WO2016002296A1 - Optical control device and optical control method - Google Patents

Optical control device and optical control method Download PDF

Info

Publication number
WO2016002296A1
WO2016002296A1 PCT/JP2015/061136 JP2015061136W WO2016002296A1 WO 2016002296 A1 WO2016002296 A1 WO 2016002296A1 JP 2015061136 W JP2015061136 W JP 2015061136W WO 2016002296 A1 WO2016002296 A1 WO 2016002296A1
Authority
WO
WIPO (PCT)
Prior art keywords
user
visual acuity
control device
optical
lens
Prior art date
Application number
PCT/JP2015/061136
Other languages
French (fr)
Japanese (ja)
Inventor
敏之 佐々木
拓郎 川合
孝明 鈴木
隆浩 永野
幸司 西田
健一郎 細川
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Publication of WO2016002296A1 publication Critical patent/WO2016002296A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/02Details
    • G01C3/06Use of electric means to obtain final indication
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/12Fluid-filled or evacuated lenses
    • G02B3/14Fluid-filled or evacuated lenses of variable focal length
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/06Lenses; Lens systems ; Methods of designing lenses bifocal; multifocal ; progressive

Definitions

  • the present disclosure relates to an optical control device and an optical control method.
  • glasses and contact lenses are known as general vision correction devices.
  • the refractive power of the lens for correcting the visual acuity is fixed by the lens and is not variable.
  • Patent Literature 1 discloses a vision correction device that detects a user's eye movement to calculate the gaze direction and the distance to the gaze target, and controls the focal length of the lens according to the distance to the gaze target. Has been.
  • the present disclosure proposes a new and improved optical control device and optical control method capable of performing more appropriate visual acuity correction for the user.
  • a distance calculation unit that calculates an inter-target distance between an object captured in a captured image at the user's viewpoint and the user from the captured image, an inter-object distance calculated by the distance calculation unit, and the user
  • a control unit that controls a focal length of an optical lens that corrects the user's visual acuity based on the visual acuity of the user.
  • the arithmetic processing device calculates the distance between the object captured in the captured image at the user's viewpoint and the user from the captured image, and the distance between the objects calculated from the captured image. And controlling the focal length of an optical lens that corrects the user's visual acuity based on the user's visual acuity.
  • the present disclosure it is possible to acquire a captured image at the user's viewpoint and dynamically control the focal length of the optical lens based on the distance calculated from the captured image.
  • FIG. 1 It is a perspective view showing an example of appearance of an optical control device concerning a 1st embodiment of this indication.
  • FIG. 9 is a block diagram illustrating an internal configuration of an optical control device according to a second embodiment of the present disclosure. It is explanatory drawing which shows an example of control with respect to the optical lens of the control part which concerns on the same embodiment.
  • FIG. 10 is a block diagram illustrating an internal configuration of an optical control device according to a third embodiment of the present disclosure. It is the graph which showed an example of the correction
  • FIG. 1 is a perspective view illustrating an appearance example of the optical control device 1 according to the first embodiment of the present disclosure.
  • the optical control device 1 includes an optical lens 11, an imaging device 13, and a support member 15.
  • the optical control device 1 may be glasses equipped with a variable focus lens.
  • the technology according to the present disclosure is not limited to the above examples.
  • the optical control device 1 may be a contact lens provided with a variable focus lens.
  • the optical control device 1 does not include the optical lens 11 and the imaging device 13, acquires information from the external imaging device 13 through communication, and controls the focal length of the external optical lens 11 based on the acquired information. It may be a control device.
  • the optical lens 11 is a lens whose focal length can be changed. Further, the focal length of the optical lens 11 is controlled based on the distance between the target and the user calculated from the captured image acquired by the imaging device 13. Specifically, the optical control device 1 performs image processing on the captured image to calculate the distance between each of the objects captured by the user in the field of view and the user, and the focus of the optical lens 11 based on the calculated distance. Control the distance.
  • the calculation of the distance between the target and the user and the control of the focal distance for the optical lens 11 by the optical control device 1 are executed in real time.
  • the calculation of the distance between the target and the user and the control of the focal length with respect to the optical lens 11 by the optical control device 1 may be performed at an arbitrary timing according to a user instruction.
  • the optical lens 11 is, for example, a single variable focus lens having one variable focal length over the entire lens surface. Further, the optical lens 11 may be a lens whose lens surface is divided into a plurality of lens regions, and each lens region can independently change the focal length.
  • the imaging device 13 acquires an image corresponding to the visual field captured by the user.
  • the imaging device 13 is provided in the vicinity of the optical lens 11 and acquires an image corresponding to the visual field that the user is looking through the optical lens 11.
  • the imaging device 13 is preferably installed in the vicinity of the optical lens 11 in order to acquire an image corresponding to the user's visual field.
  • the imaging device 13 may not be provided in the optical control device 1 as long as an image corresponding to the visual field of the user can be acquired.
  • the imaging device 13 may be an imaging device attached to the user separately from the optical control device 1 or an imaging device possessed by the user, and the optical control device 1 includes these external imaging devices. A distance between each of the objects within the field of view captured by the user and the user may be calculated using the captured image.
  • the support member 15 is a structural member that supports the optical lens 11 and the imaging device 13. Specifically, the support member 15 holds the optical lens 11 at a position corresponding to both eyes of the user, and holds the imaging device 13 at a position where an image corresponding to the visual field of the user can be acquired.
  • the support member 15 may be a frame of the spectacles.
  • the optical control device 1 according to the first embodiment of the present disclosure has been described as calculating the distance between the target and the user from the image corresponding to the field of view of the user captured by the imaging device 13.
  • the disclosed technology is not limited to such examples.
  • the optical control device 1 according to the first embodiment of the present disclosure irradiates a target with light having a predetermined wavelength until the irradiated light is reflected by the target and returns to the optical control device 1.
  • the distance between the target and the user may be calculated by the ToF (Time-of-Flight) method for calculating the distance based on the time of the above.
  • FIG. 2 is a block diagram illustrating an internal configuration of the optical control device 1 according to the first embodiment of the present disclosure.
  • FIG. 3 is an explanatory diagram showing a configuration example of the optical lens 11.
  • the optical control device 1 includes an optical lens 11, an imaging device 13, a distance calculation unit 101, a control unit 103, and a vision information storage unit 105. .
  • the optical lens 11 is a so-called variable focus lens that can change the focal length.
  • the focal length of the optical lens 11 is controlled based on the distance between the target and the user calculated from the captured image acquired by the imaging device 13.
  • the optical lens 11 capable of changing the focal length can be realized by, for example, a liquid lens using an electrowetting phenomenon, a liquid lens using a transparent elastic film, or a liquid crystal lens using liquid crystal. is there.
  • the electrowetting phenomenon is a phenomenon in which when a voltage is applied to a droplet disposed on a hydrophobic dielectric film, the contact angle of the droplet changes due to the change in the hydrophobicity of the dielectric film.
  • the optical lens 11 capable of changing the focal length can be realized.
  • two types of transparent liquids that are not mixed and have different refractive indexes are sealed in a region including an electrode with a hydrophobic coating.
  • the two kinds of transparent liquids that are not mixed and have different refractive indexes are, for example, silicon oil having low conductivity and an aqueous solution having high conductivity.
  • the liquid lens is formed at the interface between the silicone oil and the aqueous solution by collecting the silicone oil on the hydrophobic coated electrode.
  • the hydrophobicity of the electrode changes, so that the interface shape between the silicon oil and the aqueous solution (that is, the shape of the liquid lens) changes. Therefore, when the electrowetting phenomenon is used, the shape of the liquid lens can be controlled by controlling the applied voltage, and the focal length can be controlled.
  • the optical lens 11 whose focal length can be changed may be realized by using a liquid lens using a transparent elastic film.
  • a liquid lens using a transparent elastic film is a lens in which liquid is sealed inside a lens-shaped structure formed of a transparent elastic film, and the focal length is controlled by changing the external shape of the liquid lens. can do.
  • a lens shape formed of a transparent elastic film can change the volume inside the lens-shaped structure by injecting or discharging a liquid into the structure. Thereby, the external shape of the liquid lens can be changed and the focal length can be controlled.
  • parylene registered trademark
  • a strong electrostatic force acts particularly on the outer periphery of the liquid lens where the distance between the two is short, and the parylene thin film is drawn toward the glass substrate side.
  • the volume of the liquid does not change, the liquid moves to the upper side of the liquid lens, and the parylene thin film changes to a more raised lens shape.
  • the external shape of the liquid lens may be changed to control the focal length.
  • the optical lens 11 whose focal length can be changed may be realized by using a liquid crystal lens using liquid crystal.
  • the apparent refractive index of the liquid crystal can be changed by adjusting the applied voltage.
  • the focal length can be controlled by changing the refractive index of the liquid crystal lens by controlling the voltage applied to the liquid crystal.
  • the optical lens 11 may be formed by a single variable focus lens, or may be formed by combining a plurality of lenses including at least one variable focus lens in series in the light incident direction.
  • the optical lens 11 may be a lens in which a lens for correcting myopia or hyperopia and a lens for correcting astigmatism are combined in series in the incident direction of light.
  • astigmatism is a state in which the refractive power of the eye varies depending on the angle, and is defined by the astigmatism power D cyl and the astigmatism angle ⁇ . Therefore, for example, a lens for correcting astigmatism has a refractive power only in one direction and has a refractive power only in one direction of a cylindrical liquid lens that can rotate according to the astigmatism angle ⁇ or an astigmatism angle ⁇ . This is realized by a liquid crystal lens in which the orientation of the liquid crystal is controlled. In the case of a liquid crystal lens, the function of a variable focus lens for correcting myopia or hyperopia and the function of a lens for correcting astigmatism can be realized by a single lens.
  • the lens surface of the optical lens 11 may be divided into a plurality of lens regions. Specifically, as shown in FIG. 3, the lens surface of the optical lens 11 may be divided into rectangular lens regions 111. Each lens region 111 is provided such that the focal length can be controlled independently of each other. Note that the shape of the lens region 111 on the lens surface of the optical lens 11 is not limited to the rectangular shape shown in FIG. 3, and may be a triangular shape or a hexagonal shape.
  • the imaging device 13 acquires an image corresponding to the visual field captured by the user as described above.
  • the imaging device 13 includes an imaging lens and an imaging element.
  • the imaging device 13 can acquire an image by photoelectrically converting light from a subject incident through an imaging lens by an imaging device such as a CMOS image sensor or a CCD image sensor.
  • the distance calculation unit 101 performs image processing on the captured image acquired by the imaging device 13 and calculates the distance between the object captured in the captured image and the user.
  • the distance calculation unit 101 calculates depth information from the captured image using a technique for generating a three-dimensional image having stereoscopically viewable depth information from the two-dimensional image, and converts the depth information into distance information for the user. May be.
  • the distance calculation unit 101 generates a right-eye image and a left-eye image that are stereoscopically viewable in accordance with the intensity of the luminance differential signal by performing luminance differentiation on the captured image acquired by the imaging device 13.
  • the distance information between the target and the user may be calculated from the parallax information of the generated right-eye image and left-eye image.
  • the distance calculation unit 101 may perform local or global depth estimation on the captured image acquired by the imaging device 13 and calculate distance information between the target and the user from the estimated depth information.
  • the optical control device 1 When using such a method of calculating depth information from a single two-dimensional image and converting the depth information into distance information between the target and the user, the optical control device 1 is obtained from one imaging device 13. The distance between the target and the user can be calculated using one captured image. Therefore, the optical control device 1 is more preferable because it is not necessary to prepare a plurality of imaging devices.
  • the distance calculation unit 101 acquires, for example, captured images from a plurality of imaging devices 13 and uses a stereo matching method or the like for the plurality of captured images, and distance information between the target captured in the captured images and the user. May be calculated. Specifically, the distance calculation unit 101 determines a correspondence relationship between objects captured between the captured images acquired from the plurality of imaging devices 13. In addition, the distance calculation unit 101 uses the amount of deviation (parallax) between captured images at a target position in a correspondence relationship and the positional relationship of the plurality of imaging devices 13, so that the target captured in the captured image and the user Can be calculated.
  • the optical control device 1 According to the distance calculation unit 101 that calculates the distance between the target and the user from such a captured image, the optical control device 1 also applies to the target that is not being watched by the user in addition to the target that is being watched by the user. Can be calculated. Thereby, since the optical control apparatus 1 can control the focal distance of the optical lens 11 based on the distance between the entire field of view of the user and the user, more accurate visual acuity correction can be performed on the user. .
  • the distance calculation unit 101 may calculate the distance between the target and the user by another method without using the captured image acquired by the imaging device 13.
  • the distance calculation unit 101 may calculate the distance between the target and the user by the ToF method.
  • the optical control device 1 includes a light source that emits light of a predetermined wavelength and a detector that detects light emitted by the light source, and the light emitted from the light source is reflected by the target. Then, the distance between the target and the user may be calculated based on the time until returning to the detector.
  • the distance calculation unit 101 may divide the captured image acquired by the imaging device 13 into a plurality of regions and calculate the distance between the target and the user for each of the divided regions.
  • the optical control device 1 performs more appropriate visual acuity correction for the user. Can be applied.
  • the optical control device 1 divides the captured image into a plurality of regions so as to correspond to the divided lens regions of the optical lens 11, and in each of the divided captured image regions, the target and the user The distance is calculated.
  • the optical control device 1 may control the focal length of the divided lens area based on the distance between the target and the user calculated in each of the divided captured image areas.
  • the optical control device 1 can individually correct the visual acuity according to the distance between the target and the user in each of the divided lens regions of the optical lens 11. That is, the optical control apparatus 1 can perform appropriate visual acuity correction according to the distance between the target and the user in the region over the entire visual field captured by the user.
  • the control unit 103 controls the focal length of the optical lens 11 based on the distance between the object calculated by the distance calculation unit 101 and the user. Specifically, the control unit 103 acquires information about the user's naked eye vision and information about the corrected visual acuity from the visual acuity information storage unit 105, and the refractive power of the optical lens 11 necessary to make the user's visual acuity a corrected visual acuity. Calculate D sph and D cyl . Note that D sph is the refractive power of the lens for correcting myopia or hyperopia, and D cyl is the refractive power of the lens for correcting astigmatism.
  • control unit 103 calculates a correction value D d of D sph based on the distance based on the distance between the target calculated by the distance calculation unit 101 and the user. Furthermore, the control unit 103 controls the focal length of the optical lens 11 based on the calculated refractive powers D sph , D cyl , and D d .
  • FIG. 4 is a graph showing an example of the relationship between the corrected visual acuity and the necessary refractive power
  • FIG. 5 is a graph showing an example of the correction relationship of the refractive power with respect to the distance.
  • the y axis represents the user's visual acuity
  • the x axis represents the refractive power D corresponding to the user's visual acuity.
  • the graph shown in FIG. 4 shows a tendency that the absolute value of the refractive power increases as the user's visual acuity decreases, and the y-axis intercept at which the refractive power becomes 0 is corrected visual acuity V t (target visual acuity after correction). It is.
  • the sign of the refractive power D sph of the lens for correcting myopia is negative, and the sign of the refractive power D sph of the lens for correcting hyperopia is positive.
  • the relationship between the corrected visual acuity shown in FIG. 4 and the necessary refractive power varies among individuals. Therefore, it is preferable that the optical control device 1 performs visual acuity measurement for each user and prepares a graph shown in FIG. 4 in advance. Further, the relationship between the corrected visual acuity for a general user and the necessary refractive power may be stored in the optical control device 1 in advance.
  • the refractive power D cyl of the astigmatic lens can be calculated by the same method as D sph .
  • the distance calculation method of the correction value D d by explaining.
  • the y-axis is the refractive power
  • the x-axis represents the distance d between the target and the user.
  • the graph shown in FIG. 5 is divided into a case where the user is myopic, a case of hyperopia, and a case of myopia and hyperopia.
  • the threshold distance T is a threshold for determining whether or not to perform correction based on the distance, and an appropriate distance can be set as appropriate.
  • the control part 103 can control the refractive power of the optical lens 11 so that the degree of visual acuity correction becomes low with respect to a near-sighted user at a short distance.
  • the control part 103 can control the refractive power of the optical lens 11 with respect to the user of hyperopia so that the degree of visual acuity correction becomes low, so that it is a long distance.
  • the control unit 103 can perform vision correction for correcting myopia at a long distance and correct vision for correcting hyperopia at a short distance for a myopic and hyperopic user.
  • the optical control device 1 performs visual acuity measurement for each user and prepares the graph shown in FIG. 5 in advance. Further, it is preferably stored in the optical control device 1. Further, a graph for calculating the correction value D d for a general user may be stored in the optical control device 1 in advance.
  • the visual acuity information storage unit 105 stores information related to the user's visual acuity. Specifically, the visual acuity information storage unit 105 stores the user's naked eye visual acuity and corrected visual acuity (target visual acuity after correction). The visual acuity information storage unit 105 may store in advance the refractive power D sph of the lens for correcting myopia or hyperopia, the refractive power D cyl of the lens for correcting astigmatism, and the astigmatism angle ⁇ , which are correction values of the user's visual acuity. . Furthermore, the visual acuity information storage unit 105 calculates the relationship between the corrected visual acuity and the refractive power shown in FIG. 4 for calculating D sph , and the refractive power correction relationship for the distance shown in FIG. 5 for calculating D d . May be stored.
  • the optical control device 1 according to the first embodiment of the present disclosure calculates the distance between the target and the user based on the captured image, so that the distance that is not observed by the user is also determined. Information can be acquired. Therefore, the optical control device 1 according to the first embodiment of the present disclosure can dynamically control the focal length of the optical lens 11 based on the distance between the entire field of view of the user and the user. Therefore, the optical control device 1 according to the first embodiment of the present disclosure can perform more accurate visual acuity correction on the user.
  • the optical control device 1 may further include an image generation unit.
  • the optical control device 1 may include an image generation unit that generates an image for transmitting information to the user, and display the image generated by the image generation unit on the optical lens 11.
  • FIG. 6 is an explanatory diagram showing an example of an image displayed on the optical lens 11.
  • the image generation unit may generate an image 113 displayed on at least one of the optical lenses 11 as shown in FIG.
  • the image 113 includes information on the user's visual acuity such as the refractive power, the user's naked eye acuity, and the corrected visual acuity, and information on the optical control device 1 such as the battery remaining amount. Information may be transmitted.
  • the display on the optical lens 11 of the image generated by the image generation unit can be realized by using, for example, projection by a half mirror.
  • the image generated by the image generation unit may be displayed on either one selected by the user of the optical lens 11 or may be displayed on both of the optical lenses 11 with a preset parallax.
  • the user can confirm information regarding his or her visual acuity and information regarding the optical control device 1 without using a separate display device or the like.
  • FIG. 7 is a flowchart illustrating an operation example of the optical control device 1 according to the first embodiment of the present disclosure.
  • the imaging device 13 acquires a captured image corresponding to the user's viewpoint (S101).
  • the distance calculation unit 101 calculates the distance between the object captured in the captured image and the user based on the acquired captured image (S103).
  • the control unit 103 acquires information on the visual acuity before correction (that is, naked eye visual acuity) and the visual acuity after correction (that is, corrected visual acuity) from the visual acuity information storage unit 105 (S105).
  • control unit 103 calculates the refractive power of the optical lens 11 necessary for correcting the user's visual acuity to the corrected visual acuity (S107). Further, the control unit 103 corrects the refractive power of the optical lens 11 based on the distance between the target calculated by the distance calculation unit 101 and the user (S109). Subsequently, the control unit 103 controls the focal length of the optical lens 11 so that the corrected refractive power is obtained (S111).
  • the optical control device 1 calculates the distance between the target captured in the captured image and the user based on the captured image, and the calculated target and the user Based on the distance, the focal length of the optical lens 11 can be controlled. According to this, the optical control device 1 according to the first embodiment of the present disclosure can perform more accurate visual acuity correction on the user.
  • the optical control device 2 according to the second embodiment of the present disclosure includes an attention point detection function that detects a user's attention point, and corrects the visual acuity with respect to the user based on the distance from the target that the user is gazing at. Can be applied. Accordingly, the optical control device 2 according to the second embodiment of the present disclosure can perform visual acuity correction optimized for a target that the user is gazing at, so that the visual acuity correction more appropriate for the user can be performed. Can be applied.
