受けずに近用距離に呈示される視標を確認することができる。   When switched to the near vision measurement mode by the switch 80h, the light source 31 and the target plate 32 are moved on the optical axis L2 by driving the drive mechanism 38, and the target presentation distance by the target plate 32 is predetermined. Moved to the near distance. For example, the visual target is set at a position corresponding to a near distance of 33 cm. A near distance of 33 cm corresponds to −3.0 D (diopter) in terms of refractive power. The control unit 70 is as close as 3.0D (diopter) based on the position of the correction power for distance (the correction power for distance determined by the objective refractive power measurement for distance or the visual acuity measurement for distance). The target plate 32 is moved to a position closer to the direction. That is, it is set to a power obtained by adding a spherical power of −3.0D (diopter) to the correction power for distance use. For example, when the distance spherical power of the subject's eye is -2.0D, -3.0D is added to this, and the power at the near distance of 33 cm is -5.0D. It should be noted that when the switch 80h for shifting to the near vision measurement mode is pressed, there is no addition (0.00D). In the near measurement, the astigmatism refraction error is corrected by driving the astigmatism correction optical system based on the result of the distance objective refractive power measurement. Thus, the subject's eye can check the visual target presented at the near distance without being affected by the astigmatic refraction error.

検者は、モニタ7に表示されている被検者眼の前眼部像及びアライメント指標像等を基にアライメント状態を確認し、アライメントを適正にさせる。自動アライメントモードが設定されているときは、アライメント指標像の検出結果に基づいて自動的に測定部4が移動され、アライメントが適正にされる。その後、検者は、近用距離33cmに呈示された視力値視標が判読できるか被検者に尋ねる。被検者眼は、近用距離33cmに呈示された視標を確認するために、眼の調節力を使う。このとき、制御部70は、アライメント状態が適正にされていれば、自動的に測定開始のトリガ信号を発して、近用測定における他覚屈折力測定を実行する。他覚屈折力測定は複数回(例えば、3回)行われ、異常データを除いた測定結果の代表値(例えば、中間値)を得る。なお、マニュアル測定の場合は、測定開始スイッチ5bが押されることにより近用での眼屈折力測定が行われる。   The examiner confirms the alignment state based on the anterior segment image and the alignment index image of the subject's eye displayed on the monitor 7, and makes the alignment appropriate. When the automatic alignment mode is set, the measurement unit 4 is automatically moved based on the detection result of the alignment index image, and the alignment is made appropriate. Thereafter, the examiner asks the subject whether or not the visual acuity target presented at the near distance 33 cm can be read. The subject's eye uses the eye's accommodation power to confirm the visual target presented at a near distance of 33 cm. At this time, if the alignment state is appropriate, the control unit 70 automatically generates a trigger signal for starting measurement, and performs objective refractive power measurement in near-field measurement. The objective refractive power measurement is performed a plurality of times (for example, three times) to obtain a representative value (for example, an intermediate value) of the measurement result excluding the abnormal data. In the case of manual measurement, the eye refractive power measurement for near use is performed by pressing the measurement start switch 5b.

近用の他覚眼屈折力の測定結果(S,C,A)は、表示欄241に表示される。制御部70は、設定された近用距離で被検者眼が近用視標を見るために必要な球面度数S1と近用の他覚眼屈折力測定で得られた球面度数S2とを比較し、その差(S2−S1)を求める。球面度数S1は、遠用での矯正球面度数と、近用視標の呈示距離における屈折力換算の度数と、に基づいて演算される。例えば、遠用での矯正球面度数Sが−2.00Dであり、近用視標の呈示距離33cmは−3.00Dであるので、設定された近用距離で被検者眼が近用視標を見るために必要な球面度数S1は、両者の和である−5.00Dとして演算される。そして、近用の他覚眼屈折力測定で得られた球面度数S2が−5.00Dであった場合には、S1とS2の差は0であるので、被検者眼は調節力を使用して、近用視標を確認している判断される。この場合、加入度は必要とされないので、加入度の表示欄231の値は、0.00Dとされる。   The measurement result (S, C, A) of the near-purpose objective eye refractive power is displayed in the display column 241. The control unit 70 compares the spherical power S1 required for the subject's eye to see the near visual target at the set near distance and the spherical power S2 obtained by the near-sighted objective eye refractive power measurement. Then, the difference (S2-S1) is obtained. The spherical power S1 is calculated based on the corrected spherical power for distance use and the power-converted power at the presentation distance of the near vision target. For example, since the corrected spherical power S for distance use is -2.00 D and the presentation distance 33 cm of the near vision target is -3.00 D, the eye of the subject is near vision at the set near distance. The spherical power S1 necessary for viewing the mark is calculated as -5.00D which is the sum of both. When the spherical power S2 obtained by measuring the near-field objective eye refractive power is -5.00D, the difference between S1 and S2 is 0, so that the subject's eye uses the adjustment power. Thus, it is determined that the near vision target is confirmed. In this case, since the addition is not required, the value in the addition display column 231 is set to 0.00D.

一方、近用の他覚眼屈折力測定で得られた球面度数S2が−3.00Dであった場合には、両者の差(S2−S1)は+2.00Dであるので、被検者眼が近用視標を見るための屈折力が不足していると判断される。この差の+2.00Dが加入度として表示欄231に表示される。   On the other hand, when the spherical power S2 obtained by the near objective optic power measurement is −3.00D, the difference between the two (S2−S1) is + 2.00D. Is judged to have insufficient refractive power for viewing the near vision target. The difference of +2.00 D is displayed in the display field 231 as the addition power.

検者は、表示欄231に表示された加入度の値を確認することにより、被検者眼に加入度が必要か否かを知ることができる。すなわち、制御部70は、近用視力測定での加入度の必要性を判断し、その判断結果を表示欄231の加入度の表示により検者に報知する。これにより、検者は次に加入度の測定ステップを行うべきか否かを判断できる。また、検者は、視力値視標が判読できているか否かを被検者に尋ねるが、表示欄231に加入度が表示されていることにより、被検者の応答が曖昧であっても、近用視標の判読が難しことを被検者に促すことができる。なお、前述のS1とS2の差(S2−S1)が±0.50D程のときは、眼の調節ラグ(本来の眼の合焦点位置が、焦点深度の深さと関連して、ピントの合う許容内で前方移動したり、後方移動したりする現象)を考慮して、加入度の必要性が無い可能性があることを検者に知らせるようにしても良い。例えば、加入度が一定値(0.50D)を超えている場合に、画面上に加入度が必要な旨のメッセージを表示させるようにしても良い。   The examiner can know whether the addition is necessary for the eye of the subject by checking the addition value displayed in the display field 231. That is, the control unit 70 determines the necessity of the addition in the near vision measurement, and notifies the examiner of the determination result by displaying the addition in the display field 231. As a result, the examiner can determine whether or not to perform the addition measurement step next. In addition, the examiner asks the subject whether or not the visual acuity target can be read. Even if the subject's response is ambiguous because the addition level is displayed in the display field 231. The subject can be urged to make it difficult to interpret the near vision target. When the difference between S1 and S2 (S2−S1) is about ± 0.50D, the eye adjustment lag (the focus position of the original eye is in focus in relation to the depth of focus). In consideration of the phenomenon of moving forward or backward within tolerance, the examiner may be informed that there is a possibility that the addition is not necessary. For example, when the addition level exceeds a certain value (0.50D), a message indicating that the addition level is required may be displayed on the screen.