  • FIG. 8 is a block diagram illustrating an internal configuration of the optical control device 2 according to the second embodiment of the present disclosure
  • FIG. 9 is an explanatory diagram illustrating an example of control of the optical lens 21 by the control unit 203. .
  • the optical control device 2 includes an optical lens 21, an imaging device 23, a distance calculation unit 201, a control unit 203, and a visual acuity information storage unit 205.
  • the attention point detecting unit 207 is provided.
  • the optical lens 21, the imaging device 23, and the visual acuity information storage unit 205 are the same as the optical lens 11, the imaging device 13, and the visual acuity information storage unit 105 described in the first embodiment. The description in is omitted. In the following, the second embodiment will be described focusing on differences from the first embodiment of the present disclosure.
  • the attention point detection unit 207 detects the attention point that the user is gazing in the visual field captured by the user. Specifically, the point-of-interest detection unit 207 detects a user's line of sight or a point of interest that the user is gazing from the behavior of the user's eyeball, and in the captured image acquired by the imaging device 23, the target is gazed by the user. Detect if you are doing.
  • the attention point detection unit 207 acquires an image including the user's eyeball, and detects a user's eye direction or attention point by detecting a cornea reflection image (Purkinje image) and a pupil center of gravity of the user's eyeball from the image. May be.
  • the point-of-interest detection unit 207 irradiates the user's eyeball with light having a predetermined wavelength, and acquires a Purkinje image for the irradiated light.
  • the attention point detection unit 207 acquires the pupil center of gravity from the image of the user's eyeball.
  • the attention point detection unit 207 can detect the direction of the user's line of sight by calculating the distance from the center of the pupil to the center point of the Purkinje image. Furthermore, the attention point detection unit 207 can detect the attention point of the user by comparing the detected line-of-sight direction of the user with the captured image acquired by the imaging device 23.
  • the attention point detection unit 207 generates a stereo image from the captured image acquired by the imaging device 23 using a technique for generating a 3D image having stereoscopically viewable depth information from the 2D image, and the stereo image
  • the user's attention point may be estimated using.
  • a right-eye image and a left-eye image are generated from the captured image, and image feature amounts are generated for the generated right-eye image and left-eye image.
  • the attention point of the user may be detected by performing detection and image recognition.
  • the distance calculation unit 201 calculates the distance between the target corresponding to the user's attention point detected by the attention point detection unit 207 and the user.
  • a method for calculating the distance between the target corresponding to the user's attention point and the user the same method as in the first embodiment may be used.
  • the distance calculation unit 201 acquires an image including the user's eyeball and detects the user's pupil position.
  • the user's eyeball performs an eyeball movement called a vergence movement according to the distance from the point of interest.
  • the vergence movement means that when the attention point is close to the user, the pupils of both eyes of the user are inward, and when the attention point is far from the user, both eyes of the user are Represents eye movements in which the pupil moves outward. Therefore, the distance calculation unit 201 can calculate the distance between the user corresponding to the user's attention point and the user by detecting the distance between the pupils of both eyes of the user.
  • the distance calculation unit 201 detects the user detected by the attention point detection unit 207.
  • the images on the line of sight are acquired by a plurality of imaging devices.
  • the stereo images acquired from the plurality of imaging devices include the gazing target and have high similarity.
  • stereo images acquired from a plurality of imaging devices have low similarity.
  • the distance calculation unit 201 can determine which target on the line of sight the user is gazing at. Therefore, the distance calculation unit 201 can calculate the distance between the target corresponding to the user's attention point and the user.
  • the control unit 203 controls the focal length of the optical lens 21 based on the distance between the target corresponding to the user's attention point calculated by the distance calculation unit 201 and the user. Specifically, the control unit 203 acquires information about the user's naked eye vision and information about the corrected visual acuity from the visual information storage unit 205, and the optical lens 21 necessary for making the corrected user's visual acuity the corrected visual acuity. The refractive powers D sph and D cyl are calculated. Further, the control unit 203 calculates a correction value D d based on the distance based on the distance between the target corresponding to the user's attention point calculated by the distance calculation unit 201 and the user. Further, the control unit 203 controls the focal length of the optical lens 21 based on the calculated refractive powers D sph , D cyl , and D d .
  • control unit 203 calculates the refractive power correction value D d of the optical lens 21 based on the distance between the target corresponding to the user's attention point and the user. Different from the first embodiment.
  • the control unit 203 controls the lens region 213 through which the line of sight of the user 27 passes. Only the focal length may be controlled. Specifically, as illustrated in FIG. 9, when the attention point detection unit 207 detects that the user 27 is gazing at the attention point 25, the control unit 203 displays the line of sight of the user 27 and the optical lens. The lens area 213 through which the line of sight of the user 27 passes is determined by comparing with the lens surface 21. The control unit 203 controls only the focal length of the lens region 213 through which the line of sight of the user 27 passes among the plurality of lens regions 211 existing on the lens surface of the optical lens 21. According to this configuration, the optical control device 2 can suppress power consumption while performing the minimum necessary visual acuity correction for the user 27.
  • the optical control device 2 detects the user's attention point, and the optical lens 21 based on the distance between the object being watched by the user and the user. Can be controlled dynamically. Thereby, the optical control device 2 according to the second embodiment of the present disclosure can perform visual acuity correction optimized for a target that the user is gazing at.
  • the optical control device 3 according to the third embodiment of the present disclosure includes an illuminance measurement function that measures the illuminance of an environment where the user is present, and corrects apparent myopia (nighttime myopia) that occurs in an environment with low illuminance. Vision correction can be applied to the user.
  • the human eye becomes myopic than in an environment with high illuminance.
  • the pupil expands in order to take in more light than in an environment where the illuminance is high, and light entering the cornea and the lens of the eye becomes thicker. That is, as the light entering the cornea and the crystalline lens of the human eye becomes thicker, the influence of the spherical aberration of the cornea and the crystalline lens increases, and an image is formed at a more myopic refractive position. Therefore, the lower the illuminance in the environment, the more the human eye is affected as if it seemed to be myopic.
  • the optical control device 3 corrects apparent myopia (nighttime myopia) that occurs in an environment with low illuminance by measuring the illuminance of the environment where the user is present, It aims at giving a more suitable visual acuity correction with respect to a user.
  • FIG. 10 is a block diagram illustrating an internal configuration of the optical control device 3 according to the third embodiment of the present disclosure.
  • the optical control device 3 includes an optical lens 31, an imaging device 33, a distance calculation unit 301, a control unit 303, and a visual acuity information storage unit 305. And an illuminance measuring unit 309.
  • the optical lens 31, the imaging device 33, the distance calculation unit 301, and the visual acuity information storage unit 305, the optical lens 11, the imaging device 13, the distance calculation unit 101, and the visual acuity information storage described in the first embodiment Since it is the same as that of the part 105, description here is abbreviate
  • the third embodiment will be described focusing on differences from the first embodiment of the present disclosure.
  • the illuminance measuring unit 309 measures the illuminance in the environment where the user is present.
  • the illuminance measurement unit 309 includes a photometer or an illuminometer, and measures the illuminance of the environment where the user is present.
  • the illuminance measurement unit 309 may perform illuminance measurement in an environment where the user is present in real time, or may be performed at an arbitrary timing based on a user instruction.
  • the illuminance measuring unit 309 can measure the illuminance by converting light incident on a light receiving element such as a Si photodiode into a current by a photoelectric effect. Further, the illuminance measurement unit 309 may measure the illuminance using a photodiode or a photoresist using a material other than Si.
  • the illuminance measurement unit 309 preferably corrects the measured illuminance so that the illuminance measured by a Si photodiode or the like matches the illuminance felt by a person (that is, the illuminance corrected by visual sensitivity).
  • the detection wavelength band of the Si photodiode extends to the infrared band in addition to the visible light band, so that it is higher than the illuminance felt by humans. It may be measured brightly.
  • the illuminance measurement unit 309 further includes a sub-photodiode that detects the infrared band, and can divide the detection output of the sub-photodiode from the detection output of the Si photodiode to measure only the illuminance due to light in the visible light band. It is preferable to do so.
  • the control unit 303 controls the refractive powers D sph and D cyl of the optical lens 31 necessary for the corrected visual acuity of the user to be the corrected visual acuity, and the relationship between the target and the user. distance to calculate a correction value D d by. In addition, the control unit 303 calculates a correction value D 1 based on illuminance. Furthermore, the control unit 303 controls the focal length of the optical lens 31 by the calculated refractive powers D sph , D cyl , D d , and D l .
  • the third embodiment of the present disclosure is different from the first embodiment in that the control unit 303 further controls the focal length of the optical lens 31 based on the illuminance.
  • FIG. 11 is a graph showing an example of the correction relationship of the refractive power with respect to the illuminance.
  • the y-axis is the refractive power
  • the x-axis represents the illuminance l in the environment where the user is present.
  • the x-axis is a logarithmic axis
  • the threshold illuminance L is a threshold for determining whether or not to correct by illuminance.
  • the graph shown in FIG. 11 shows a tendency for the amount of correction for myopia to increase as the illuminance of the environment in which the user is present decreases, regardless of whether the user is myopia or hyperopia.
  • the control unit 303 can calculate the refractive power correction amount D 1 for the illuminance and control the focal length of the optical lens 31 by using the refractive power correction relationship for the illuminance shown in FIG.
  • the optical control device 3 performs visual acuity measurement for each user and prepares a graph shown in FIG. 11 in advance. Further, the relationship between the corrected visual acuity for a general user and the necessary refractive power may be stored in the optical control device 3 in advance.
  • the optical control device 3 measures apparent illuminance (nighttime myopia) that occurs in a low illuminance environment by measuring the illuminance in the environment where the user is present. ) Can be dynamically applied to the user. Thereby, the optical control device 3 according to the third embodiment of the present disclosure can perform appropriate vision correction on the user in consideration of illuminance.
  • the optical control device 4 according to the fourth embodiment of the present disclosure includes a visual acuity measurement function that measures the visual acuity of the user, and can apply visual acuity correction optimized for the latest measured visual acuity to the user.
  • FIG. 12 is a block diagram illustrating an internal configuration of the optical control device 4 according to the fourth embodiment of the present disclosure
  • FIG. 13 is an explanatory diagram illustrating a configuration example of the optical lens 41.
  • the optical control device 4 includes an optical lens 41, an imaging device 43, a distance calculation unit 401, a control unit 403, and a visual acuity information storage unit 405. And a visual acuity measurement unit 411.
  • the optical lens 41, the imaging device 43, the distance calculation unit 401, and the visual acuity information storage unit 405 the optical lens 11, the imaging device 13, the distance calculation unit 101, and the visual acuity information storage unit described in the first embodiment. Since it is the same as 105, description here is abbreviate
  • the fourth embodiment will be described focusing on differences from the first embodiment of the present disclosure.
  • the visual acuity measurement unit 411 measures the visual acuity of the user. Specifically, the visual acuity measurement unit 411 measures the user's naked eye visual acuity. Information relating to the measured myopia or hyperopia power, astigmatism power, and astigmatism angle is stored in the visual acuity information storage unit 405.
  • the visual acuity measurement unit 411 may measure the user's naked eye visual acuity by irradiating the fundus of the user with an infrared light ring pattern and analyzing the reflection pattern from the fundus. Specifically, when an infrared ring pattern is irradiated on the fundus of the user, the size of the image formed on the fundus varies depending on the user's naked eye vision, and in the case of myopia, a larger ring pattern than usual In the case of hyperopia, the ring pattern is smaller than usual. In the case of astigmatism, an elliptical pattern extending in a direction perpendicular to the astigmatism angle is obtained.
  • the visual acuity measurement unit 411 measures the naked eye visual acuity of the user by acquiring and analyzing these reflection patterns from the fundus with an imaging device or the like, and acquires information on myopia or hyperopic power, astigmatism power, and astigmatism angle. be able to.
  • the visual acuity measurement unit 411 preferably measures the user's visual acuity at predetermined time intervals. For example, the user's visual acuity changes every moment due to time, fatigue, and the like even during the day. Therefore, it is preferable that the visual acuity measurement unit 411 measures the visual acuity of the user again every predetermined time.
  • the visual acuity measurement unit 411 may measure the user's visual acuity every life time zone such as morning, noon, and night, or may measure the user's visual acuity every fixed time such as 4 hours.
  • the visual acuity measurement unit 411 may measure the visual acuity of the user in real time, or may measure the visual acuity of the user at an arbitrary timing according to an instruction from the user.
  • the visual acuity measurement unit 411 may create a calibration curve for calculating the refractive power of the optical lens 41 shown in FIGS. 4, 5 and 11 based on the measured visual acuity of the user. According to this configuration, the optical control device 4 can perform more optimized visual acuity correction for each user.
  • the control unit 403 determines the refractive powers D sph and D cyl of the optical lens 41 necessary for the corrected visual acuity of the user to be corrected visual acuity, and the relationship between the target and the user. distance to calculate a correction value D d by. Further, the control unit 403 controls the focal length of the optical lens 41 based on the calculated refractive powers D sph , D cyl , and D d .
  • control unit 403 determines the most recent user measured by the visual acuity measurement unit 411 when calculating the refractive powers D sph and D cyl of the optical lens 41 necessary for correcting the corrected visual acuity to the corrected visual acuity. Use the visual acuity. According to this configuration, the control unit 403 can control the focal length of the optical lens 41 so as to keep the corrected visual acuity constant in accordance with the user's visual acuity that changes every day.
  • the fourth embodiment of the present disclosure further includes a visual acuity measurement unit 411, and the control unit 403 controls the focal length of the optical lens 41 based on the visual acuity of the latest user measured by the visual acuity measurement unit 411. This is different from the first embodiment.
  • the optical control device 4 measures the user's visual acuity in real time or every predetermined time, thereby reflecting the visual acuity that reflects the change in the visual acuity of the user Correction can be performed. Therefore, the optical control device 4 according to the fourth embodiment of the present disclosure can detect a change in the visual acuity of the user and can control the focal length of the optical lens 41 so that the corrected visual acuity is always constant. It is possible to correct the visual acuity more appropriate for the user.
  • the optical control device 4 when the optical control device 4 according to the fourth embodiment of the present disclosure further includes an image generation unit, the optical control device 4 generates an image for guiding visual acuity measurement by the image generation unit, and the optical lens 41. May be projected onto the screen.
  • FIG. 13 is an explanatory diagram showing an example of an image displayed on the optical lens 41.
  • the image generation unit may generate an image 411A for guiding visual acuity measurement displayed on at least one of the optical lenses 41 as shown in FIG.
  • the image generation unit looks at a distant view (for example, a distant view of 10 m or more). It is also possible to generate a phrase such as “Please look at a landscape 10 m or more away in the + direction”. Further, the image generation unit may generate a cross or an X-shaped mark in order to make the user gaze at one point in the distant view.
  • the image generated by the image generation unit may be displayed on either one selected by the user of the optical lens 41, or may be displayed on both of the optical lenses 41 with a preset parallax.
  • the optical control device 4 includes still another output device such as an audio output device, the optical control device 4 can also guide visual acuity measurement to the user using audio or the like.
  • the optical control device 4 can instruct and guide the user, it can perform more accurate visual acuity measurement.
  • the optical control device 4 can reduce the complexity of the user for visual acuity measurement.
  • the optical control device 5 according to the fifth embodiment of the present disclosure has a communication function with an external information processing device, and can transmit and receive information to and from the external information processing device.
  • FIG. 14 is an explanatory diagram illustrating an outline of the optical control device 5 according to the fifth embodiment of the present disclosure.
  • the optical control device 5 has a function of communicating with an external information processing device 53. Specifically, the optical control device 5 transmits and receives information to and from the information processing device 53 using a communication function.
  • the information processing device 53 is, for example, a mobile phone, a smartphone, a tablet terminal, or the like.
  • the optical control device 5 transmits information on the user's visual acuity such as the refractive power, the user's naked eye sight, and the corrected visual acuity, and information on the optical control device 5 such as the remaining battery level to the information processing device 53. Such information may be transmitted to the user via the device 53.
  • the optical control device 5 may receive information on the user's visual acuity such as the visual acuity measurement result and the refractive power of the optical lens 51 from the information processing device 53 and may use it for controlling the focal length of the optical lens 51.
  • FIGS. 15 to 18 the input / output of information executed by the optical control device 5 according to the fifth embodiment of the present disclosure will be described using an image example displayed by the information processing device 53. This will be specifically described.
  • FIG. 15 to FIG. 18 are explanatory diagrams for explaining examples of images displayed on the information processing device 53 communicating with the optical control device 5.
  • the image displayed by the information processing device 53 may be generated by the optical control device 5 according to the fifth embodiment of the present disclosure, or may be generated by the information processing device 53.
  • the optical control device 5 may display the input image 531 shown in FIG. 15 on the information processing device 53 and allow the user to input a prescription for glasses.
  • S (SPH) represents the refractive power of hyperopia or myopia correction
  • C (CYL) represents the refractive power of astigmatism correction
  • a (AX) represents the astigmatism angle.
  • the user inputs the information of these S (SPH), C (CYL), and A (AX), which are spectacle prescriptions, into the input image 531 and transmits the information from the information processing device 53 to the optical control device 5, so that the optical The optical control device 5 can be used without visual acuity measurement by the control device 5.
  • the optical control device 5 may indicate the refractive power of the optical lens 51 to the user, for example, by causing the information processing device 53 to display the input image 533 shown in FIG.
  • the optical control device 5 may be capable of adjusting the refractive power of the optical lens 51 by a user input.
  • the input image 533 the refractive power of the hyperopia or myopia correction of each of the user's right eye and left eye is displayed, and the user adjusts the refractive power of the optical lens 51 by using the respective adjustment knobs 533A and 533B. Is possible.
  • the input image 533 indicates that the refractive power of the optical lens 51 of the user's right eye is “ ⁇ 1.0D” and the refractive power of the optical lens 51 of the left eye is “ ⁇ 1.5D”.
  • “D” is a unit (diopter) representing the refractive power of a lens or the like, and is represented by the reciprocal of the focal length with respect to 1 m.
  • the user can manually control the focal length of the optical lens 51 by moving the adjustment knobs 533A and 533B and inputting the refractive power of the optical lens 51 of the right eye or left eye into the input image 533.
  • the optical control device 5 stores the manual adjustment result of the focal length by the user and refers to the subsequent control of the focal length of the optical lens 51. May be.
  • the optical control device 5 stores information such as the distance to the target at the time of adjustment, the illuminance of the environment, the user's visual acuity, and the time zone in accordance with the manual adjustment result of the focal length by the user.
  • the focal length of the optical lens 51 may be controlled by reflecting the previous manual adjustment result.
  • the optical control device 5 may store a plurality of manual adjustment results of the focal length by the user. In such a case, it is preferable that the optical control device 5 controls the focal length of the optical lens 51 with priority given to the manual adjustment result of the focal length most recently performed by the user.
  • the optical control device 5 may cause the information processing device 53 to display the output image 535 shown in FIG. 17 and transmit information regarding the state of the optical control device 5 to the user.
  • the output image 535 includes an image indicating whether the functions of the optical lens 51, the illuminance sensor, the visual acuity measurement sensor, and the distance measurement sensor included in the optical control device 5 are good or bad.
  • An image indicating the remaining battery level of the control device 5, an image indicating the control range of vision correction of the optical lens 51, and the like are displayed.
  • a warning image 535A to the user is displayed in the output image 535.
  • a warning image 535 ⁇ / b> A that “the eyesight measurement sensor needs to be cleaned” is displayed in the output image 535.
  • the user can confirm information related to the state of the optical control device 5 from the output image 535, so that the visual acuity correction function of the optical control device 5 can always be kept normal. Further, according to this configuration, the user can quickly cope with an abnormality occurring in the optical control device 5.
  • the optical control device 5 may display the output image 537 shown in FIG. 18 on the information processing device 53 and transmit information on the user's visual acuity to the user.
  • the output image 537 displays a graph that summarizes the results of the user's visual acuity measurement stored in the optical control device 5 in time series.
  • the output image 537 may display a comment 537A obtained by analyzing information related to the user's visual acuity. For example, in the output image 537 shown in FIG. 18, the result of the user's visual acuity measurement gradually decreases in time series, so “the visual acuity is decreasing. Rest your eyes firmly.
  • the comment 537 ⁇ / b> A is displayed. According to this configuration, the user can check information about his / her visual acuity from the output image 537, and thus can pay attention to eye health which is difficult to recognize. In addition, eye health can be confirmed from objective visual acuity measurement results.
  • the optical control device 5 according to the fifth embodiment of the present disclosure can communicate with the external information processing device 53 and receive information. It becomes possible to perform adjustment and control with respect to it.
  • the optical control device 5 according to the fifth embodiment of the present disclosure can communicate with the external information processing device 53 and transmit information, the user can check the state of the optical control device 5 and the user's own. It becomes possible to accurately grasp the state of visual acuity.
  • the optical control device can acquire distance information even for a target that is not being watched by the user by calculating the distance between the target and the user from the captured image. Therefore, the optical control device according to the present disclosure can control the focal length of the optical lens based on the distance between the entire visual field of the user and the user, and can perform more accurate visual acuity correction on the user.
  • the optical control device measures, in real time, the target and the distance between the target of the user and the user, the illuminance of the environment in which the user is present, the user's visual acuity, and the like, and reflects the measurement result to determine the focal length of the optical lens. Can be controlled. Therefore, the optical control apparatus according to the present disclosure can perform appropriate vision correction on the user according to the state of the user at that time.
  • the optical control device can measure and memorize a change in the visual acuity of the user, it can perform an appropriate visual acuity correction more specifically for the individual user.
  • optical control devices can be combined with each other. Specifically, for the visual acuity correction function according to the first embodiment, the attention point detection function according to the second embodiment, the illuminance measurement function according to the third embodiment, and the visual acuity according to the fourth embodiment. It is also possible to combine the measurement function and the communication function according to the fifth embodiment.
  • the optical control device includes a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and the like that are connected to each other via a bridge. Also good.
  • a CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • the CPU functions as an arithmetic processing unit and a control unit, and controls the overall operation in the optical control unit according to various programs.
  • the ROM stores programs and calculation parameters used by the CPU
  • the RAM temporarily stores programs used in the execution of the CPU, parameters that change as appropriate during the execution, and the like.
  • CPU performs functions, such as a distance calculation part, a control part, an attention point detection part, an image generation part, an illumination intensity measurement part, and a visual acuity measurement part, for example.
  • the lens surface of the optical lens is divided into a plurality of lens regions whose focal length can be controlled independently, The optical control device according to (2), wherein the control unit controls the focal lengths of the plurality of lens regions based on the inter-object distances calculated for each of the plurality of local regions.
  • a point-of-interest detection unit that detects a point of interest at which the line of sight is directed by the user from the captured image; The optical control device according to (2), wherein the control unit controls a focal length of the optical lens based on the inter-object distance calculated in the local region including the attention point.
  • a point-of-interest detection unit that detects a point of interest at which the line of sight is directed by the user from the captured image;
  • the control unit controls only the focal length of the lens region corresponding to the local region including the attention point based on the inter-object distance calculated in the local region including the attention point;
  • An illuminance information acquisition unit that acquires illuminance information of the environment where the user is located, The optical control device according to any one of (1) to (6), wherein the control unit further controls a focal length of the optical lens based on the illuminance information.
  • the said control part is an optical control apparatus as described in said (7) which makes the focal distance of the said optical lens small, so that the illumination intensity of the environment where the said user exists is low.
  • the visual acuity measurement unit measures the visual acuity of the user every predetermined time
  • the said control part is an optical control apparatus as described in said (9) which controls the focal distance of the said optical lens based on the visual acuity of the latest user measured by the said visual acuity measurement part.
  • the optical control device according to any one of (1) to (10), wherein the optical lens further includes an astigmatism correcting optical lens that corrects astigmatism of the user.
  • the optical control device according to any one of (1) to (12), wherein the control unit controls a focal length of the optical lens based on information regarding the visual acuity of the user input by the user. .
  • (14) Calculating a distance between the target and the target in the captured image at the user's viewpoint from the captured image by the arithmetic processing device; Controlling the focal length of an optical lens that corrects the visual acuity of the user based on the distance between the objects calculated from the captured image and the visual acuity of the user; An optical control method.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Eye Examination Apparatus (AREA)

Abstract

[Problem] To provide an optical control device and an optical control method for carrying out orthoptics more suitable to a user. [Solution] In the present invention, an optical control device is provided with the following: a distance calculation unit that calculates an inter-subject distance between a user and an object picked up in an image captured from the user's viewpoint; and a control unit that controls the focal length of an optical lens, which corrects the vision of the user, on the basis of the inter-subject distance calculated by the distance calculation unit and the visual acuity of the user.

Description

光学制御装置、および光学制御方法Optical control device and optical control method
 本開示は、光学制御装置、および光学制御方法に関する。 The present disclosure relates to an optical control device and an optical control method.
 一般的な視力矯正器具として、例えば、眼鏡、コンタクトレンズ等が知られている。これらの視力矯正器具において、視力矯正を施すレンズの屈折度数は、レンズによって固定であり、可変ではなかった。 For example, glasses and contact lenses are known as general vision correction devices. In these visual acuity correction devices, the refractive power of the lens for correcting the visual acuity is fixed by the lens and is not variable.
 そのため、例えば、視力矯正器具によって遠距離の対象が鮮明に見えるように視力を矯正されたユーザが近距離の対象を注視した場合、過矯正となり、かえってユーザの眼に負担をかけてしまうことがあった。 Therefore, for example, when a user whose visual acuity has been corrected so that an object at a long distance can be clearly seen by a vision correction device, the user is overcorrected, which may overload the user's eyes. there were.
 そこで、特許文献1には、ユーザの眼球運動を検出することにより、注視方向および注視対象までの距離を算出し、注視対象までの距離に応じてレンズの焦点距離を制御する視力矯正装置が開示されている。 Therefore, Patent Literature 1 discloses a vision correction device that detects a user's eye movement to calculate the gaze direction and the distance to the gaze target, and controls the focal length of the lens according to the distance to the gaze target. Has been.
特表2013-535022号公報Special table 2013-535022 gazette
 しかし、特許文献1に開示された技術では、ユーザの眼球運動から注視対象への距離を算出しているため、ユーザの視野内に存在するものの、ユーザが注視していない対象について距離を算出することは困難であった。したがって、特許文献1に開示された視力矯正装置では、ユーザが注視していない対象を含む視野全体に基づいて、適切な視力矯正を施すことは困難であった。 However, in the technique disclosed in Patent Document 1, since the distance from the user's eye movement to the gaze target is calculated, the distance is calculated for a target that is present in the user's field of view but is not being watched by the user. It was difficult. Therefore, with the visual acuity correction device disclosed in Patent Document 1, it has been difficult to perform appropriate visual acuity correction based on the entire visual field including the target that the user is not gazing at.
 そこで、本開示では、ユーザに対してより適切な視力矯正を施すことが可能な、新規かつ改良された光学制御装置、および光学制御方法を提案する。 Therefore, the present disclosure proposes a new and improved optical control device and optical control method capable of performing more appropriate visual acuity correction for the user.
 本開示によれば、ユーザの視点における撮像画像に写った対象とユーザとの対象間距離を前記撮像画像から算出する距離算出部と、前記距離算出部により算出された対象間距離、および前記ユーザの視力に基づいて、前記ユーザの視力を矯正する光学レンズの焦点距離を制御する制御部と、を備える、光学制御装置が提供される。 According to the present disclosure, a distance calculation unit that calculates an inter-target distance between an object captured in a captured image at the user's viewpoint and the user from the captured image, an inter-object distance calculated by the distance calculation unit, and the user And a control unit that controls a focal length of an optical lens that corrects the user's visual acuity based on the visual acuity of the user.
 また、本開示によれば、演算処理装置によって、ユーザの視点における撮像画像に写った対象とユーザとの対象間距離を前記撮像画像から算出することと、前記撮像画像から算出された対象間距離、および前記ユーザの視力に基づいて、前記ユーザの視力を矯正する光学レンズの焦点距離を制御することと、を含む、光学制御方法が提供される。 Further, according to the present disclosure, the arithmetic processing device calculates the distance between the object captured in the captured image at the user's viewpoint and the user from the captured image, and the distance between the objects calculated from the captured image. And controlling the focal length of an optical lens that corrects the user's visual acuity based on the user's visual acuity.
 本開示によれば、ユーザの視点における撮像画像を取得し、該撮像画像から算出した距離に基づいて、動的に光学レンズの焦点距離を制御することができる。 According to the present disclosure, it is possible to acquire a captured image at the user's viewpoint and dynamically control the focal length of the optical lens based on the distance calculated from the captured image.
 以上説明したように本開示によれば、ユーザに対してより適切な視力矯正を施すことが可能である。 As described above, according to the present disclosure, it is possible to perform more appropriate visual acuity correction for the user.
 なお、上記の効果は必ずしも限定的なものではなく、上記の効果とともに、または上記の効果に代えて、本明細書に示されたいずれかの効果、または本明細書から把握され得る他の効果が奏されてもよい。 Note that the above effects are not necessarily limited, and any of the effects shown in the present specification, or other effects that can be grasped from the present specification, together with or in place of the above effects. May be played.
本開示の第1の実施形態に係る光学制御装置の外観例を示した斜視図である。It is a perspective view showing an example of appearance of an optical control device concerning a 1st embodiment of this indication. 同実施形態に係る光学制御装置の内部構成を示したブロック図である。It is the block diagram which showed the internal structure of the optical control apparatus which concerns on the same embodiment. 同実施形態に係る光学レンズの一構成例を示した説明図である。It is explanatory drawing which showed the example of 1 structure of the optical lens which concerns on the same embodiment. 矯正視力と必要な屈折度数との関係の一例を示したグラフ図である。It is the graph which showed an example of the relationship between correction visual acuity and required refractive power. 距離に対する屈折度数の補正関係の一例を示したグラフ図である。It is the graph which showed an example of the correction | amendment relationship of the refractive power with respect to distance. 同実施形態に係る光学レンズに表示される画像の一例を示した説明図である。It is explanatory drawing which showed an example of the image displayed on the optical lens which concerns on the embodiment. 同実施形態に係る光学制御装置の動作例を示したフローチャート図である。It is the flowchart figure which showed the operation example of the optical control apparatus which concerns on the same embodiment. 本開示の第2の実施形態に係る光学制御装置の内部構成を示したブロック図である。FIG. 9 is a block diagram illustrating an internal configuration of an optical control device according to a second embodiment of the present disclosure. 同実施形態に係る制御部の光学レンズに対する制御の一例を示す説明図である。It is explanatory drawing which shows an example of control with respect to the optical lens of the control part which concerns on the same embodiment. 本開示の第3の実施形態に係る光学制御装置の内部構成を示したブロック図である。FIG. 10 is a block diagram illustrating an internal configuration of an optical control device according to a third embodiment of the present disclosure. 照度に対する屈折度数の補正関係の一例を示したグラフ図である。It is the graph which showed an example of the correction | amendment relationship of the refractive power with respect to illumination intensity. 本開示の第4の実施形態に係る光学制御装置の内部構成を示したブロック図である。It is a block diagram showing the internal configuration of the optical control device concerning a 4th embodiment of this indication. 同実施形態に係る光学レンズの一構成例を示した説明図である。It is explanatory drawing which showed the example of 1 structure of the optical lens which concerns on the same embodiment. 本開示の第5の実施形態に係る光学制御装置の概略を示した説明図である。It is explanatory drawing which showed the outline of the optical control apparatus which concerns on 5th Embodiment of this indication. 同実施形態に係る光学制御装置と通信する情報処理装置に表示される画像例を説明する説明図である。It is explanatory drawing explaining the example of an image displayed on the information processing apparatus which communicates with the optical control apparatus which concerns on the embodiment. 同実施形態に係る光学制御装置と通信する情報処理装置に表示される画像例を説明する説明図である。It is explanatory drawing explaining the example of an image displayed on the information processing apparatus which communicates with the optical control apparatus which concerns on the embodiment. 同実施形態に係る光学制御装置と通信する情報処理装置に表示される画像例を説明する説明図である。It is explanatory drawing explaining the example of an image displayed on the information processing apparatus which communicates with the optical control apparatus which concerns on the embodiment. 同実施形態に係る光学制御装置と通信する情報処理装置に表示される画像例を説明する説明図である。It is explanatory drawing explaining the example of an image displayed on the information processing apparatus which communicates with the optical control apparatus which concerns on the embodiment.
 以下に添付図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。 Hereinafter, preferred embodiments of the present disclosure will be described in detail with reference to the accompanying drawings. In addition, in this specification and drawing, about the component which has the substantially same function structure, duplication description is abbreviate | omitted by attaching | subjecting the same code | symbol.
 なお、説明は以下の順序で行うものとする。
 1.第1の実施形態
  1.1.光学制御装置の外観例
  1.2.光学制御装置の構成例
  1.3.光学制御装置の動作例
 2.第2の実施形態
  2.1.光学制御装置の構成例
 3.第3の実施形態
  3.1.光学制御装置の構成例
 4.第4の実施形態
  4.1.光学制御装置の構成例
 5.第5の実施形態
 6.まとめ
The description will be made in the following order.
1. 1. First embodiment 1.1. Example of appearance of optical control device 1.2. Configuration example of optical control device 1.3. 1. Example of operation of optical control device Second Embodiment 2.1. 2. Configuration example of optical control device Third Embodiment 3.1. 3. Configuration example of optical control device Fourth Embodiment 4.1. 4. Configuration example of optical control device Fifth embodiment Summary
 <1.第1の実施形態>
 [1.1.光学制御装置の外観例]
 まず、図1を参照して、本開示の第1の実施形態に係る光学制御装置1の外観例について説明する。図1は、本開示の第1の実施形態に係る光学制御装置1の外観例を示した斜視図である。
<1. First Embodiment>
[1.1. Appearance example of optical control unit]
First, an external appearance example of the optical control device 1 according to the first embodiment of the present disclosure will be described with reference to FIG. FIG. 1 is a perspective view illustrating an appearance example of the optical control device 1 according to the first embodiment of the present disclosure.
 図1に示すように、本開示の第1の実施形態に係る光学制御装置1は、光学レンズ11と、撮像装置13と、支持部材15とを備える。 As illustrated in FIG. 1, the optical control device 1 according to the first embodiment of the present disclosure includes an optical lens 11, an imaging device 13, and a support member 15.
 例えば、図1に示すように、光学制御装置1は、可変焦点レンズを備えた眼鏡であってもよい。ただし、本開示に係る技術は、上記例示に限定されない。例えば、光学制御装置1は、可変焦点レンズを備えたコンタクトレンズなどであってもよい。また、光学制御装置1は、光学レンズ11および撮像装置13を備えず、外部の撮像装置13から通信により情報を取得し、取得した情報に基づいて、外部の光学レンズ11の焦点距離を制御する制御装置であってもよい。 For example, as shown in FIG. 1, the optical control device 1 may be glasses equipped with a variable focus lens. However, the technology according to the present disclosure is not limited to the above examples. For example, the optical control device 1 may be a contact lens provided with a variable focus lens. The optical control device 1 does not include the optical lens 11 and the imaging device 13, acquires information from the external imaging device 13 through communication, and controls the focal length of the external optical lens 11 based on the acquired information. It may be a control device.
 光学レンズ11は、焦点距離を変更可能なレンズである。また、光学レンズ11は、撮像装置13にて取得された撮像画像から算出された、対象とユーザとの距離に基づいて焦点距離が制御される。具体的には、光学制御装置1は、撮像画像を画像処理することによって、ユーザが視野に捉えている対象の各々とユーザとの距離を算出し、算出した距離に基づいて光学レンズ11の焦点距離を制御する。 The optical lens 11 is a lens whose focal length can be changed. Further, the focal length of the optical lens 11 is controlled based on the distance between the target and the user calculated from the captured image acquired by the imaging device 13. Specifically, the optical control device 1 performs image processing on the captured image to calculate the distance between each of the objects captured by the user in the field of view and the user, and the focus of the optical lens 11 based on the calculated distance. Control the distance.
 なお、光学制御装置1による対象とユーザとの距離の算出、および光学レンズ11に対する焦点距離の制御は、リアルタイムにて実行される。ただし、光学制御装置1による対象とユーザとの距離の算出、および光学レンズ11に対する焦点距離の制御は、ユーザの指示によって任意のタイミングで行われてもよい。 Note that the calculation of the distance between the target and the user and the control of the focal distance for the optical lens 11 by the optical control device 1 are executed in real time. However, the calculation of the distance between the target and the user and the control of the focal length with respect to the optical lens 11 by the optical control device 1 may be performed at an arbitrary timing according to a user instruction.
 なお、光学レンズ11は、例えば、レンズ面全体で1つの変更可能な焦点距離を有する単一の可変焦点レンズである。また、光学レンズ11は、レンズ面が複数のレンズ領域に分割され、それぞれのレンズ領域が独立して焦点距離を変更可能なレンズであってもよい。 The optical lens 11 is, for example, a single variable focus lens having one variable focal length over the entire lens surface. Further, the optical lens 11 may be a lens whose lens surface is divided into a plurality of lens regions, and each lens region can independently change the focal length.
 撮像装置13は、ユーザが捉えている視野に対応する画像を取得する。例えば、撮像装置13は、光学レンズ11近傍に備えられ、ユーザが光学レンズ11を通して見ている視野に相当する画像を取得する。なお、撮像装置13は、ユーザの視野に相当する画像を取得するためには、光学レンズ11近傍に設置されていることが好ましい。 The imaging device 13 acquires an image corresponding to the visual field captured by the user. For example, the imaging device 13 is provided in the vicinity of the optical lens 11 and acquires an image corresponding to the visual field that the user is looking through the optical lens 11. The imaging device 13 is preferably installed in the vicinity of the optical lens 11 in order to acquire an image corresponding to the user's visual field.
 ここで、撮像装置13は、ユーザの視野に相当する画像が取得することができれば、光学制御装置1に備えられていなくともよい。例えば、撮像装置13は、光学制御装置1とは別個にユーザに装着された撮像機器、またはユーザに所持された撮像機器であってもよく、光学制御装置1は、これらの外部の撮像機器が撮像した画像を用いて、ユーザが捉えている視野内の対象の各々とユーザとの距離を算出してもよい。 Here, the imaging device 13 may not be provided in the optical control device 1 as long as an image corresponding to the visual field of the user can be acquired. For example, the imaging device 13 may be an imaging device attached to the user separately from the optical control device 1 or an imaging device possessed by the user, and the optical control device 1 includes these external imaging devices. A distance between each of the objects within the field of view captured by the user and the user may be calculated using the captured image.
 支持部材15は、光学レンズ11および撮像装置13を支持する構造部材である。具体的には、支持部材15は、光学レンズ11をユーザの両眼に対応する位置に保持し、撮像装置13をユーザの視野に相当する画像が取得可能な位置に保持する。例えば、光学制御装置1が可変焦点レンズを備えた眼鏡である場合、支持部材15は、該眼鏡のフレームであってもよい。 The support member 15 is a structural member that supports the optical lens 11 and the imaging device 13. Specifically, the support member 15 holds the optical lens 11 at a position corresponding to both eyes of the user, and holds the imaging device 13 at a position where an image corresponding to the visual field of the user can be acquired. For example, when the optical control device 1 is spectacles including a variable focus lens, the support member 15 may be a frame of the spectacles.
 なお、上記では、本開示の第1の実施形態に係る光学制御装置1は、撮像装置13によって撮像したユーザの視野に相当する画像から、対象とユーザとの距離を算出すると説明したが、本開示の技術は、かかる例示に限定されない。例えば、本開示の第1の実施形態に係る光学制御装置1は、所定の波長の光を対象に対して照射し、照射した光が対象にて反射し、光学制御装置1に戻ってくるまでの時間に基づいて距離を算出するToF(Time-of-Flight)法により、対象とユーザとの距離を算出してもよい。 In the above description, the optical control device 1 according to the first embodiment of the present disclosure has been described as calculating the distance between the target and the user from the image corresponding to the field of view of the user captured by the imaging device 13. The disclosed technology is not limited to such examples. For example, the optical control device 1 according to the first embodiment of the present disclosure irradiates a target with light having a predetermined wavelength until the irradiated light is reflected by the target and returns to the optical control device 1. The distance between the target and the user may be calculated by the ToF (Time-of-Flight) method for calculating the distance based on the time of the above.