なお、上記の実施形態のように、視標呈示光学系30に乱視矯正光学系34が設けられていると、乱視屈折力誤差が矯正され、より正確な近用視力測定を行うことができるので、好ましい。しかし、被検者眼に加入度が必要か否かを判断する上では、乱視矯正光学系34は必ずしも必要とされない。所定の近用距離(33cm等)に呈示された視標を被検者眼に注視させ、この状態で実行された近用屈折力測定の球面度数S2と設定された近用距離で被検者眼が近用視標を見るために必要な球面度数S1とを比較することにより、被検者眼に加入度が必要か否かが判断される。この場合、近用の球面度数S2は、簡易的には等価球面度数(球面度数に乱視度数の半分を加えた値)を使用することができる。   If the astigmatism correcting optical system 34 is provided in the optotype presenting optical system 30 as in the above embodiment, the astigmatism refractive power error is corrected and more accurate near vision measurement can be performed. ,preferable. However, the astigmatism correcting optical system 34 is not necessarily required to determine whether or not the addition is necessary for the subject's eye. The subject presented at a predetermined near distance (33 cm, etc.) is focused on the subject's eye, and the subject is set at the near distance set as the spherical power S2 of near power measurement performed in this state. By comparing the spherical power S1 necessary for the eye to see the near vision target, it is determined whether or not the addition degree is necessary for the subject's eye. In this case, as the near spherical power S2, an equivalent spherical power (a value obtained by adding half of the astigmatic power to the spherical power) can be used.

検者は、表示欄231の加入度の値又は加入度の必要性のメッセージを確認し、加入度を加えた近用視力測定ステップに移行する。「ADD」表示221に対応したスイッチ80dが押されると、制御部70は、矯正光学系(視標呈示光学系30)に加入度を付加すべく、駆動機構38を駆動し、近用距離(33cm)の位置を基準にして算出された加入度(S1とS2の差)に相当する分だけ視標板32を光軸方向に移動させる。これにより、近用の加入度測定において、適切な加入度の初期値が簡単に設定され、加入度調整の測定時間が短縮される。すなわち、従来のように、加入度の初期値を一定値とする場合又は被検者の年齢の推測から加入度を設定する場合に比べて、被検者の個々に応じた加入度の初期値が適切に設定される。なお、視標呈示光学系30に加入度が加えられると、表示231の値が点滅表示される。   The examiner confirms the addition value in the display field 231 or a message indicating the necessity of the addition, and proceeds to the near vision measurement step in which the addition is added. When the switch 80d corresponding to the “ADD” display 221 is pressed, the control unit 70 drives the drive mechanism 38 to add the addition power to the correction optical system (target presentation optical system 30), and the near distance ( The target plate 32 is moved in the optical axis direction by an amount corresponding to the addition (difference between S1 and S2) calculated with the position of 33 cm) as a reference. As a result, in the addition measurement for near use, an appropriate initial value of the addition is easily set, and the measurement time for addition adjustment is shortened. That is, the initial value of the addition according to the individual of the subject compared to the case where the initial value of the addition is a constant value as in the conventional case or when the addition is set from the estimation of the age of the subject. Is set appropriately. Note that when the addition is added to the optotype presenting optical system 30, the value of the display 231 blinks.

検者は、被検者に対して加入度が加えられた状態の呈示視標の見え方を確認する。被検者が視標を見えやすいと回答した場合には、加入度は適切であると判断される。スイッチ80f及び80gが押されると、矯正光学系に加えられる加入度が0.25Dステップで増減される。これにより、検者は被検者眼に応じた加入度を微調整する。調整された加入度の値は、表示欄231に表示される。加入度の調整ができたら、検者は、スイッチ80b、80cにより呈示されている視標の視力値を切換え、被検者眼の限界の近用視力値を測定する。   The examiner confirms the appearance of the presentation target in a state where the addition degree is added to the subject. When the subject answers that the target is easy to see, it is determined that the addition is appropriate. When the switches 80f and 80g are pressed, the addition applied to the correction optical system is increased or decreased in 0.25D steps. As a result, the examiner finely adjusts the addition according to the subject's eyes. The adjusted addition value is displayed in the display field 231. When the addition degree can be adjusted, the examiner switches the visual acuity values of the visual targets presented by the switches 80b and 80c, and measures the near visual acuity value at the limit of the subject's eyes.