 [1.2.光学制御装置の構成例]
 次に、図2~図6を参照して、本開示の第1の実施形態に係る光学制御装置1の構成例について説明する。図2は、本開示の第1の実施形態に係る光学制御装置1の内部構成を示したブロック図である。また、図3は、光学レンズ11の一構成例を示した説明図である。
[1.2. Configuration example of optical control device]
Next, a configuration example of the optical control device 1 according to the first embodiment of the present disclosure will be described with reference to FIGS. 2 to 6. FIG. 2 is a block diagram illustrating an internal configuration of the optical control device 1 according to the first embodiment of the present disclosure. FIG. 3 is an explanatory diagram showing a configuration example of the optical lens 11.
 図2に示すように、本開示の第1の実施形態に係る光学制御装置1は、光学レンズ11と、撮像装置13と、距離算出部101と、制御部103と、視力情報記憶部105と、を備える。 As illustrated in FIG. 2, the optical control device 1 according to the first embodiment of the present disclosure includes an optical lens 11, an imaging device 13, a distance calculation unit 101, a control unit 103, and a vision information storage unit 105. .
 光学レンズ11は、上述したように、焦点距離を変更可能な、いわゆる可変焦点レンズである。また、光学レンズ11は、撮像装置13にて取得された撮像画像から算出された対象とユーザとの距離に基づいて、焦点距離が制御される。 As described above, the optical lens 11 is a so-called variable focus lens that can change the focal length. The focal length of the optical lens 11 is controlled based on the distance between the target and the user calculated from the captured image acquired by the imaging device 13.
 ここで、焦点距離を変更可能な光学レンズ11は、例えば、エレクトロウェッティング現象を用いた液体レンズ、透明弾性膜を用いた液体レンズ、または液晶を用いた液晶レンズなどによって実現することが可能である。 Here, the optical lens 11 capable of changing the focal length can be realized by, for example, a liquid lens using an electrowetting phenomenon, a liquid lens using a transparent elastic film, or a liquid crystal lens using liquid crystal. is there.
 例えば、エレクトロウェッティング現象とは、疎水性誘電膜上に配置された液滴に電圧を印加した際に、誘電膜の疎水性が変化することで液滴の接触角が変化する現象である。このようなエレクトロウェッティング現象を用いることにより、焦点距離を変更可能な光学レンズ11を実現することができる。 For example, the electrowetting phenomenon is a phenomenon in which when a voltage is applied to a droplet disposed on a hydrophobic dielectric film, the contact angle of the droplet changes due to the change in the hydrophobicity of the dielectric film. By using such an electrowetting phenomenon, the optical lens 11 capable of changing the focal length can be realized.
 具体的には、疎水性コーティングがされた電極を備える領域に、混ざり合わず、屈折率が異なる透明な2種類の液体が封入される。なお、混ざり合わず、屈折率が異なる透明な2種類の液体とは、例えば、導電性の低いシリコンオイル、および導電性が高い水溶液である。この構成によれば、疎水コーティングされた電極にシリコンオイルが集まることでシリコンオイルと水溶液との界面に液体レンズが形成される。ここで、疎水コーティングされた電極に電圧を印加すると、電極の疎水性が変化するため、シリコンオイルと水溶液との界面形状(すなわち、液体レンズの形状)が変化する。したがって、エレクトロウェッティング現象を用いた場合、印加する電圧を制御することにより液体レンズの形状を制御し、焦点距離を制御することができる。 More specifically, two types of transparent liquids that are not mixed and have different refractive indexes are sealed in a region including an electrode with a hydrophobic coating. The two kinds of transparent liquids that are not mixed and have different refractive indexes are, for example, silicon oil having low conductivity and an aqueous solution having high conductivity. According to this configuration, the liquid lens is formed at the interface between the silicone oil and the aqueous solution by collecting the silicone oil on the hydrophobic coated electrode. Here, when a voltage is applied to the hydrophobic coated electrode, the hydrophobicity of the electrode changes, so that the interface shape between the silicon oil and the aqueous solution (that is, the shape of the liquid lens) changes. Therefore, when the electrowetting phenomenon is used, the shape of the liquid lens can be controlled by controlling the applied voltage, and the focal length can be controlled.
 また、透明弾性膜を用いた液体レンズを用いることにより焦点距離を変更可能な光学レンズ11を実現してもよい。透明弾性膜を用いた液体レンズは、透明弾性膜にて形成されたレンズ形状の構造体内部に液体が封入されたレンズであり、該液体レンズの外形形状を変化させることにより、焦点距離を制御することができる。 Further, the optical lens 11 whose focal length can be changed may be realized by using a liquid lens using a transparent elastic film. A liquid lens using a transparent elastic film is a lens in which liquid is sealed inside a lens-shaped structure formed of a transparent elastic film, and the focal length is controlled by changing the external shape of the liquid lens. can do.
 例えば、透明弾性膜にて形成されたレンズ形状は、構造体内部に液体を注入または排出することにより、レンズ形状の構造体内部の容積を変化させることができる。これにより、該液体レンズの外形形状を変化させ、焦点距離を制御することできる。 For example, a lens shape formed of a transparent elastic film can change the volume inside the lens-shaped structure by injecting or discharging a liquid into the structure. Thereby, the external shape of the liquid lens can be changed and the focal length can be controlled.
 また、例えば、ガラス基板上に形成された透明電極上に、パラキシリレン系ポリマーであるパリレン(登録商標)からなる透明弾性薄膜にて液体を封入した略半球形状の液体レンズを形成し、該液体レンズ上に金属薄膜を成膜する。ここで、透明電極と金属薄膜との間に電圧を印加すると、特に両者の距離が短い液体レンズ外周部において、強い静電気力が作用し、パリレン薄膜がガラス基板側に引き寄せられる。このとき、液体は体積が変化しないため、液体は、液体レンズの上部側に移動し、パリレン薄膜は、より盛り上がったレンズ形状に変化する。これにより、該液体レンズの外形形状を変化させ、焦点距離を制御してもよい。 Further, for example, a liquid lens having a substantially hemispherical shape in which a liquid is sealed with a transparent elastic thin film made of parylene (registered trademark), which is a paraxylylene polymer, is formed on a transparent electrode formed on a glass substrate, and the liquid lens A metal thin film is formed thereon. Here, when a voltage is applied between the transparent electrode and the metal thin film, a strong electrostatic force acts particularly on the outer periphery of the liquid lens where the distance between the two is short, and the parylene thin film is drawn toward the glass substrate side. At this time, since the volume of the liquid does not change, the liquid moves to the upper side of the liquid lens, and the parylene thin film changes to a more raised lens shape. Thereby, the external shape of the liquid lens may be changed to control the focal length.
 さらに、液晶を用いた液晶レンズを用いて、焦点距離を変更可能な光学レンズ11を実現してもよい。具体的には、液晶をレンズ形状の空間に封入した液晶レンズでは、印加する電圧を調整することにより、見かけ上の液晶の屈折率を変化させることができる。したがって、液晶への印加電圧を制御することによって液晶レンズの屈折率を変化させ、焦点距離を制御することができる。 Furthermore, the optical lens 11 whose focal length can be changed may be realized by using a liquid crystal lens using liquid crystal. Specifically, in a liquid crystal lens in which liquid crystal is enclosed in a lens-shaped space, the apparent refractive index of the liquid crystal can be changed by adjusting the applied voltage. Accordingly, the focal length can be controlled by changing the refractive index of the liquid crystal lens by controlling the voltage applied to the liquid crystal.
 なお、光学レンズ11は、1つの可変焦点レンズによって形成されてもよく、少なくとも1つ以上の可変焦点レンズを含む複数のレンズを、光の入射方向に直列に組み合わせることによって形成されてもよい。 The optical lens 11 may be formed by a single variable focus lens, or may be formed by combining a plurality of lenses including at least one variable focus lens in series in the light incident direction.
 例えば、光学レンズ11は、近視または遠視矯正用レンズと、乱視矯正用レンズとが光の入射方向に直列に組み合わされて配置されたレンズであってもよい。ここで、乱視とは、眼の屈折力が角度によって異なる状態であり、乱視度数Dcylと乱視角度θによって定義される。そのため、例えば、乱視矯正用レンズは、一方向にのみ屈折力を有し、乱視角度θに合わせて回転可能な円柱型の液体レンズや、乱視角度θの一方向にのみ屈折力を有するように液晶の配向を制御した液晶レンズにて実現される。なお、液晶レンズであれば、近視または遠視矯正用の可変焦点レンズの機能と、乱視矯正用レンズの機能とを一枚のレンズにて実現することができる。 For example, the optical lens 11 may be a lens in which a lens for correcting myopia or hyperopia and a lens for correcting astigmatism are combined in series in the incident direction of light. Here, astigmatism is a state in which the refractive power of the eye varies depending on the angle, and is defined by the astigmatism power D cyl and the astigmatism angle θ. Therefore, for example, a lens for correcting astigmatism has a refractive power only in one direction and has a refractive power only in one direction of a cylindrical liquid lens that can rotate according to the astigmatism angle θ or an astigmatism angle θ. This is realized by a liquid crystal lens in which the orientation of the liquid crystal is controlled. In the case of a liquid crystal lens, the function of a variable focus lens for correcting myopia or hyperopia and the function of a lens for correcting astigmatism can be realized by a single lens.
 また、光学レンズ11のレンズ面は、複数のレンズ領域に分割されていてもよい。具体的には、図3に示すように、光学レンズ11のレンズ面は、矩形状のレンズ領域111に分割されていてもよい。また、それぞれのレンズ領域111は、互いに独立して焦点距離が制御可能に設けられる。なお、光学レンズ11のレンズ面におけるレンズ領域111の形状は、図3で示した矩形形状に限定されず、三角形状または六角形状などであってもよい。 Further, the lens surface of the optical lens 11 may be divided into a plurality of lens regions. Specifically, as shown in FIG. 3, the lens surface of the optical lens 11 may be divided into rectangular lens regions 111. Each lens region 111 is provided such that the focal length can be controlled independently of each other. Note that the shape of the lens region 111 on the lens surface of the optical lens 11 is not limited to the rectangular shape shown in FIG. 3, and may be a triangular shape or a hexagonal shape.
 撮像装置13は、上述したように、ユーザが捉えている視野に対応する画像を取得する。具体的には、撮像装置13は、撮像レンズおよび撮像素子を含む。撮像装置13は、CMOSイメージセンサ、またはCCDイメージセンサなどで構成される撮像素子によって、撮像レンズを介して入射する被写体からの光を光電変換することにより、画像を取得することができる。 The imaging device 13 acquires an image corresponding to the visual field captured by the user as described above. Specifically, the imaging device 13 includes an imaging lens and an imaging element. The imaging device 13 can acquire an image by photoelectrically converting light from a subject incident through an imaging lens by an imaging device such as a CMOS image sensor or a CCD image sensor.
 距離算出部101は、撮像装置13が取得した撮像画像を画像処理し、該撮像画像に写った対象とユーザとの距離を算出する。 The distance calculation unit 101 performs image processing on the captured image acquired by the imaging device 13 and calculates the distance between the object captured in the captured image and the user.
 例えば、距離算出部101は、立体視可能な奥行き情報を有する3次元画像を2次元画像から生成する技術を用いて、撮像画像から奥行き情報を算出し、該奥行き情報をユーザに対する距離情報に変換してもよい。 For example, the distance calculation unit 101 calculates depth information from the captured image using a technique for generating a three-dimensional image having stereoscopically viewable depth information from the two-dimensional image, and converts the depth information into distance information for the user. May be.
 具体的には、距離算出部101は、撮像装置13が取得した撮像画像を輝度微分して該輝度微分信号の強弱に応じた立体視可能な右眼用画像と左眼用画像とを生成し、生成した右眼用画像および左眼用画像の視差情報から、対象とユーザとの距離情報を算出してもよい。また、距離算出部101は、撮像装置13が取得した撮像画像に対して、局所的または大局的な奥行き推定を行い、推定した奥行き情報から対象とユーザとの距離情報を算出してもよい。 Specifically, the distance calculation unit 101 generates a right-eye image and a left-eye image that are stereoscopically viewable in accordance with the intensity of the luminance differential signal by performing luminance differentiation on the captured image acquired by the imaging device 13. The distance information between the target and the user may be calculated from the parallax information of the generated right-eye image and left-eye image. Further, the distance calculation unit 101 may perform local or global depth estimation on the captured image acquired by the imaging device 13 and calculate distance information between the target and the user from the estimated depth information.
 このような1枚の2次元画像から奥行き情報を算出し、該奥行き情報を対象とユーザとの距離情報に変換する方法を用いた場合、光学制御装置1は、1つの撮像装置13から取得した1枚の撮像画像を用いて対象とユーザとの距離を算出することができる。そのため、光学制御装置1は、複数の撮像装置を用意する必要がないため、より好ましい。 When using such a method of calculating depth information from a single two-dimensional image and converting the depth information into distance information between the target and the user, the optical control device 1 is obtained from one imaging device 13. The distance between the target and the user can be calculated using one captured image. Therefore, the optical control device 1 is more preferable because it is not necessary to prepare a plurality of imaging devices.
 また、距離算出部101は、例えば、複数の撮像装置13からそれぞれ撮像画像を取得し、複数の撮像画像に対してステレオマッチング法等を用い、該撮像画像に写った対象とユーザとの距離情報を算出してもよい。具体的には、距離算出部101は、複数の撮像装置13から取得したそれぞれの撮像画像間にて写っている対象の対応関係を判断する。また、距離算出部101は、対応関係にある対象の位置の撮像画像間のずれ(視差)量と、複数の撮像装置13の位置関係とを用いることにより、該撮像画像に写った対象とユーザとの距離を算出することができる。 In addition, the distance calculation unit 101 acquires, for example, captured images from a plurality of imaging devices 13 and uses a stereo matching method or the like for the plurality of captured images, and distance information between the target captured in the captured images and the user. May be calculated. Specifically, the distance calculation unit 101 determines a correspondence relationship between objects captured between the captured images acquired from the plurality of imaging devices 13. In addition, the distance calculation unit 101 uses the amount of deviation (parallax) between captured images at a target position in a correspondence relationship and the positional relationship of the plurality of imaging devices 13, so that the target captured in the captured image and the user Can be calculated.
 このような撮像画像から対象とユーザとの距離を算出する距離算出部101によれば、光学制御装置1は、ユーザが注視している対象に加えて、ユーザが注視していない対象についてもユーザとの距離を算出することができる。これにより、光学制御装置1は、ユーザの視野全体とユーザとの距離に基づいて、光学レンズ11の焦点距離を制御することができるため、ユーザに対してより正確な視力矯正を施すことができる。 According to the distance calculation unit 101 that calculates the distance between the target and the user from such a captured image, the optical control device 1 also applies to the target that is not being watched by the user in addition to the target that is being watched by the user. Can be calculated. Thereby, since the optical control apparatus 1 can control the focal distance of the optical lens 11 based on the distance between the entire field of view of the user and the user, more accurate visual acuity correction can be performed on the user. .
 なお、距離算出部101は、撮像装置13により取得された撮像画像を用いずに、他の手法にて対象とユーザとの距離を算出してもよい。例えば、距離算出部101は、ToF法にて対象とユーザとの距離を算出してもよい。具体的には、光学制御装置1は、所定の波長の光を照射する光源と、該光源によって照射される光を検出する検出器とを備え、光源から照射された光が、対象にて反射し検出器に戻ってくるまでの時間に基づいて、対象とユーザとの距離を算出してもよい。 The distance calculation unit 101 may calculate the distance between the target and the user by another method without using the captured image acquired by the imaging device 13. For example, the distance calculation unit 101 may calculate the distance between the target and the user by the ToF method. Specifically, the optical control device 1 includes a light source that emits light of a predetermined wavelength and a detector that detects light emitted by the light source, and the light emitted from the light source is reflected by the target. Then, the distance between the target and the user may be calculated based on the time until returning to the detector.
 また、距離算出部101は、撮像装置13が取得した撮像画像を複数の領域に分割し、分割した複数の領域ごとに、対象とユーザとの距離を算出してもよい。ここで、光学レンズ11のレンズ面が複数のレンズ領域に分割され、各レンズ領域が独立して焦点距離を制御可能である場合、光学制御装置1は、ユーザに対してより適切な視力矯正を施すことができる。 Further, the distance calculation unit 101 may divide the captured image acquired by the imaging device 13 into a plurality of regions and calculate the distance between the target and the user for each of the divided regions. Here, when the lens surface of the optical lens 11 is divided into a plurality of lens regions and each lens region can independently control the focal length, the optical control device 1 performs more appropriate visual acuity correction for the user. Can be applied.
 具体的には、光学制御装置1は、光学レンズ11の分割されたレンズ領域に対応するように撮像画像を複数の領域に分割し、分割した撮像画像の領域の各々にて、対象とユーザとの距離を算出する。また、光学制御装置1は、分割した撮像画像の領域の各々にて算出した対象とユーザとの距離に基づいて、分割されたレンズ領域の焦点距離を制御してもよい。これによれば、光学制御装置1は、光学レンズ11の分割されたレンズ領域の各々において、個別に対象とユーザとの距離に応じた視力矯正を施すことができる。すなわち、光学制御装置1は、ユーザが捉えている視野全体にわたって、該領域における対象とユーザとの距離に応じた適切な視力矯正を施すことができる。 Specifically, the optical control device 1 divides the captured image into a plurality of regions so as to correspond to the divided lens regions of the optical lens 11, and in each of the divided captured image regions, the target and the user The distance is calculated. The optical control device 1 may control the focal length of the divided lens area based on the distance between the target and the user calculated in each of the divided captured image areas. According to this, the optical control device 1 can individually correct the visual acuity according to the distance between the target and the user in each of the divided lens regions of the optical lens 11. That is, the optical control apparatus 1 can perform appropriate visual acuity correction according to the distance between the target and the user in the region over the entire visual field captured by the user.
 制御部103は、距離算出部101により算出された対象とユーザとの距離に基づいて、光学レンズ11の焦点距離を制御する。具体的には、制御部103は、視力情報記憶部105よりユーザの裸眼視力に関する情報、および矯正視力に関する情報を取得し、ユーザの視力を矯正視力にするために必要な光学レンズ11の屈折度数DsphおよびDcylを算出する。なお、Dsphは、近視または遠視矯正用レンズの屈折度数であり、Dcylは、乱視矯正用レンズの屈折度数である。また、制御部103は、距離算出部101により算出された対象とユーザとの距離に基づいて、距離によるDsphの補正値Dを算出する。さらに、制御部103は、算出した屈折度数Dsph、Dcyl、およびDにより光学レンズ11の焦点距離を制御する。 The control unit 103 controls the focal length of the optical lens 11 based on the distance between the object calculated by the distance calculation unit 101 and the user. Specifically, the control unit 103 acquires information about the user's naked eye vision and information about the corrected visual acuity from the visual acuity information storage unit 105, and the refractive power of the optical lens 11 necessary to make the user's visual acuity a corrected visual acuity. Calculate D sph and D cyl . Note that D sph is the refractive power of the lens for correcting myopia or hyperopia, and D cyl is the refractive power of the lens for correcting astigmatism. Further, the control unit 103 calculates a correction value D d of D sph based on the distance based on the distance between the target calculated by the distance calculation unit 101 and the user. Furthermore, the control unit 103 controls the focal length of the optical lens 11 based on the calculated refractive powers D sph , D cyl , and D d .
 ここで、図4および図5を参照して、制御部103が実行する光学レンズ11の屈折度数の算出方法についてより詳しく説明する。図4は、矯正視力と必要な屈折度数との関係の一例を示したグラフ図であり、図5は、距離に対する屈折度数の補正関係の一例を示したグラフ図である。 Here, with reference to FIG. 4 and FIG. 5, the calculation method of the refractive power of the optical lens 11 executed by the control unit 103 will be described in more detail. FIG. 4 is a graph showing an example of the relationship between the corrected visual acuity and the necessary refractive power, and FIG. 5 is a graph showing an example of the correction relationship of the refractive power with respect to the distance.
 まず、図4を参照して、近視または遠視矯正用レンズの屈折度数Dsphの算出方法について説明する。図4で示すグラフにおいて、y軸は、ユーザの視力であり、x軸は、ユーザの視力に対応する屈折度数Dを表す。また、図4で示すグラフは、ユーザの視力が低下するほど、屈折度数の絶対値が増加する傾向を示し、屈折度数が0になるy軸切片が矯正視力V(矯正後の目標視力)である。 First, a method of calculating the refractive power D sph of the lens for correcting myopia or hyperopia will be described with reference to FIG. In the graph shown in FIG. 4, the y axis represents the user's visual acuity, and the x axis represents the refractive power D corresponding to the user's visual acuity. The graph shown in FIG. 4 shows a tendency that the absolute value of the refractive power increases as the user's visual acuity decreases, and the y-axis intercept at which the refractive power becomes 0 is corrected visual acuity V t (target visual acuity after correction). It is.
 ここで、ユーザの裸眼視力がVである場合、ユーザの視力を矯正視力Vにするために必要な屈折度数は、図4のグラフにおいてy=Vの場合のx座標Dsphorgとなる。また、ユーザが矯正後の視力を矯正視力Vよりも低い視力Vreに設定することを希望する場合、矯正視力Vreを得るために必要な屈折度数Dsphは、y=Vの場合のx座標と、y=Vreの場合のx座標との差であるDsphreとなる。なお、近視矯正用レンズの屈折度数Dsphの符号は負であり、遠視矯正用レンズの屈折度数Dsphの符号は正である。 Here, when the user's naked eye acuity is V c , the refractive power necessary to change the user's visual acuity to the corrected visual acuity V t is the x-coordinate D sphag when y = V c in the graph of FIG. . When the user desires to set the corrected visual acuity to a visual acuity V re lower than the corrected visual acuity V t, the refractive power D sph necessary for obtaining the corrected visual acuity V re is y = V c . and x-coordinate of the difference a is D Sphre the x-coordinate in the case of y = V re. Note that the sign of the refractive power D sph of the lens for correcting myopia is negative, and the sign of the refractive power D sph of the lens for correcting hyperopia is positive.
 なお、図4で示した矯正視力と必要な屈折度数との関係は、個人差がある。そのため、光学制御装置1は、ユーザごとに視力測定を行い、あらかじめ図4で示すグラフを作成しておくことが好ましい。また、一般的なユーザにおける矯正視力と必要な屈折度数との関係をあらかじめ光学制御装置1に記憶させておいてもよい。 The relationship between the corrected visual acuity shown in FIG. 4 and the necessary refractive power varies among individuals. Therefore, it is preferable that the optical control device 1 performs visual acuity measurement for each user and prepares a graph shown in FIG. 4 in advance. Further, the relationship between the corrected visual acuity for a general user and the necessary refractive power may be stored in the optical control device 1 in advance.
 また、乱視用レンズの屈折度数Dcylについても、Dsphと同様の方法にて算出することができる。 Further, the refractive power D cyl of the astigmatic lens can be calculated by the same method as D sph .
 次に、図5を参照して、距離による補正値Dの算出方法について説明する。図5に示すグラフにおいて、y軸は、屈折度数であり、x軸は、対象とユーザとの距離dを表す。また、図5で示すグラフは、ユーザが近視である場合、遠視である場合、近視かつ遠視である場合に分かれる。なお、閾値距離Tは、距離による補正を施すか否かを判断するための閾値であり、適宜適切な距離を設定することができる。 Next, referring to FIG. 5, the distance calculation method of the correction value D d by explaining. In the graph shown in FIG. 5, the y-axis is the refractive power, and the x-axis represents the distance d between the target and the user. Further, the graph shown in FIG. 5 is divided into a case where the user is myopic, a case of hyperopia, and a case of myopia and hyperopia. The threshold distance T is a threshold for determining whether or not to perform correction based on the distance, and an appropriate distance can be set as appropriate.
 ここで、ユーザが近視である場合、近視矯正用レンズの屈折度数Dsphdisの符号は負であり、ユーザは、裸眼では近距離のほうが見えやすい。そのため、Dは、対象とユーザとの距離が閾値距離Tから近距離になるほど、Dsphdisを相殺するように増加し、過矯正にならないように補正する。すなわち、Dは、d=0にてD=-Dsphdisとなるように増加する。これにより、制御部103は、近視のユーザに対して、近距離ほど視力矯正の度合が低くなるように光学レンズ11の屈折度数を制御することができる。 Here, when the user is myopic, the sign of the refractive power D sphdis of the lens for correcting myopia is negative, and the user can easily see near distance with the naked eye. Therefore, D d increases so as to cancel out D sphdis as the distance between the target and the user is closer to the threshold distance T, and is corrected so as not to be overcorrected . That is, D d increases so that D d = −D sphdis when d = 0. Thereby, the control part 103 can control the refractive power of the optical lens 11 so that the degree of visual acuity correction becomes low with respect to a near-sighted user at a short distance.
 また、ユーザが遠視である場合、遠視矯正用レンズの屈折度数Dsphreadの符号は正であり、ユーザは、裸眼では遠距離のほうが見えやすい。そのため、Dは、対象とユーザとの距離が閾値距離Tに対して近くなるほど、Dsphreadを相殺するように絶対値が増加し、過矯正にならないように補正する。すなわち、Dは、d=TにてD=-Dsphreadとなるように絶対値が増加する。これにより、制御部103は、遠視のユーザに対して、遠距離ほど視力矯正の度合が低くなるように光学レンズ11の屈折度数を制御することができる。 In addition, when the user is hyperopic, the sign of the refractive power D sread of the lens for correcting hyperopia is positive, and the user can easily see far distances with the naked eye. For this reason, D d is corrected so that the absolute value increases so as to cancel out D spread and the overcorrection does not occur as the distance between the target and the user becomes closer to the threshold distance T. That, D d is the absolute value such that D d = -D sphread at d = T increases. Thereby, the control part 103 can control the refractive power of the optical lens 11 with respect to the user of hyperopia so that the degree of visual acuity correction becomes low, so that it is a long distance.
 さらに、ユーザが近視かつ遠視である場合、ユーザは遠距離および近距離共に見えにくい。そのため、例えば、遠視および近視矯正用レンズの屈折度数がDsphdis(符号は負)である場合、Dは、対象とユーザとの距離が閾値距離Tから近距離になるほど、Dsphdisを相殺するように増加する。また、Dは、d=0にてD=-2Dsphdisとなるように増加し、所定の距離tにて、「D+Dsphdis」の符号が負から正に変更される。すなわち、Dが増加することにより、光学レンズ11は、近視矯正用レンズ(屈折度数が負)から遠視矯正用レンズ(屈折度数が正)に変化する。この構成によれば、制御部103は、近視かつ遠視のユーザに対して、遠距離では近視矯正用の視力矯正を施し、近距離では遠視矯正用の視力矯正を施すことができる。 Furthermore, when the user is nearsighted and farsighted, the user is difficult to see both at long distance and near distance. Therefore, for example, when the refractive power of the lens for correcting hyperopia and myopia is D sphdis (sign is negative), D d cancels D sphdis as the distance between the target and the user is closer to the threshold distance T. So as to increase. Further, D d increases so that D d = −2D sphdis when d = 0, and the sign of “D d + D sphdis ” is changed from negative to positive at a predetermined distance t. That is, as Dd increases, the optical lens 11 changes from a myopia correction lens (refractive power is negative) to a hyperopia correction lens (refractive power is positive). According to this configuration, the control unit 103 can perform vision correction for correcting myopia at a long distance and correct vision for correcting hyperopia at a short distance for a myopic and hyperopic user.
 なお、図5で示した距離による補正値Dを算出するための補正関係は、Dsphと同様に個人差がある。そのため、光学制御装置1は、ユーザごとに視力測定を行い、図5で示したグラフについてもあらかじめ作成しておくことが好ましい。また、光学制御装置1に記憶させておくことが好ましい。また、一般的なユーザにおける補正値Dを算出するためのグラフをあらかじめ光学制御装置1に記憶させておいてもよい。 Note that the correction relationship for calculating the correction value D d based on the distance shown in FIG. 5 has individual differences as in D sph . Therefore, it is preferable that the optical control device 1 performs visual acuity measurement for each user and prepares the graph shown in FIG. 5 in advance. Further, it is preferably stored in the optical control device 1. Further, a graph for calculating the correction value D d for a general user may be stored in the optical control device 1 in advance.
 視力情報記憶部105は、ユーザの視力に関する情報を記憶する。具体的には、視力情報記憶部105は、ユーザの裸眼視力および矯正視力(目標とする矯正後の視力)を記憶する。また、視力情報記憶部105は、ユーザの視力の矯正値である近視または遠視矯正用レンズの屈折度数Dsph、乱視矯正用レンズの屈折度数Dcylおよび乱視角度θをあらかじめ記憶していてもよい。さらに、視力情報記憶部105は、Dsphを算出するための図4で示した矯正視力と屈折度数との関係や、Dを算出するための図5で示した距離に対する屈折度数の補正関係を記憶していてもよい。 The visual acuity information storage unit 105 stores information related to the user's visual acuity. Specifically, the visual acuity information storage unit 105 stores the user's naked eye visual acuity and corrected visual acuity (target visual acuity after correction). The visual acuity information storage unit 105 may store in advance the refractive power D sph of the lens for correcting myopia or hyperopia, the refractive power D cyl of the lens for correcting astigmatism, and the astigmatism angle θ, which are correction values of the user's visual acuity. . Furthermore, the visual acuity information storage unit 105 calculates the relationship between the corrected visual acuity and the refractive power shown in FIG. 4 for calculating D sph , and the refractive power correction relationship for the distance shown in FIG. 5 for calculating D d . May be stored.
 以上の構成によれば、本開示の第1の実施形態に係る光学制御装置1は、撮像画像に基づいて対象とユーザとの距離を算出することにより、ユーザが注視していない対象についても距離情報を取得することができる。そのため、本開示の第1の実施形態に係る光学制御装置1は、ユーザの視野全体とユーザとの距離に基づいて、光学レンズ11の焦点距離を動的に制御することができる。よって、本開示の第1の実施形態に係る光学制御装置1は、より正確な視力矯正をユーザに対して施すことができる。 According to the above configuration, the optical control device 1 according to the first embodiment of the present disclosure calculates the distance between the target and the user based on the captured image, so that the distance that is not observed by the user is also determined. Information can be acquired. Therefore, the optical control device 1 according to the first embodiment of the present disclosure can dynamically control the focal length of the optical lens 11 based on the distance between the entire field of view of the user and the user. Therefore, the optical control device 1 according to the first embodiment of the present disclosure can perform more accurate visual acuity correction on the user.
 ここで、本開示の第1の実施形態に係る光学制御装置1は、さらに画像生成部を備えていてもよい。例えば、光学制御装置1は、ユーザに対して情報伝達を行う画像を生成する画像生成部を備え、該画像生成部が生成した画像を光学レンズ11に表示させてもよい。ここで、図6は、光学レンズ11に表示される画像の一例を示した説明図である。 Here, the optical control device 1 according to the first embodiment of the present disclosure may further include an image generation unit. For example, the optical control device 1 may include an image generation unit that generates an image for transmitting information to the user, and display the image generated by the image generation unit on the optical lens 11. Here, FIG. 6 is an explanatory diagram showing an example of an image displayed on the optical lens 11.
 例えば、画像生成部は、図6に示すように、光学レンズ11の少なくとも一方に表示される画像113を生成してもよい。具体的には、画像113は、屈折度数、ユーザの裸眼視力、および矯正視力などのユーザの視力に関する情報や、バッテリー残量などの光学制御装置1に関する情報を含み、これらの情報をユーザに対して情報伝達するものであってもよい。なお、画像生成部が生成した画像の光学レンズ11への表示は、例えば、ハーフミラーによる投影などを用いることで実現することができる。 For example, the image generation unit may generate an image 113 displayed on at least one of the optical lenses 11 as shown in FIG. Specifically, the image 113 includes information on the user's visual acuity such as the refractive power, the user's naked eye acuity, and the corrected visual acuity, and information on the optical control device 1 such as the battery remaining amount. Information may be transmitted. In addition, the display on the optical lens 11 of the image generated by the image generation unit can be realized by using, for example, projection by a half mirror.
 なお、画像生成部が生成した画像は、光学レンズ11のユーザが選択したいずれか一方に表示されてもよく、あらかじめ設定した視差にて光学レンズ11の両方に表示されてもよい。 Note that the image generated by the image generation unit may be displayed on either one selected by the user of the optical lens 11 or may be displayed on both of the optical lenses 11 with a preset parallax.
 この構成によれば、ユーザは、自身の視力に関する情報や光学制御装置1に関する情報を別途の表示装置などを使用することなく、確認することができる。 According to this configuration, the user can confirm information regarding his or her visual acuity and information regarding the optical control device 1 without using a separate display device or the like.
 [1.3.光学制御装置の動作例]
 続いて、図7を参照して、本開示の第1の実施形態に係る光学制御装置1の動作について説明する。図7は、本開示の第1の実施形態に係る光学制御装置1の動作例を示したフローチャート図である。
[1.3. Example of operation of optical control device]
Subsequently, an operation of the optical control device 1 according to the first embodiment of the present disclosure will be described with reference to FIG. FIG. 7 is a flowchart illustrating an operation example of the optical control device 1 according to the first embodiment of the present disclosure.
 図7に示すように、まず、撮像装置13は、ユーザの視点に相当する撮像画像を取得する(S101)。次に、距離算出部101は、取得された撮像画像に基づいて、該撮像画像に写った対象とユーザとの距離を算出する(S103)。続いて、制御部103は、視力情報記憶部105からユーザの矯正前の視力(すなわち、裸眼視力)、および矯正後の視力(すなわち、矯正視力)に関する情報を取得する(S105)。 As shown in FIG. 7, first, the imaging device 13 acquires a captured image corresponding to the user's viewpoint (S101). Next, the distance calculation unit 101 calculates the distance between the object captured in the captured image and the user based on the acquired captured image (S103). Subsequently, the control unit 103 acquires information on the visual acuity before correction (that is, naked eye visual acuity) and the visual acuity after correction (that is, corrected visual acuity) from the visual acuity information storage unit 105 (S105).
 また、制御部103は、ユーザの視力を矯正視力に矯正するために必要な光学レンズ11の屈折度数を算出する(S107)。さらに、制御部103は、距離算出部101によって算出された対象とユーザとの距離に基づいて、光学レンズ11の屈折度数を補正する(S109)。続いて、制御部103は、補正した屈折度数が得られるように、光学レンズ11の焦点距離を制御する(S111)。 Also, the control unit 103 calculates the refractive power of the optical lens 11 necessary for correcting the user's visual acuity to the corrected visual acuity (S107). Further, the control unit 103 corrects the refractive power of the optical lens 11 based on the distance between the target calculated by the distance calculation unit 101 and the user (S109). Subsequently, the control unit 103 controls the focal length of the optical lens 11 so that the corrected refractive power is obtained (S111).
 以上の動作により、本開示の第1の実施形態に係る光学制御装置1は、撮像画像に基づいて、該撮像画像に写った対象とユーザとの距離を算出し、算出した対象とユーザとの距離に基づいて、光学レンズ11の焦点距離を制御することができる。これによれば、本開示の第1の実施形態に係る光学制御装置1は、より正確な視力矯正をユーザに対して施すことが可能である。 With the above operation, the optical control device 1 according to the first embodiment of the present disclosure calculates the distance between the target captured in the captured image and the user based on the captured image, and the calculated target and the user Based on the distance, the focal length of the optical lens 11 can be controlled. According to this, the optical control device 1 according to the first embodiment of the present disclosure can perform more accurate visual acuity correction on the user.
 <2.第2の実施形態>
 [2.1.光学制御装置の構成例]
 次に、図8および図9を参照して、本開示の第2の実施形態に係る光学制御装置2について説明する。本開示の第2の実施形態に係る光学制御装置2は、ユーザの注目点を検出する注目点検出機能を備え、ユーザが注視している対象との距離に基づいて、ユーザに対して視力矯正を施すことができる。これにより、本開示の第2の実施形態に係る光学制御装置2は、ユーザが注視している対象に最適化された視力矯正を施すことができるため、ユーザに対してより適切な視力矯正を施すことができる。
<2. Second Embodiment>
[2.1. Configuration example of optical control device]
Next, the optical control device 2 according to the second embodiment of the present disclosure will be described with reference to FIGS. 8 and 9. The optical control device 2 according to the second embodiment of the present disclosure includes an attention point detection function that detects a user's attention point, and corrects the visual acuity with respect to the user based on the distance from the target that the user is gazing at. Can be applied. Accordingly, the optical control device 2 according to the second embodiment of the present disclosure can perform visual acuity correction optimized for a target that the user is gazing at, so that the visual acuity correction more appropriate for the user can be performed. Can be applied.
 以下では、図8および図9を参照して、本開示の第2の実施形態に係る光学制御装置2の構成例について説明する。図8は、本開示の第2の実施形態に係る光学制御装置2の内部構成を示したブロック図であり、図9は、制御部203の光学レンズ21に対する制御の一例を示す説明図である。 Hereinafter, a configuration example of the optical control device 2 according to the second embodiment of the present disclosure will be described with reference to FIGS. 8 and 9. FIG. 8 is a block diagram illustrating an internal configuration of the optical control device 2 according to the second embodiment of the present disclosure, and FIG. 9 is an explanatory diagram illustrating an example of control of the optical lens 21 by the control unit 203. .
 図8に示すように、本開示の第2の実施形態に係る光学制御装置2は、光学レンズ21と、撮像装置23と、距離算出部201と、制御部203と、視力情報記憶部205と、注目点検出部207とを備える。 As illustrated in FIG. 8, the optical control device 2 according to the second embodiment of the present disclosure includes an optical lens 21, an imaging device 23, a distance calculation unit 201, a control unit 203, and a visual acuity information storage unit 205. The attention point detecting unit 207 is provided.
 ここで、光学レンズ21、撮像装置23、および視力情報記憶部205については、第1の実施形態にて説明した光学レンズ11、撮像装置13、および視力情報記憶部105と同様であるので、ここでの説明は省略する。以下では、本開示の第1の実施形態との相違点を中心に第2の実施形態について説明する。 Here, the optical lens 21, the imaging device 23, and the visual acuity information storage unit 205 are the same as the optical lens 11, the imaging device 13, and the visual acuity information storage unit 105 described in the first embodiment. The description in is omitted. In the following, the second embodiment will be described focusing on differences from the first embodiment of the present disclosure.
 注目点検出部207は、ユーザが捉えている視野において、ユーザが注視している注目点を検出する。具体的には、注目点検出部207は、ユーザの眼球の挙動からユーザの視線またはユーザが注視している注目点を検出し、撮像装置23が取得した撮像画像において、どの対象をユーザが注視しているか検出する。 The attention point detection unit 207 detects the attention point that the user is gazing in the visual field captured by the user. Specifically, the point-of-interest detection unit 207 detects a user's line of sight or a point of interest that the user is gazing from the behavior of the user's eyeball, and in the captured image acquired by the imaging device 23, the target is gazed by the user. Detect if you are doing.
 例えば、注目点検出部207は、ユーザの眼球を含む画像を取得し、該画像からユーザの眼球の角膜反射像(プルキンエ像)および瞳孔重心を検出することでユーザの視線方向または注目点を検出してもよい。具体的には、注目点検出部207は、所定の波長の光をユーザの眼球に対して照射し、照射された光に対するプルキンエ像を取得する。また、注目点検出部207は、ユーザの眼球の画像から瞳孔重心を取得する。 For example, the attention point detection unit 207 acquires an image including the user's eyeball, and detects a user's eye direction or attention point by detecting a cornea reflection image (Purkinje image) and a pupil center of gravity of the user's eyeball from the image. May be. Specifically, the point-of-interest detection unit 207 irradiates the user's eyeball with light having a predetermined wavelength, and acquires a Purkinje image for the irradiated light. Further, the attention point detection unit 207 acquires the pupil center of gravity from the image of the user's eyeball.
 ここで、角膜の表面は略球体であるため、プルキンエ像の位置は、ユーザの視線の方向によらずにほぼ一定になる。一方、瞳孔重心は、ユーザの視線の方向に応じて移動する。そのため、注目点検出部207は、瞳孔重心からプルキンエ像の中心点までの距離を算出することにより、ユーザの視線の方向を検出することができる。さらに、注目点検出部207は、検出したユーザの視線の方向と、撮像装置23が取得した撮像画像と照らし合わせることにより、該ユーザの注目点を検出することができる。 Here, since the surface of the cornea is a substantially spherical body, the position of the Purkinje image is almost constant regardless of the direction of the user's line of sight. On the other hand, the center of the pupil moves according to the direction of the user's line of sight. Therefore, the attention point detection unit 207 can detect the direction of the user's line of sight by calculating the distance from the center of the pupil to the center point of the Purkinje image. Furthermore, the attention point detection unit 207 can detect the attention point of the user by comparing the detected line-of-sight direction of the user with the captured image acquired by the imaging device 23.