また、加入度の調整後、「ADD」表示221に対応したスイッチ80dが押される毎に、視標呈示光学系に加入度が加えられた状態と、加入度が除かれた状態と、に交互に切換えられる。加入度が除かれた状態は、乱視度数が矯正され、且つ球面度数が遠用での視力確認測定(又は遠用での眼屈折力の測定結果)に基づいて矯正された状態とされる。これにより、被検者は加入度の有無による近用視標の見え方の違いを比べることができ、加入度の必要性を知ることができる。このため、検者は被検者に対して近用距離での加入度の必要性について容易に説明できるようになる。   In addition, after the addition is adjusted, every time the switch 80d corresponding to the “ADD” display 221 is pressed, the state in which the addition is added to the target-presenting optical system and the state in which the addition is removed are alternately displayed. Is switched to. The state in which the addition power is removed is a state in which the astigmatism power is corrected and the spherical power is corrected based on the visual acuity confirmation measurement in the distance (or the measurement result of the eye refractive power in the distance). Thereby, the subject can compare the difference in the appearance of the near vision target depending on the presence or absence of the addition, and can know the necessity of the addition. For this reason, the examiner can easily explain the necessity of the addition at the near distance to the subject.

他覚の屈折力の測定結果、自覚の屈折力及び加入度等の測定結果は、精密な自覚測定の参考値として利用される。他覚屈折力測定装置により、これらの自覚の測定結果が得られることにより、精密な自覚測定での処方値の決定が行い易くなる。   The measurement results of the refractive power of the objective and the measurement results of the refractive power and addition of the subjective are used as reference values for precise subjective measurement. By obtaining the measurement results of these awareness by the objective refractive power measurement device, it becomes easy to determine the prescription value in the precise awareness measurement.

他覚式眼屈折力測定装置の外観構成図である。It is an external appearance block diagram of an objective type eye refractive power measuring apparatus. 装置の光学系及び制御系の概略構成図である。It is a schematic block diagram of the optical system and control system of an apparatus. スイッチ部のスイッチ構成とモニタの表示の説明図である。It is explanatory drawing of the switch structure of a switch part, and the display of a monitor. 近用視力測定画面の表示例である。It is a display example of a near vision measurement screen.

符号の説明Explanation of symbols

10 眼屈折力測定光学系
10a 投影光学系
10b 受光光学系
30 視標呈示光学系(矯正光学系)
70 制御部
80 スイッチ部
100 他覚式眼屈折力測定装置
220 近用視力測定画面
221 「ADD」表示
231 表示欄
DESCRIPTION OF SYMBOLS 10 Eye refractive power measurement optical system 10a Projection optical system 10b Receiving optical system 30 Visual target presentation optical system (correction optical system)
70 Control unit 80 Switch unit 100 Objective eye refractive power measurement device 220 Near vision measurement screen 221 “ADD” display 231 display field

Claims (2)