 また、注目点検出部207は、立体視可能な奥行き情報を有する3次元画像を2次元画像から生成する技術を用いて、撮像装置23が取得した撮像画像からステレオ画像を生成し、該ステレオ画像を用いてユーザの注目点を推定してもよい。具体的には、第1の実施形態において距離算出部201が実行したように、撮像画像から右目用画像および左目用画像を生成し、生成した右目用画像および左目用画像に対して画像特徴量検出および画像認識を行うことでユーザの注目点を検出してもよい。 Further, the attention point detection unit 207 generates a stereo image from the captured image acquired by the imaging device 23 using a technique for generating a 3D image having stereoscopically viewable depth information from the 2D image, and the stereo image The user's attention point may be estimated using. Specifically, as executed by the distance calculation unit 201 in the first embodiment, a right-eye image and a left-eye image are generated from the captured image, and image feature amounts are generated for the generated right-eye image and left-eye image. The attention point of the user may be detected by performing detection and image recognition.
 距離算出部201は、注目点検出部207によって検出されたユーザの注目点に相当する対象とユーザとの距離を算出する。ユーザの注目点に相当する対象とユーザとの距離の算出方法は、第1の実施形態と同様の方法を用いてもよい。また、以下で説明するユーザの眼球の輻輳量を検出することで、注視点とユーザとの距離を算出する方法や、複数の撮像装置から取得したステレオ画像の類似度を検出することで注視点とユーザとの距離を算出する方法を用いることも可能である。ただし、第1の実施形態で説明した算出方法を用いた方が、ユーザの注目点に相当する対象とユーザとの距離をより正確に算出することができるため、より好ましい。 The distance calculation unit 201 calculates the distance between the target corresponding to the user's attention point detected by the attention point detection unit 207 and the user. As a method for calculating the distance between the target corresponding to the user's attention point and the user, the same method as in the first embodiment may be used. In addition, a method of calculating the distance between the gazing point and the user by detecting the amount of convergence of the user's eyeball described below, and a gazing point by detecting the similarity of stereo images acquired from a plurality of imaging devices. It is also possible to use a method for calculating the distance between the user and the user. However, it is more preferable to use the calculation method described in the first embodiment because the distance between the target corresponding to the user's attention point and the user can be calculated more accurately.
 例えば、ユーザの眼球の輻輳量を検出することにより、注目点とユーザとの距離を算出する場合、距離算出部201は、ユーザの眼球を含む画像を取得し、ユーザの瞳孔位置を検出する。ここで、ユーザの眼球は、注目点との距離に応じて輻輳開散運動と呼ばれる眼球運動をしている。具体的には、輻輳開散運動とは、注目点がユーザに対して近い場合には、ユーザの両目の瞳孔が内側に寄り、注目点がユーザに対して遠い場合には、ユーザの両目の瞳孔が外側に離れる眼球運動のことを表す。したがって、距離算出部201は、ユーザの両目の瞳孔間の距離を検出することにより、ユーザの注目点に相当する対象とユーザとの距離を算出することができる。 For example, when the distance between the point of interest and the user is calculated by detecting the amount of convergence of the user's eyeball, the distance calculation unit 201 acquires an image including the user's eyeball and detects the user's pupil position. Here, the user's eyeball performs an eyeball movement called a vergence movement according to the distance from the point of interest. Specifically, the vergence movement means that when the attention point is close to the user, the pupils of both eyes of the user are inward, and when the attention point is far from the user, both eyes of the user are Represents eye movements in which the pupil moves outward. Therefore, the distance calculation unit 201 can calculate the distance between the user corresponding to the user's attention point and the user by detecting the distance between the pupils of both eyes of the user.
 また、複数の撮像装置から取得したステレオ画像の類似度を用いてユーザの注目点に相当する対象とユーザとの距離を算出する場合、距離算出部201は、注目点検出部207が検出したユーザの視線上の画像を複数の撮像装置により取得する。ここで、ユーザの注目点には、ユーザが注視している対象が存在するため、複数の撮像装置から取得されたステレオ画像は、注視対象を含み、類似度が高くなる。一方、ユーザの注目点ではない位置には、対象が存在しないため、複数の撮像装置から取得されたステレオ画像は、類似度が低くなる。したがって、複数の撮像装置から取得されたステレオ画像の類似度を比較することにより、距離算出部201は、ユーザが視線上のどの対象を注視しているかを判断することができる。よって、距離算出部201は、ユーザの注目点に相当する対象とユーザとの距離を算出することができる。 When calculating the distance between the target corresponding to the user's attention point and the user using the similarity of stereo images acquired from a plurality of imaging devices, the distance calculation unit 201 detects the user detected by the attention point detection unit 207. The images on the line of sight are acquired by a plurality of imaging devices. Here, since there is a target that the user is gazing at the user's attention point, the stereo images acquired from the plurality of imaging devices include the gazing target and have high similarity. On the other hand, since there is no target at a position that is not the user's attention point, stereo images acquired from a plurality of imaging devices have low similarity. Therefore, by comparing the similarity of stereo images acquired from a plurality of imaging devices, the distance calculation unit 201 can determine which target on the line of sight the user is gazing at. Therefore, the distance calculation unit 201 can calculate the distance between the target corresponding to the user's attention point and the user.
 制御部203は、距離算出部201が算出したユーザの注目点に相当する対象とユーザとの距離に基づいて、光学レンズ21の焦点距離を制御する。具体的には、制御部203は、視力情報記憶部205よりユーザの裸眼視力に関する情報、および矯正視力に関する情報を取得し、矯正後のユーザの視力を矯正視力にするために必要な光学レンズ21の屈折度数DsphおよびDcylを算出する。また、制御部203は、距離算出部201によって算出されたユーザの注目点に相当する対象とユーザとの距離に基づいて、距離による補正値Dを算出する。さらに、制御部203は、算出した屈折度数Dsph、Dcyl、およびDにより光学レンズ21の焦点距離を制御する。 The control unit 203 controls the focal length of the optical lens 21 based on the distance between the target corresponding to the user's attention point calculated by the distance calculation unit 201 and the user. Specifically, the control unit 203 acquires information about the user's naked eye vision and information about the corrected visual acuity from the visual information storage unit 205, and the optical lens 21 necessary for making the corrected user's visual acuity the corrected visual acuity. The refractive powers D sph and D cyl are calculated. Further, the control unit 203 calculates a correction value D d based on the distance based on the distance between the target corresponding to the user's attention point calculated by the distance calculation unit 201 and the user. Further, the control unit 203 controls the focal length of the optical lens 21 based on the calculated refractive powers D sph , D cyl , and D d .
 したがって、本開示の第2の実施形態では、制御部203が、ユーザの注目点に相当する対象とユーザとの距離に基づいて、光学レンズ21の屈折度数の補正値Dを算出する点が第1の実施形態と異なる。 Therefore, in the second embodiment of the present disclosure, the control unit 203 calculates the refractive power correction value D d of the optical lens 21 based on the distance between the target corresponding to the user's attention point and the user. Different from the first embodiment.
 また、光学レンズ21のレンズ面が複数のレンズ領域211に分割され、各レンズ領域が独立して焦点距離を制御可能である場合、制御部203は、ユーザ27の視線が通過するレンズ領域213の焦点距離のみを制御してもよい。具体的には、図9に示すように、注目点検出部207によってユーザ27が注目点25を注視していることが検出されている場合、制御部203は、ユーザ27の視線と、光学レンズ21のレンズ面とを照らし合わせ、ユーザ27の視線が通過するレンズ領域213を判断する。また、制御部203は、光学レンズ21のレンズ面に存在する複数のレンズ領域211中において、ユーザ27の視線が通過するレンズ領域213の焦点距離のみを制御する。この構成によれば、光学制御装置2は、ユーザ27に対して必要最小限の視力矯正を施しつつ、消費電力を抑制することができる。 Further, when the lens surface of the optical lens 21 is divided into a plurality of lens regions 211 and each lens region can independently control the focal length, the control unit 203 controls the lens region 213 through which the line of sight of the user 27 passes. Only the focal length may be controlled. Specifically, as illustrated in FIG. 9, when the attention point detection unit 207 detects that the user 27 is gazing at the attention point 25, the control unit 203 displays the line of sight of the user 27 and the optical lens. The lens area 213 through which the line of sight of the user 27 passes is determined by comparing with the lens surface 21. The control unit 203 controls only the focal length of the lens region 213 through which the line of sight of the user 27 passes among the plurality of lens regions 211 existing on the lens surface of the optical lens 21. According to this configuration, the optical control device 2 can suppress power consumption while performing the minimum necessary visual acuity correction for the user 27.
 以上の構成によれば、本開示の第2の実施形態に係る光学制御装置2は、ユーザの注目点を検出し、ユーザが注視している対象とユーザとの距離に基づいて、光学レンズ21の焦点距離を動的に制御することができる。これにより、本開示の第2の実施形態に係る光学制御装置2は、ユーザが注視している対象に最適化された視力矯正を施すことができる。 According to the above configuration, the optical control device 2 according to the second embodiment of the present disclosure detects the user's attention point, and the optical lens 21 based on the distance between the object being watched by the user and the user. Can be controlled dynamically. Thereby, the optical control device 2 according to the second embodiment of the present disclosure can perform visual acuity correction optimized for a target that the user is gazing at.
 <3.第3の実施形態>
 [3.1.光学制御装置の構成例]
 次に、図10および11を参照して、本開示の第3の実施形態に係る光学制御装置3について説明する。本開示の第3の実施形態に係る光学制御装置3は、ユーザがいる環境の照度を測定する照度測定機能を備え、低い照度の環境下で発生する見かけ上の近視(夜間近視)を補正した視力矯正をユーザに対して施すことができる。
<3. Third Embodiment>
[3.1. Configuration example of optical control device]
Next, the optical control device 3 according to the third embodiment of the present disclosure will be described with reference to FIGS. The optical control device 3 according to the third embodiment of the present disclosure includes an illuminance measurement function that measures the illuminance of an environment where the user is present, and corrects apparent myopia (nighttime myopia) that occurs in an environment with low illuminance. Vision correction can be applied to the user.
 具体的には、照度が低い環境下では、人の眼は、照度が高い環境下よりも近視になってしまう。これは、照度が低い環境下では、光をより多く取り入れるために照度が高い環境下よりも瞳孔が広がり、眼の角膜および水晶体に入る光が太くなることに起因する。すなわち、人の眼の角膜および水晶体に入る光が太くなった結果、角膜および水晶体の球面収差の影響が増加し、より近視的屈折位置に像が結像するようになってしまう。したがって、環境における照度が低いほど、人の眼は、見かけ上近視になったかのような影響を受けることとなる。 Specifically, in an environment with low illuminance, the human eye becomes myopic than in an environment with high illuminance. This is because, in an environment where the illuminance is low, the pupil expands in order to take in more light than in an environment where the illuminance is high, and light entering the cornea and the lens of the eye becomes thicker. That is, as the light entering the cornea and the crystalline lens of the human eye becomes thicker, the influence of the spherical aberration of the cornea and the crystalline lens increases, and an image is formed at a more myopic refractive position. Therefore, the lower the illuminance in the environment, the more the human eye is affected as if it seemed to be myopic.
 そこで、本開示の第3の実施形態に係る光学制御装置3は、ユーザがいる環境の照度を測定することにより、低い照度の環境下で発生する見かけ上の近視(夜間近視)を補正し、より適切な視力矯正をユーザに対して施すことを目的とする。 Therefore, the optical control device 3 according to the third embodiment of the present disclosure corrects apparent myopia (nighttime myopia) that occurs in an environment with low illuminance by measuring the illuminance of the environment where the user is present, It aims at giving a more suitable visual acuity correction with respect to a user.
 以下では、図10および図11を参照して、本開示の第3の実施形態に係る光学制御装置3の構成例について説明する。図10は、本開示の第3の実施形態に係る光学制御装置3の内部構成を示したブロック図である。 Hereinafter, a configuration example of the optical control device 3 according to the third embodiment of the present disclosure will be described with reference to FIGS. 10 and 11. FIG. 10 is a block diagram illustrating an internal configuration of the optical control device 3 according to the third embodiment of the present disclosure.
 図10に示すように、本開示の第3の実施形態に係る光学制御装置3は、光学レンズ31と、撮像装置33と、距離算出部301と、制御部303と、視力情報記憶部305と、照度測定部309とを備える。 As illustrated in FIG. 10, the optical control device 3 according to the third embodiment of the present disclosure includes an optical lens 31, an imaging device 33, a distance calculation unit 301, a control unit 303, and a visual acuity information storage unit 305. And an illuminance measuring unit 309.
 ここで、光学レンズ31、撮像装置33、距離算出部301および視力情報記憶部305については、第1の実施形態にて説明した光学レンズ11、撮像装置13、距離算出部101、および視力情報記憶部105と同様であるので、ここでの説明は省略する。以下では、本開示の第1の実施形態との相違点を中心に第3の実施形態について説明する。 Here, regarding the optical lens 31, the imaging device 33, the distance calculation unit 301, and the visual acuity information storage unit 305, the optical lens 11, the imaging device 13, the distance calculation unit 101, and the visual acuity information storage described in the first embodiment. Since it is the same as that of the part 105, description here is abbreviate | omitted. In the following, the third embodiment will be described focusing on differences from the first embodiment of the present disclosure.
 照度測定部309は、ユーザがいる環境における照度を測定する。具体的には、照度測定部309は、光度計または照度計を備え、ユーザがいる環境の照度を測定する。ここで、照度測定部309は、ユーザがいる環境の照度測定をリアルタイムで行ってもよく、ユーザの指示に基づく任意のタイミングで行ってもよい。 The illuminance measuring unit 309 measures the illuminance in the environment where the user is present. Specifically, the illuminance measurement unit 309 includes a photometer or an illuminometer, and measures the illuminance of the environment where the user is present. Here, the illuminance measurement unit 309 may perform illuminance measurement in an environment where the user is present in real time, or may be performed at an arbitrary timing based on a user instruction.
 例えば、照度測定部309は、Siフォトダイオードなどの受光素子に入射した光を光電効果により電流に変換することで照度を測定することができる。また、照度測定部309は、Si以外の材料を用いたフォトダイオードやフォトレジスタ等を用いて照度を測定してもよい。 For example, the illuminance measuring unit 309 can measure the illuminance by converting light incident on a light receiving element such as a Si photodiode into a current by a photoelectric effect. Further, the illuminance measurement unit 309 may measure the illuminance using a photodiode or a photoresist using a material other than Si.
 なお、照度測定部309は、Siフォトダイオードなどで測定した照度と、人が感じる照度(すなわち、視感度で補正した照度)とが一致するように、測定した照度を補正することが好ましい。例えば、照度測定部309がSiフォトダイオードを用いて照度を測定した場合、Siフォトダイオードの検出波長の帯域は、可視光帯域に加えて赤外線帯域にも広がっているため、人が感じる照度よりも明るく測定されてしまう可能性がある。そこで、照度測定部309は、赤外線帯域を検出するサブフォトダイオードをさらに備えることで、Siフォトダイオードの検出出力からサブフォトダイオードの検出出力を除算し、可視光帯域の光による照度のみを測定できるようにすることが好ましい。 Note that the illuminance measurement unit 309 preferably corrects the measured illuminance so that the illuminance measured by a Si photodiode or the like matches the illuminance felt by a person (that is, the illuminance corrected by visual sensitivity). For example, when the illuminance measurement unit 309 measures the illuminance using a Si photodiode, the detection wavelength band of the Si photodiode extends to the infrared band in addition to the visible light band, so that it is higher than the illuminance felt by humans. It may be measured brightly. Therefore, the illuminance measurement unit 309 further includes a sub-photodiode that detects the infrared band, and can divide the detection output of the sub-photodiode from the detection output of the Si photodiode to measure only the illuminance due to light in the visible light band. It is preferable to do so.
 制御部303は、第1の実施形態にて説明したように、矯正後のユーザの視力を矯正視力にするために必要な光学レンズ31の屈折度数DsphおよびDcyl、および対象とユーザとの距離による補正値Dを算出する。また、制御部303は、照度による補正値Dを算出する。さらに、制御部303は、算出した屈折度数Dsph、Dcyl、D、およびDにより光学レンズ31の焦点距離を制御する。 As described in the first embodiment, the control unit 303 controls the refractive powers D sph and D cyl of the optical lens 31 necessary for the corrected visual acuity of the user to be the corrected visual acuity, and the relationship between the target and the user. distance to calculate a correction value D d by. In addition, the control unit 303 calculates a correction value D 1 based on illuminance. Furthermore, the control unit 303 controls the focal length of the optical lens 31 by the calculated refractive powers D sph , D cyl , D d , and D l .
 すなわち、本開示の第3の実施形態では、制御部303において、さらに照度に基づいて光学レンズ31の焦点距離が制御されることが第1の実施形態と異なる。 That is, the third embodiment of the present disclosure is different from the first embodiment in that the control unit 303 further controls the focal length of the optical lens 31 based on the illuminance.
 ここで、図11を参照して、制御部303が照度に基づいて補正値Dを算出する方法についてより詳しく説明する。図11は、照度に対する屈折度数の補正関係の一例を示したグラフ図である。 Here, with reference to FIG. 11, the method by which the control unit 303 calculates the correction value D 1 based on the illuminance will be described in more detail. FIG. 11 is a graph showing an example of the correction relationship of the refractive power with respect to the illuminance.
 図11で示すグラフにおいて、y軸は、屈折度数であり、x軸は、ユーザがいる環境における照度lを表す。なお、x軸は、対数軸であり、閾値照度Lは、照度による補正を施すか否かを判断するための閾値である。図11で示すグラフは、ユーザが近視または遠視のいずれであっても、ユーザがいる環境の照度が低下するほど近視の矯正量が大きくなる傾向を示す。具体的には、ユーザがいる環境の照度が低下するほど、屈折度数の絶対値が負側(近視矯正側)に大きくなる傾向を示し、l=0にてD=Dlthとなる。制御部303は、図11で示した照度に対する屈折度数の補正関係を用いることにより、照度に対する屈折度数の補正量Dを算出し、光学レンズ31の焦点距離を制御することができる。 In the graph shown in FIG. 11, the y-axis is the refractive power, and the x-axis represents the illuminance l in the environment where the user is present. Note that the x-axis is a logarithmic axis, and the threshold illuminance L is a threshold for determining whether or not to correct by illuminance. The graph shown in FIG. 11 shows a tendency for the amount of correction for myopia to increase as the illuminance of the environment in which the user is present decreases, regardless of whether the user is myopia or hyperopia. Specifically, as the illuminance in the environment where the user is present decreases, the absolute value of the refractive power tends to increase on the negative side (the myopia correction side), and D l = D lth when l = 0. The control unit 303 can calculate the refractive power correction amount D 1 for the illuminance and control the focal length of the optical lens 31 by using the refractive power correction relationship for the illuminance shown in FIG.
 なお、図11で示したユーザがいる環境の照度による補正値Dを算出するための補正関係は、Dsph、およびDと同様に個人差がある。そのため、光学制御装置3は、ユーザごとに視力測定を行い、あらかじめ図11で示すグラフを作成しておくことが好ましい。また、一般的なユーザにおける矯正視力と必要な屈折度数との関係をあらかじめ光学制御装置3に記憶させておいてもよい。 Note that the correction relationship for calculating the correction value D l based on the illuminance in the environment where the user is shown in FIG. 11 has individual differences as in D sph and D d . Therefore, it is preferable that the optical control device 3 performs visual acuity measurement for each user and prepares a graph shown in FIG. 11 in advance. Further, the relationship between the corrected visual acuity for a general user and the necessary refractive power may be stored in the optical control device 3 in advance.