被検者の眼底に測定指標を投影し、眼底からの反射光束を受光素子で受光して被検者眼の屈折力を得る眼屈折力測定手段と、被検者眼に呈示する視標を遠用距離から近用距離まで可変させる視標呈示光学系とを備え、前記視標呈示光学系により雲霧が掛けられる遠用距離に視標を呈示して遠用屈折力を得る眼屈折力測定装置において、
所定の近用距離に視標が呈示された状態において前記眼屈折力測定手段により屈折力測定を実行する近用屈折力測定実行手段と、
被検者眼の遠用屈折力と前記近用距離とに基づいて被検者眼が前記近用距離の視標を見るために必要な屈折力を求め、該求めた屈折力と前記近用屈折力測定実行手段により得られた近用の屈折力とを比較し、被検者眼が加入度を必要とするか否か判断してその結果を報知する判断手段と、を備え
前記判断手段は、前記比較結果の度数が眼の調節ラグの所定度数を超えている場合に被検者眼が加入度を必要とすると判断することを特徴とする眼屈折力測定装置。
An eye refractive power measuring means for projecting a measurement index onto the fundus of the subject and receiving a reflected light beam from the fundus with a light receiving element to obtain the refractive power of the subject's eye, and a target to be presented to the subject's eye An eye-refractive-index measuring optical system that varies from a distance to a near-distance, and an eye refractive power measurement that obtains a distance power by presenting the target at a distance that is clouded by the target-presenting optical system. In the device
And the near-distance use refractive power measurement means for executing the refractive power measured by Oite the eye refractive power measuring means in a state where target is presented to the predetermined near distance,
Based on the distance refractive power of the subject's eye and the near distance, the subject's eye calculates the refractive power necessary for viewing the target at the near distance, and the calculated refractive power and the near distance Comparing the refractive power for near use obtained by the refractive power measurement execution means, and determining whether or not the eye of the subject needs addition, and notifying the result ,
The determining means, the comparison frequency results examinee's eye when exceeds the predetermined frequency adjustment lugs eye eye refractive power measuring apparatus, characterized that you determined to require additional power.
被検者眼の乱視屈折力及び球面屈折力を矯正する矯正光学系と、被検者眼の近用距離に視標を呈示する視標呈示手段と、を備え、前記被検者眼の眼屈折力を測定する眼屈折力測定装置であって、  A correction optical system that corrects astigmatism refractive power and spherical refractive power of a subject's eye, and a target presentation means for presenting a target at a near distance of the subject's eye, the eye of the subject's eye An eye refractive power measuring device for measuring refractive power,
被検者の眼底に測定指標を投影し、眼底からの反射光束を受光素子で受光して被検者眼の屈折力を得る眼屈折力測定手段と、被検者眼に呈示する視標を遠用距離から前記近用距離まで可変させる視標呈示光学系と、を備える他覚式眼屈折力測定装置であって、前記遠用距離または前記近用距離に視標が呈示された状態において、前記眼屈折力測定手段により遠用屈折力および近用屈折力とをそれぞれ測定する他覚式眼屈折力測定装置によって得られた前記遠用屈折力と前記近用距離とに基づいて求められた、被検者眼が前記近用距離の視標を見るために必要な屈折力と前記近用屈折力とを比較し、被検者眼が加入度を必要とするか否か判断してその結果を報知する判断手段と、を備え、  An eye refractive power measuring means for projecting a measurement index onto the fundus of the subject and receiving a reflected light beam from the fundus with a light receiving element to obtain the refractive power of the subject's eye, and a target to be presented to the subject's eye An optotype eye refractive power measurement device comprising: an optotype presenting optical system that varies from a distance for a distance to a distance for a near distance, wherein the target is presented at the distance for distance or near distance The distance refractive power and the near distance obtained by the objective eye refractive power measuring device for measuring the distance refractive power and the near refractive power by the eye refractive power measuring means, respectively. The subject eye compares the refractive power necessary for viewing the near-distance target and the near refractive power, and determines whether or not the subject eye requires addition power. Judgment means for informing the result, and
前記判断手段は、前記比較結果の度数が眼の調節ラグの所定度数を超えている場合に被検者眼が加入度を必要とすると判断することを特徴とする眼屈折力測定装置。  The determination means determines that the subject's eye needs an addition power when the frequency of the comparison result exceeds a predetermined frequency of the eye adjustment lag.
JP2008283626A 2008-11-04 2008-11-04 Eye refractive power measuring device Active JP5342211B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008283626A JP5342211B2 (en) 2008-11-04 2008-11-04 Eye refractive power measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008283626A JP5342211B2 (en) 2008-11-04 2008-11-04 Eye refractive power measuring device

Publications (3)

Publication Number Publication Date
JP2010110388A JP2010110388A (en) 2010-05-20
JP2010110388A5 JP2010110388A5 (en) 2011-12-22
JP5342211B2 true JP5342211B2 (en) 2013-11-13