 以上の構成によれば、本開示の第3の実施形態に係る光学制御装置3は、ユーザがいる環境における照度を測定することにより、低い照度の環境にて発生する見かけ上の近視(夜間近視)を補正する視力矯正をユーザに対して動的に施すことができる。これにより、本開示の第3の実施形態に係る光学制御装置3は、照度を考慮した適切な視力矯正をユーザに対して施すことができる。 According to the above configuration, the optical control device 3 according to the third embodiment of the present disclosure measures apparent illuminance (nighttime myopia) that occurs in a low illuminance environment by measuring the illuminance in the environment where the user is present. ) Can be dynamically applied to the user. Thereby, the optical control device 3 according to the third embodiment of the present disclosure can perform appropriate vision correction on the user in consideration of illuminance.
 <4.第4の実施形態>
 [4.1.光学制御装置の構成例]
 続いて、図12および13を参照して、本開示の第4の実施形態に係る光学制御装置4について説明する。本開示の第4の実施形態に係る光学制御装置4は、ユーザの視力を測定する視力測定機能を備え、直近の測定視力に最適化された視力矯正をユーザに対して施すことができる。
<4. Fourth Embodiment>
[4.1. Configuration example of optical control device]
Subsequently, the optical control device 4 according to the fourth embodiment of the present disclosure will be described with reference to FIGS. 12 and 13. The optical control device 4 according to the fourth embodiment of the present disclosure includes a visual acuity measurement function that measures the visual acuity of the user, and can apply visual acuity correction optimized for the latest measured visual acuity to the user.
 以下では、図12および図13を参照して、本開示の第4の実施形態に係る光学制御装置4の構成例について説明する。図12は、本開示の第4の実施形態に係る光学制御装置4の内部構成を示したブロック図であり、図13は、光学レンズ41の一構成例を示した説明図である。 Hereinafter, a configuration example of the optical control device 4 according to the fourth embodiment of the present disclosure will be described with reference to FIGS. 12 and 13. FIG. 12 is a block diagram illustrating an internal configuration of the optical control device 4 according to the fourth embodiment of the present disclosure, and FIG. 13 is an explanatory diagram illustrating a configuration example of the optical lens 41.
 図12に示すように、本開示の第4の実施形態に係る光学制御装置4は、光学レンズ41と、撮像装置43と、距離算出部401と、制御部403と、視力情報記憶部405と、視力測定部411とを備える。 As illustrated in FIG. 12, the optical control device 4 according to the fourth embodiment of the present disclosure includes an optical lens 41, an imaging device 43, a distance calculation unit 401, a control unit 403, and a visual acuity information storage unit 405. And a visual acuity measurement unit 411.
 ここで、光学レンズ41、撮像装置43、距離算出部401および視力情報記憶部405については、第1の実施形態にて説明した光学レンズ11、撮像装置13、距離算出部101および視力情報記憶部105と同様であるので、ここでの説明は省略する。以下では、本開示の第1の実施形態との相違点を中心に第4の実施形態について説明する。 Here, regarding the optical lens 41, the imaging device 43, the distance calculation unit 401, and the visual acuity information storage unit 405, the optical lens 11, the imaging device 13, the distance calculation unit 101, and the visual acuity information storage unit described in the first embodiment. Since it is the same as 105, description here is abbreviate | omitted. In the following, the fourth embodiment will be described focusing on differences from the first embodiment of the present disclosure.
 視力測定部411は、ユーザの視力を測定する。具体的には、視力測定部411は、ユーザの裸眼視力を測定する。測定された近視または遠視度数、乱視度数および乱視角度に関する情報は、視力情報記憶部405に記憶される。 The visual acuity measurement unit 411 measures the visual acuity of the user. Specifically, the visual acuity measurement unit 411 measures the user's naked eye visual acuity. Information relating to the measured myopia or hyperopia power, astigmatism power, and astigmatism angle is stored in the visual acuity information storage unit 405.
 例えば、視力測定部411は、赤外光のリングパターンをユーザの眼底に照射し、眼底からの反射パターンを解析することによってユーザの裸眼視力を測定してもよい。具体的には、赤外光のリングパターンをユーザの眼底に照射した場合、ユーザの裸眼視力に応じて眼底に形成される像の大きさが異なり、近視の場合は、通常よりも大きなリングパターンとなり、遠視の場合は、通常よりも小さなリングパターンとなる。また、乱視の場合は、乱視角度に垂直な方向に伸びた楕円形状パターンとなる。視力測定部411は、これらの眼底からの反射パターンを撮像素子等にて取得し、解析することにより、ユーザの裸眼視力を測定し、近視または遠視度数、乱視度数および乱視角度に関する情報を取得することができる。 For example, the visual acuity measurement unit 411 may measure the user's naked eye visual acuity by irradiating the fundus of the user with an infrared light ring pattern and analyzing the reflection pattern from the fundus. Specifically, when an infrared ring pattern is irradiated on the fundus of the user, the size of the image formed on the fundus varies depending on the user's naked eye vision, and in the case of myopia, a larger ring pattern than usual In the case of hyperopia, the ring pattern is smaller than usual. In the case of astigmatism, an elliptical pattern extending in a direction perpendicular to the astigmatism angle is obtained. The visual acuity measurement unit 411 measures the naked eye visual acuity of the user by acquiring and analyzing these reflection patterns from the fundus with an imaging device or the like, and acquires information on myopia or hyperopic power, astigmatism power, and astigmatism angle. be able to.
 なお、視力測定部411は、ユーザの視力を所定の時間ごとに測定することが好ましい。例えば、ユーザの視力は、一日のうちでも時間帯、疲労などによって刻々と変化する。そのため、視力測定部411は、所定の時間ごとにユーザの視力を測定し直すことが好ましい。例えば、視力測定部411は、朝、昼、夜などの生活時間帯ごとにユーザの視力を測定し直してもよく、4時間などの一定時間ごとにユーザの視力を測定し直してもよい。また、視力測定部411は、リアルタイムにユーザの視力を測定してもよく、ユーザからの指示によって任意のタイミングでユーザの視力を測定してもよい。 Note that the visual acuity measurement unit 411 preferably measures the user's visual acuity at predetermined time intervals. For example, the user's visual acuity changes every moment due to time, fatigue, and the like even during the day. Therefore, it is preferable that the visual acuity measurement unit 411 measures the visual acuity of the user again every predetermined time. For example, the visual acuity measurement unit 411 may measure the user's visual acuity every life time zone such as morning, noon, and night, or may measure the user's visual acuity every fixed time such as 4 hours. The visual acuity measurement unit 411 may measure the visual acuity of the user in real time, or may measure the visual acuity of the user at an arbitrary timing according to an instruction from the user.
 また、視力測定部411は、測定したユーザの視力に基づいて、図4、5および11にて示した光学レンズ41の屈折度数を算出するための検量線を作成してもよい。この構成によれば、光学制御装置4は、それぞれのユーザに対して、より最適化された視力矯正を施すことができる。 Further, the visual acuity measurement unit 411 may create a calibration curve for calculating the refractive power of the optical lens 41 shown in FIGS. 4, 5 and 11 based on the measured visual acuity of the user. According to this configuration, the optical control device 4 can perform more optimized visual acuity correction for each user.
 制御部403は、第1の実施形態にて説明したように、矯正後のユーザの視力を矯正視力にするために必要な光学レンズ41の屈折度数DsphおよびDcyl、および対象とユーザとの距離による補正値Dを算出する。また、制御部403は、算出した屈折度数Dsph、Dcyl、およびDにより光学レンズ41の焦点距離を制御する。 As described in the first embodiment, the control unit 403 determines the refractive powers D sph and D cyl of the optical lens 41 necessary for the corrected visual acuity of the user to be corrected visual acuity, and the relationship between the target and the user. distance to calculate a correction value D d by. Further, the control unit 403 controls the focal length of the optical lens 41 based on the calculated refractive powers D sph , D cyl , and D d .
 ここで、制御部403は、矯正後のユーザの視力を矯正視力にするために必要な光学レンズ41の屈折度数DsphおよびDcylの算出の際に、視力測定部411が測定した直近のユーザの視力を用いる。この構成によれば、制御部403は、一日のうちでも刻々と変動するユーザの視力に対応して、矯正視力を一定に保つように光学レンズ41の焦点距離を制御することができる。 Here, the control unit 403 determines the most recent user measured by the visual acuity measurement unit 411 when calculating the refractive powers D sph and D cyl of the optical lens 41 necessary for correcting the corrected visual acuity to the corrected visual acuity. Use the visual acuity. According to this configuration, the control unit 403 can control the focal length of the optical lens 41 so as to keep the corrected visual acuity constant in accordance with the user's visual acuity that changes every day.
 すなわち、本開示の第4の実施形態では、視力測定部411をさらに備え、視力測定部411により測定された直近のユーザの視力に基づいて、制御部403が光学レンズ41の焦点距離を制御する点が第1の実施形態と異なる。 In other words, the fourth embodiment of the present disclosure further includes a visual acuity measurement unit 411, and the control unit 403 controls the focal length of the optical lens 41 based on the visual acuity of the latest user measured by the visual acuity measurement unit 411. This is different from the first embodiment.
 以上の構成によれば、本開示の第4の実施形態に係る光学制御装置4は、リアルタイムに、または所定の時間ごとにユーザの視力を測定することにより、ユーザの視力の変動を反映した視力矯正を施すことができる。したがって、本開示の第4の実施形態に係る光学制御装置4は、ユーザの視力の変動を検出し、常に矯正視力が一定になるように光学レンズ41の焦点距離を制御することができるため、よりユーザに適切な視力矯正を施すことができる。 According to the above configuration, the optical control device 4 according to the fourth embodiment of the present disclosure measures the user's visual acuity in real time or every predetermined time, thereby reflecting the visual acuity that reflects the change in the visual acuity of the user Correction can be performed. Therefore, the optical control device 4 according to the fourth embodiment of the present disclosure can detect a change in the visual acuity of the user and can control the focal length of the optical lens 41 so that the corrected visual acuity is always constant. It is possible to correct the visual acuity more appropriate for the user.
 ここで、本開示の第4の実施形態に係る光学制御装置4が、画像生成部をさらに備える場合、光学制御装置4は、画像生成部により視力測定を誘導する画像を生成し、光学レンズ41に投影してもよい。ここで、図13は、光学レンズ41に表示される画像の一例を示した説明図である。 Here, when the optical control device 4 according to the fourth embodiment of the present disclosure further includes an image generation unit, the optical control device 4 generates an image for guiding visual acuity measurement by the image generation unit, and the optical lens 41. May be projected onto the screen. Here, FIG. 13 is an explanatory diagram showing an example of an image displayed on the optical lens 41.
 例えば、画像生成部は、図13に示すように、光学レンズ41の少なくとも一方に表示される視力測定を誘導する画像411Aを生成してもよい。具体的には、視力測定の際に眼のピント調節機能が働いたり、視線が移動したりすると正確な測定ができないため、画像生成部は、遠景(例えば、10m以上の遠景)を注視するように誘導する「+の方向の10m以上遠くの景色を見てください」等の文言を生成してもよい。また、画像生成部は、ユーザに遠景の一点を注視させるために、十字または×字マークを生成してもよい。 For example, the image generation unit may generate an image 411A for guiding visual acuity measurement displayed on at least one of the optical lenses 41 as shown in FIG. Specifically, when the eye focus adjustment function works or the line of sight moves during visual acuity measurement, accurate measurement cannot be performed, so the image generation unit looks at a distant view (for example, a distant view of 10 m or more). It is also possible to generate a phrase such as “Please look at a landscape 10 m or more away in the + direction”. Further, the image generation unit may generate a cross or an X-shaped mark in order to make the user gaze at one point in the distant view.
 なお、画像生成部が生成した画像は、光学レンズ41のユーザが選択したいずれか一方に表示されてもよく、あらかじめ設定した視差にて光学レンズ41の両方に表示されてもよい。また、光学制御装置4が音声出力装置等のさらに他の出力装置を備える場合、光学制御装置4は、音声等を用いてユーザに対して視力測定を誘導することも可能である。 The image generated by the image generation unit may be displayed on either one selected by the user of the optical lens 41, or may be displayed on both of the optical lenses 41 with a preset parallax. In addition, when the optical control device 4 includes still another output device such as an audio output device, the optical control device 4 can also guide visual acuity measurement to the user using audio or the like.
 この構成によれば、光学制御装置4は、ユーザに対して指示および誘導することができるため、より正確な視力測定を行うことができる。また、光学制御装置4は、視力測定に対するユーザの煩雑さを軽減することができる。 According to this configuration, since the optical control device 4 can instruct and guide the user, it can perform more accurate visual acuity measurement. In addition, the optical control device 4 can reduce the complexity of the user for visual acuity measurement.
 <5.第5の実施形態>
 次に、図14~図18を参照して、本開示の第5の実施形態に係る光学制御装置5について説明する。本開示の第5の実施形態に係る光学制御装置5は、外部の情報処理装置との通信機能を備え、外部の情報処理装置と情報を送受信することができる。
<5. Fifth Embodiment>
Next, the optical control device 5 according to the fifth embodiment of the present disclosure will be described with reference to FIGS. The optical control device 5 according to the fifth embodiment of the present disclosure has a communication function with an external information processing device, and can transmit and receive information to and from the external information processing device.
 まず、図14を参照して、本開示の第5の実施形態に係る光学制御装置5の概略について説明する。図14は、本開示の第5の実施形態に係る光学制御装置5の概略を示した説明図である。 First, an outline of the optical control device 5 according to the fifth embodiment of the present disclosure will be described with reference to FIG. FIG. 14 is an explanatory diagram illustrating an outline of the optical control device 5 according to the fifth embodiment of the present disclosure.
 図14に示すように、本開示の第5の実施形態に係る光学制御装置5は、外部の情報処理装置53と通信する機能を備える。具体的には、光学制御装置5は、通信機能を用いて、情報処理装置53と情報を送受信する。なお、情報処理装置53は、例えば、携帯電話、スマートフォン、タブレット端末等である。 As shown in FIG. 14, the optical control device 5 according to the fifth embodiment of the present disclosure has a function of communicating with an external information processing device 53. Specifically, the optical control device 5 transmits and receives information to and from the information processing device 53 using a communication function. The information processing device 53 is, for example, a mobile phone, a smartphone, a tablet terminal, or the like.
 例えば、光学制御装置5は、屈折度数、ユーザの裸眼視力、および矯正視力などのユーザの視力に関する情報や、バッテリー残量などの光学制御装置5に関する情報を情報処理装置53に送信し、情報処理装置53を介してユーザにこれらの情報を伝達してもよい。また、光学制御装置5は、視力測定結果や光学レンズ51の屈折度数などのユーザの視力に関する情報を情報処理装置53から受信し、光学レンズ51の焦点距離の制御に用いてもよい。 For example, the optical control device 5 transmits information on the user's visual acuity such as the refractive power, the user's naked eye sight, and the corrected visual acuity, and information on the optical control device 5 such as the remaining battery level to the information processing device 53. Such information may be transmitted to the user via the device 53. In addition, the optical control device 5 may receive information on the user's visual acuity such as the visual acuity measurement result and the refractive power of the optical lens 51 from the information processing device 53 and may use it for controlling the focal length of the optical lens 51.
 続いて、図15~図18を参照して、本開示の第5の実施形態に係る光学制御装置5が実行する情報の入出力について、情報処理装置53が表示する画像例を用いて、より具体的に説明する。ここで、図15~図18は、光学制御装置5と通信する情報処理装置53に表示される画像例を説明する説明図である。 Subsequently, referring to FIGS. 15 to 18, the input / output of information executed by the optical control device 5 according to the fifth embodiment of the present disclosure will be described using an image example displayed by the information processing device 53. This will be specifically described. Here, FIG. 15 to FIG. 18 are explanatory diagrams for explaining examples of images displayed on the information processing device 53 communicating with the optical control device 5.
 なお、情報処理装置53が表示する画像は、本開示の第5の実施形態に係る光学制御装置5が生成してもよく、また、情報処理装置53が生成してもよい。 Note that the image displayed by the information processing device 53 may be generated by the optical control device 5 according to the fifth embodiment of the present disclosure, or may be generated by the information processing device 53.
 例えば、光学制御装置5は、情報処理装置53に対して、図15に示す入力画像531を表示させ、ユーザに眼鏡の処方箋を入力させてもよい。ここで、入力画像531において、S(SPH)は、遠視または近視矯正の屈折度数を表し、C(CYL)は、乱視矯正の屈折度数を表し、A(AX)は、乱視角度を表す。ユーザは、眼鏡の処方箋であるこれらのS(SPH)、C(CYL)、A(AX)の情報を入力画像531に入力し、情報処理装置53から光学制御装置5に送信することで、光学制御装置5による視力測定なしに光学制御装置5を使用することができる。 For example, the optical control device 5 may display the input image 531 shown in FIG. 15 on the information processing device 53 and allow the user to input a prescription for glasses. Here, in the input image 531, S (SPH) represents the refractive power of hyperopia or myopia correction, C (CYL) represents the refractive power of astigmatism correction, and A (AX) represents the astigmatism angle. The user inputs the information of these S (SPH), C (CYL), and A (AX), which are spectacle prescriptions, into the input image 531 and transmits the information from the information processing device 53 to the optical control device 5, so that the optical The optical control device 5 can be used without visual acuity measurement by the control device 5.
 また、光学制御装置5は、例えば、情報処理装置53に対して、図16に示す入力画像533を表示させることで、ユーザに対して光学レンズ51の屈折度数を示してもよい。また、光学制御装置5は、ユーザの入力により光学レンズ51の屈折度数が調整可能であってもよい。ここで、入力画像533には、ユーザの右目および左目それぞれの遠視または近視矯正の屈折度数が表示されており、ユーザは、それぞれの調整ツマミ533A、533Bにより光学レンズ51の屈折度数を調整することが可能である。 Also, the optical control device 5 may indicate the refractive power of the optical lens 51 to the user, for example, by causing the information processing device 53 to display the input image 533 shown in FIG. The optical control device 5 may be capable of adjusting the refractive power of the optical lens 51 by a user input. Here, in the input image 533, the refractive power of the hyperopia or myopia correction of each of the user's right eye and left eye is displayed, and the user adjusts the refractive power of the optical lens 51 by using the respective adjustment knobs 533A and 533B. Is possible.
 具体的には、入力画像533には、ユーザの右目の光学レンズ51の屈折度数が「-1.0D」であり、左目の光学レンズ51の屈折度数が「-1.5D」であると示されている。なお、「D」は、レンズ等の屈折度数を表す単位(ディオプトリ)であり、1mに対する焦点距離の逆数で表される。ユーザは、調整ツマミ533A、533Bを動かし、右目または左目の光学レンズ51の屈折度数を入力画像533に入力することで光学レンズ51の焦点距離を手動にて制御することができる。 Specifically, the input image 533 indicates that the refractive power of the optical lens 51 of the user's right eye is “−1.0D” and the refractive power of the optical lens 51 of the left eye is “−1.5D”. Has been. “D” is a unit (diopter) representing the refractive power of a lens or the like, and is represented by the reciprocal of the focal length with respect to 1 m. The user can manually control the focal length of the optical lens 51 by moving the adjustment knobs 533A and 533B and inputting the refractive power of the optical lens 51 of the right eye or left eye into the input image 533.
 なお、ユーザによる光学レンズ51の焦点距離の手動調整が行われた場合、光学制御装置5は、ユーザによる焦点距離の手動調整結果を記憶し、その後の光学レンズ51の焦点距離の制御時に参照してもよい。例えば、光学制御装置5は、ユーザによる焦点距離の手動調整結果に併せて、調整時の対象との距離、環境の照度、ユーザの視力、時間帯などの情報を記憶し、その後、ユーザが焦点距離の手動調整を行った環境に近い環境になった場合に、以前の手動調整結果を反映して光学レンズ51の焦点距離を制御してもよい。 When manual adjustment of the focal length of the optical lens 51 by the user is performed, the optical control device 5 stores the manual adjustment result of the focal length by the user and refers to the subsequent control of the focal length of the optical lens 51. May be. For example, the optical control device 5 stores information such as the distance to the target at the time of adjustment, the illuminance of the environment, the user's visual acuity, and the time zone in accordance with the manual adjustment result of the focal length by the user. When the environment becomes close to the environment where the distance is manually adjusted, the focal length of the optical lens 51 may be controlled by reflecting the previous manual adjustment result.