Family

ID=42299444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008283626A Active JP5342211B2 (en) 2008-11-04 2008-11-04 Eye refractive power measuring device

Country Status (1)

Country Link
JP (1) JP5342211B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6057061B2 (en) * 2012-08-31 2017-01-11 株式会社ニデック Eye refractive power measuring device
JP6295535B2 (en) * 2013-07-31 2018-03-20 株式会社ニデック Optometry equipment
US9668651B2 (en) * 2014-05-29 2017-06-06 Kabushiki Kaisha Topcon Ophthalmologic apparatus
WO2016002296A1 (en) * 2014-07-01 2016-01-07 ソニー株式会社 Optical control device and optical control method
JP6605279B2 (en) * 2015-09-29 2019-11-13 株式会社トプコン Ophthalmic apparatus and ophthalmic measurement method
EP3632297A4 (en) 2017-05-24 2020-06-03 Osaka University Ophthalmic device and method for operating ophthalmic device
JP7108227B2 (en) * 2018-03-02 2022-07-28 株式会社ニデック Subjective optometric device and subjective optometric program
JP7328514B2 (en) * 2019-06-14 2023-08-17 株式会社ニデック Optometry equipment
JP6825042B2 (en) * 2019-06-14 2021-02-03 株式会社トプコン Ophthalmic equipment

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61293430A (en) * 1985-06-22 1986-12-24 株式会社トプコン Apparatus for measuring eye refraction power
JPH05123294A (en) * 1991-11-08 1993-05-21 Canon Inc Ophthalmorefractometer
JPH0775623A (en) * 1993-09-07 1995-03-20 Canon Inc Ophthalmorefractometer
JPH07136118A (en) * 1993-11-19 1995-05-30 Canon Inc Eye refractometer
WO2003041571A1 (en) * 2001-11-13 2003-05-22 Kabushiki Kaisha Topcon Optometric device
JP4280125B2 (en) * 2003-07-31 2009-06-17 株式会社ニデック Eye adjustment function measuring device
JP4628761B2 (en) * 2004-11-30 2011-02-09 株式会社ニデック Optometry equipment

Also Published As

Publication number Publication date
JP2010110388A (en) 2010-05-20

Similar Documents

Publication Publication Date Title
JP5342211B2 (en) Eye refractive power measuring device
KR101888688B1 (en) Eye refractive power measurement apparatus
JP5085858B2 (en) Eye refractive power measuring device
JP5248926B2 (en) Eye refractive power measuring device
JP5954982B2 (en) Ophthalmic apparatus, control method, and control program
CN106963335B (en) Subjective eye examination device
JP6951054B2 (en) Subjective optometry device
KR101647287B1 (en) Ophthalmologic apparatus and ophthalmologic method
JP4739795B2 (en) Eye refractive power measuring device
JP2018047049A (en) Subjective optometer and subjective optometric program
JP2013128648A (en) Ophthalmologic apparatus, and ophthalmologic control method, and program
JP5554485B2 (en) Eye refractive power measuring device
JP6922338B2 (en) Subjective optometry device
JP6853496B2 (en) Optometry device and optometry program
JP6057061B2 (en) Eye refractive power measuring device
JPWO2020050233A1 (en) Optical power measuring device
JP5916301B2 (en) Optometry equipment
JP6064445B2 (en) Eye refractive power measuring device
JP2005137662A (en) Ophthalmological measuring apparatus
JP6766342B2 (en) Awareness optometry device
JP4653576B2 (en) Eye refractive power measuring device
JP4628795B2 (en) Optometry equipment
JP2008073415A (en) Ophthalmologic apparatus
JP6140947B2 (en) Ophthalmic apparatus and ophthalmic imaging method
JP7101578B2 (en) Ophthalmic device and its operation method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111102

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111102

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130717

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130809

R150 Certificate of patent or registration of utility model

Ref document number: 5342211

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250