 また、光学制御装置5は、ユーザによる焦点距離の手動調整結果を複数記憶してもよい。かかる場合、光学制御装置5は、最も直近にユーザが行った焦点距離の手動調整結果を優先して、光学レンズ51の焦点距離を制御することが好ましい。 Also, the optical control device 5 may store a plurality of manual adjustment results of the focal length by the user. In such a case, it is preferable that the optical control device 5 controls the focal length of the optical lens 51 with priority given to the manual adjustment result of the focal length most recently performed by the user.
 また、光学制御装置5は、例えば、情報処理装置53に対して、図17に示す出力画像535を表示させ、ユーザに対して光学制御装置5の状態に関する情報を伝達してもよい。具体的には、図17に示すように、出力画像535には、光学制御装置5が備える光学レンズ51、照度センサー、視力測定センサーおよび距離測定センサーの機能が良好か不良かを示す画像、光学制御装置5のバッテリー残量を示す画像、光学レンズ51の視力矯正の制御範囲を示す画像等が表示される。また、各種センサーの不良、またはバッテリー残量の低下等により、光学制御装置5の視力矯正機能が低下する可能性がある場合、出力画像535には、ユーザへの警告画像535Aが表示されることが好ましい。例えば、図17に示す出力画像535には、「視力測定センサーのクリーニングが必要です。」という警告画像535Aが表示されている。この構成によれば、ユーザは、出力画像535により光学制御装置5の状態に関する情報を確認することができるため、光学制御装置5の視力矯正機能を常に正常に保つことができる。また、この構成によれば、ユーザは、光学制御装置5に異常が発生した場合にも、早期に対応することができるようになる。 Further, for example, the optical control device 5 may cause the information processing device 53 to display the output image 535 shown in FIG. 17 and transmit information regarding the state of the optical control device 5 to the user. Specifically, as shown in FIG. 17, the output image 535 includes an image indicating whether the functions of the optical lens 51, the illuminance sensor, the visual acuity measurement sensor, and the distance measurement sensor included in the optical control device 5 are good or bad. An image indicating the remaining battery level of the control device 5, an image indicating the control range of vision correction of the optical lens 51, and the like are displayed. In addition, when there is a possibility that the visual acuity correction function of the optical control device 5 may deteriorate due to various sensor defects or a decrease in the remaining battery level, a warning image 535A to the user is displayed in the output image 535. Is preferred. For example, in the output image 535 illustrated in FIG. 17, a warning image 535 </ b> A that “the eyesight measurement sensor needs to be cleaned” is displayed. According to this configuration, the user can confirm information related to the state of the optical control device 5 from the output image 535, so that the visual acuity correction function of the optical control device 5 can always be kept normal. Further, according to this configuration, the user can quickly cope with an abnormality occurring in the optical control device 5.
 また、光学制御装置5は、例えば、情報処理装置53に対して、図18に示す出力画像537を表示させ、ユーザに対して、ユーザの視力に関する情報を伝達してもよい。具体的には、図18に示すように、出力画像537には、光学制御装置5に記憶されたユーザの視力測定の結果を時系列にまとめたグラフが表示される。また、出力画像537には、ユーザの視力に関する情報を分析したコメント537Aが表示されてもよい。例えば、図18に示す出力画像537には、ユーザの視力測定結果が時系列にて徐々に低下しているため、「視力が低下しています。眼をしっかり休めてください。近い距離のものを見過ぎないようにしましょう。」というコメント537Aが表示されている。この構成によれば、ユーザは、出力画像537により自身の視力に関する情報を確認することができるため、認識しにくい眼の健康に対して注意を払うことができるようになる。また、客観的な視力測定結果から眼の健康について確認することができる。 Further, for example, the optical control device 5 may display the output image 537 shown in FIG. 18 on the information processing device 53 and transmit information on the user's visual acuity to the user. Specifically, as shown in FIG. 18, the output image 537 displays a graph that summarizes the results of the user's visual acuity measurement stored in the optical control device 5 in time series. Further, the output image 537 may display a comment 537A obtained by analyzing information related to the user's visual acuity. For example, in the output image 537 shown in FIG. 18, the result of the user's visual acuity measurement gradually decreases in time series, so “the visual acuity is decreasing. Rest your eyes firmly. The comment 537 </ b> A is displayed. According to this configuration, the user can check information about his / her visual acuity from the output image 537, and thus can pay attention to eye health which is difficult to recognize. In addition, eye health can be confirmed from objective visual acuity measurement results.
 以上の構成によれば、本開示の第5の実施形態に係る光学制御装置5は、外部の情報処理装置53と通信し、情報を受信することができるため、ユーザは、光学制御装置5に対して調整や制御を行うことが可能になる。また、本開示の第5の実施形態に係る光学制御装置5は、外部の情報処理装置53と通信し、情報を送信することができるため、ユーザは、光学制御装置5の状態およびユーザ自身の視力の状態を的確に把握することができるようになる。 According to the above configuration, the optical control device 5 according to the fifth embodiment of the present disclosure can communicate with the external information processing device 53 and receive information. It becomes possible to perform adjustment and control with respect to it. In addition, since the optical control device 5 according to the fifth embodiment of the present disclosure can communicate with the external information processing device 53 and transmit information, the user can check the state of the optical control device 5 and the user's own. It becomes possible to accurately grasp the state of visual acuity.
 <6.まとめ>
 以上にて説明したように、本開示に係る光学制御装置は、撮像画像から対象とユーザとの距離を算出することにより、ユーザが注視していない対象についても距離情報を取得することができる。したがって、本開示に係る光学制御装置は、ユーザの視野全体とユーザとの距離に基づいて、光学レンズの焦点距離を制御し、より正確な視力矯正をユーザに対して施すことができる。
<6. Summary>
As described above, the optical control device according to the present disclosure can acquire distance information even for a target that is not being watched by the user by calculating the distance between the target and the user from the captured image. Therefore, the optical control device according to the present disclosure can control the focal length of the optical lens based on the distance between the entire visual field of the user and the user, and can perform more accurate visual acuity correction on the user.
 また、本開示に係る光学制御装置は、ユーザが注目する対象とユーザと距離、ユーザがいる環境の照度、またはユーザの視力等をリアルタイムに測定し、測定結果を反映して光学レンズの焦点距離を制御することができる。したがって、本開示に係る光学制御装置は、ユーザに対してその時点のユーザの状態に即した適切な視力矯正を施すことができる。 In addition, the optical control device according to the present disclosure measures, in real time, the target and the distance between the target of the user and the user, the illuminance of the environment in which the user is present, the user's visual acuity, and the like, and reflects the measurement result to determine the focal length of the optical lens. Can be controlled. Therefore, the optical control apparatus according to the present disclosure can perform appropriate vision correction on the user according to the state of the user at that time.
 さらに、本開示に係る光学制御装置は、ユーザの視力の変動を測定し、記憶することができるため、よりユーザ個人に特化して適切な視力矯正を施すことができる。 Furthermore, since the optical control device according to the present disclosure can measure and memorize a change in the visual acuity of the user, it can perform an appropriate visual acuity correction more specifically for the individual user.
 なお、本開示の第1~第5の実施形態に係る光学制御装置は、互いに組み合わせることも可能である。具体的には、第1の実施形態に係る視力矯正機能に対して、第2の実施形態に係る注目点検出機能、第3の実施形態に係る照度測定機能、第4の実施形態に係る視力測定機能、および第5の実施形態に係る通信機能を組み合わせることも可能である。 Note that the optical control devices according to the first to fifth embodiments of the present disclosure can be combined with each other. Specifically, for the visual acuity correction function according to the first embodiment, the attention point detection function according to the second embodiment, the illuminance measurement function according to the third embodiment, and the visual acuity according to the fourth embodiment. It is also possible to combine the measurement function and the communication function according to the fifth embodiment.
 すなわち、以下の機能の組み合わせを有する光学制御装置も本開示の技術範囲に含まれる。
[1]視力矯正機能
[2]視力矯正機能+注目点検出機能
[3]視力矯正機能+照度測定機能
[4]視力矯正機能+視力測定機能
[5]視力矯正機能+通信機能
[6]視力矯正機能+注目点検出機能+照度測定機能
[7]視力矯正機能+注目点検出機能+視力測定機能
[8]視力矯正機能+注目点検出機能+通信機能
[9]視力矯正機能+照度測定機能+視力測定機能
[10]視力矯正機能+照度測定機能+通信機能
[11]視力矯正機能+視力測定機能+通信機能
[12]視力矯正機能+照度測定機能+視力測定機能+通信機能
[13]視力矯正機能+注目点検出機能+視力測定機能+通信機能
[14]視力矯正機能+注目点検出機能+照度測定機能+通信機能
[15]視力矯正機能+注目点検出機能+照度測定機能+視力測定機能
[16]視力矯正機能+注目点検出機能+照度測定機能+視力測定機能+通信機能
That is, an optical control device having a combination of the following functions is also included in the technical scope of the present disclosure.
[1] Vision correction function [2] Vision correction function + attention point detection function [3] Vision correction function + illuminance measurement function [4] Vision correction function + vision measurement function [5] Vision correction function + communication function [6] Vision Correction function + attention point detection function + illuminance measurement function [7] visual acuity correction function + attention point detection function + visual acuity measurement function [8] visual acuity correction function + attention point detection function + communication function [9] visual acuity correction function + illuminance measurement function + Sight measurement function [10] vision correction function + illuminance measurement function + communication function [11] sight correction function + sight measurement function + communication function [12] sight correction function + illumination measurement function + sight measurement function + communication function [13] Vision correction function + attention point detection function + vision measurement function + communication function [14] Vision correction function + attention point detection function + illuminance measurement function + communication function [15] Vision correction function + attention point detection function + illuminance measurement function + vision Measurement function [16 Vision correction function + target-point detecting function + illumination measurement function + eyesight measurement function + communication function
 また、上記で説明した光学制御装置が実行する情報処理は、ソフトウェアとハードウェアとの協働によって実現される。例えば、光学制御装置は、ブリッジにて相互に接続されたCPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)等を備え、これらのハードウェアによる演算処理によって実行されてもよい。 Further, the information processing executed by the optical control device described above is realized by the cooperation of software and hardware. For example, the optical control device includes a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and the like that are connected to each other via a bridge. Also good.
 具体的には、CPUは、演算処理装置および制御装置として機能し、各種プログラムに従って、光学制御装置内の動作全般を制御する。ROMは、CPUが使用するプログラム、演算パラメータを記憶し、RAMは、CPUの実行において使用するプログラムや、その実行において適宜変化するパラメータ等を一時記憶する。これにより、CPUは、例えば、距離算出部、制御部、注目点検出部、画像生成部、照度測定部、および視力測定部などの機能を実行する。 Specifically, the CPU functions as an arithmetic processing unit and a control unit, and controls the overall operation in the optical control unit according to various programs. The ROM stores programs and calculation parameters used by the CPU, and the RAM temporarily stores programs used in the execution of the CPU, parameters that change as appropriate during the execution, and the like. Thereby, CPU performs functions, such as a distance calculation part, a control part, an attention point detection part, an image generation part, an illumination intensity measurement part, and a visual acuity measurement part, for example.
 以上、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、本開示の技術的範囲はかかる例に限定されない。本開示の技術分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。 The preferred embodiments of the present disclosure have been described in detail above with reference to the accompanying drawings, but the technical scope of the present disclosure is not limited to such examples. It is obvious that a person having ordinary knowledge in the technical field of the present disclosure can come up with various changes or modifications within the scope of the technical idea described in the claims. Of course, it is understood that it belongs to the technical scope of the present disclosure.
 また、本明細書に記載された効果は、あくまで説明的または例示的なものであって限定的ではない。つまり、本開示に係る技術は、上記の効果とともに、または上記の効果に代えて、本明細書の記載から当業者には明らかな他の効果を奏しうる。 In addition, the effects described in this specification are merely illustrative or illustrative, and are not limited. That is, the technology according to the present disclosure can exhibit other effects that are apparent to those skilled in the art from the description of the present specification in addition to or instead of the above effects.
 なお、以下のような構成も本開示の技術的範囲に属する。
(1)
 ユーザの視点における撮像画像に写った対象とユーザとの対象間距離を前記撮像画像から算出する距離算出部と、
 前記距離算出部により算出された対象間距離、および前記ユーザの視力に基づいて、前記ユーザの視力を矯正する光学レンズの焦点距離を制御する制御部と、
を備える、光学制御装置。
(2)
 前記距離算出部は、前記撮像画像を複数の局所領域に分割し、前記局所領域ごとに前記対象間距離を算出する、前記(1)に記載の光学制御装置。
(3)
 前記光学レンズのレンズ面は、独立して焦点距離を制御可能な複数のレンズ領域に分割されており、
 前記制御部は、複数の前記局所領域ごとに算出された前記対象間距離に基づいて、複数の前記レンズ領域の焦点距離をそれぞれ制御する、前記(2)に記載の光学制御装置。
(4)
 前記ユーザにより視線を向けられている注目点を前記撮像画像の中から検出する注目点検出部をさらに備え、
 前記制御部は、前記注目点を含む前記局所領域にて算出された前記対象間距離に基づいて、前記光学レンズの焦点距離を制御する、前記(2)に記載の光学制御装置。
(5)
 前記ユーザにより視線を向けられている注目点を前記撮像画像の中から検出する注目点検出部をさらに備え、
 前記制御部は、前記注目点を含む前記局所領域にて算出された前記対象間距離に基づいて、前記注目点を含む前記局所領域に対応する前記レンズ領域の焦点距離のみを制御し、他のレンズ領域の焦点距離は制御しない、前記(3)に記載の光学制御装置。
(6)
 前記注目点検出部は、前記撮像画像を画像処理することによって前記注目点を検出する、前記(4)または(5)に記載の光学制御装置。
(7)
 前記ユーザがいる環境の照度情報を取得する照度情報取得部をさらに備え、
 前記制御部は、前記照度情報にさらに基づいて、前記光学レンズの焦点距離を制御する、前記(1)~(6)のいずれか一項に記載の光学制御装置。
(8)
 前記制御部は、前記ユーザがいる環境の照度が低いほど、前記光学レンズの焦点距離を小さくする、前記(7)に記載の光学制御装置。
(9)
 前記ユーザの視力を測定する視力測定部をさらに備え、
 前記制御部は、前記視力測定部により測定されたユーザの視力に基づいて、前記光学レンズの焦点距離を制御する、前記(1)~(8)のいずれか一項に記載の光学制御装置。
(10)
 前記視力測定部は、所定の時間ごとに前記ユーザの視力を測定し、
 前記制御部は、前記視力測定部により測定された直近のユーザの視力に基づいて、前記光学レンズの焦点距離を制御する、前記(9)に記載の光学制御装置。
(11)
 前記光学レンズは、前記ユーザの乱視を矯正する乱視矯正光学レンズをさらに含む、前記(1)~(10)のいずれか一項に記載の光学制御装置。
(12)
 画像を生成する画像生成部をさらに備え、
 前記画像生成部は、前記ユーザに対して各種情報を表示する画像を生成する、前記(1)~(11)のいずれか一項に記載の光学制御装置。
(13)
 前記制御部は、前記ユーザによって入力された前記ユーザの視力に関する情報に基づいて、前記光学レンズの焦点距離を制御する、前記(1)~(12)のいずれか一項に記載の光学制御装置。
(14)
 演算処理装置によって、ユーザの視点における撮像画像に写った対象とユーザとの対象間距離を前記撮像画像から算出することと、
 前記撮像画像から算出された対象間距離、および前記ユーザの視力に基づいて、前記ユーザの視力を矯正する光学レンズの焦点距離を制御することと、
を含む、光学制御方法。
The following configurations also belong to the technical scope of the present disclosure.
(1)
A distance calculation unit for calculating a distance between the target and the target captured in the captured image at the user's viewpoint from the captured image;
A control unit that controls a focal length of an optical lens that corrects the visual acuity of the user based on the distance between the objects calculated by the distance calculation unit and the visual acuity of the user;
An optical control device.
(2)
The optical control device according to (1), wherein the distance calculation unit divides the captured image into a plurality of local regions and calculates the inter-object distance for each local region.
(3)
The lens surface of the optical lens is divided into a plurality of lens regions whose focal length can be controlled independently,
The optical control device according to (2), wherein the control unit controls the focal lengths of the plurality of lens regions based on the inter-object distances calculated for each of the plurality of local regions.
(4)
A point-of-interest detection unit that detects a point of interest at which the line of sight is directed by the user from the captured image;
The optical control device according to (2), wherein the control unit controls a focal length of the optical lens based on the inter-object distance calculated in the local region including the attention point.
(5)
A point-of-interest detection unit that detects a point of interest at which the line of sight is directed by the user from the captured image;
The control unit controls only the focal length of the lens region corresponding to the local region including the attention point based on the inter-object distance calculated in the local region including the attention point; The optical control device according to (3), wherein the focal length of the lens region is not controlled.
(6)
The optical control device according to (4) or (5), wherein the attention point detection unit detects the attention point by performing image processing on the captured image.
(7)
An illuminance information acquisition unit that acquires illuminance information of the environment where the user is located,
The optical control device according to any one of (1) to (6), wherein the control unit further controls a focal length of the optical lens based on the illuminance information.
(8)
The said control part is an optical control apparatus as described in said (7) which makes the focal distance of the said optical lens small, so that the illumination intensity of the environment where the said user exists is low.
(9)
A visual acuity measuring unit for measuring the visual acuity of the user;
The optical control device according to any one of (1) to (8), wherein the control unit controls a focal length of the optical lens based on a user's visual acuity measured by the visual acuity measurement unit.
(10)
The visual acuity measurement unit measures the visual acuity of the user every predetermined time,
The said control part is an optical control apparatus as described in said (9) which controls the focal distance of the said optical lens based on the visual acuity of the latest user measured by the said visual acuity measurement part.
(11)
The optical control device according to any one of (1) to (10), wherein the optical lens further includes an astigmatism correcting optical lens that corrects astigmatism of the user.
(12)
An image generation unit for generating an image;
The optical control device according to any one of (1) to (11), wherein the image generation unit generates an image for displaying various types of information to the user.
(13)
The optical control device according to any one of (1) to (12), wherein the control unit controls a focal length of the optical lens based on information regarding the visual acuity of the user input by the user. .
(14)
Calculating a distance between the target and the target in the captured image at the user's viewpoint from the captured image by the arithmetic processing device;
Controlling the focal length of an optical lens that corrects the visual acuity of the user based on the distance between the objects calculated from the captured image and the visual acuity of the user;
An optical control method.
 1    光学制御装置
 11、21、31、41      光学レンズ
 13、23、33、43      撮像装置
 15   支持部材
 101、201、301、401  距離算出部
 103、203、303、403  制御部
 105、205、305、405  視力情報記憶部
 207  注目点検出部
 309  照度測定部
 411  視力測定部
DESCRIPTION OF SYMBOLS 1 Optical control apparatus 11, 21, 31, 41 Optical lens 13, 23, 33, 43 Imaging apparatus 15 Support member 101, 201, 301, 401 Distance calculation part 103, 203, 303, 403 Control part 105, 205, 305, 405 Vision information storage unit 207 Attention point detection unit 309 Illuminance measurement unit 411 Vision measurement unit

Claims (14)

  1.  ユーザの視点における撮像画像に写った対象とユーザとの対象間距離を前記撮像画像から算出する距離算出部と、
     前記距離算出部により算出された対象間距離、および前記ユーザの視力に基づいて、前記ユーザの視力を矯正する光学レンズの焦点距離を制御する制御部と、
    を備える、光学制御装置。
    A distance calculation unit for calculating a distance between the target and the target captured in the captured image at the user's viewpoint from the captured image;
    A control unit that controls a focal length of an optical lens that corrects the visual acuity of the user based on the distance between the objects calculated by the distance calculation unit and the visual acuity of the user;
    An optical control device.
  2.  前記距離算出部は、前記撮像画像を複数の局所領域に分割し、前記局所領域ごとに前記対象間距離を算出する、請求項1に記載の光学制御装置。 The optical control apparatus according to claim 1, wherein the distance calculation unit divides the captured image into a plurality of local regions and calculates the inter-object distance for each local region.
  3.  前記光学レンズのレンズ面は、独立して焦点距離を制御可能な複数のレンズ領域に分割されており、
     前記制御部は、複数の前記局所領域ごとに算出された前記対象間距離に基づいて、複数の前記レンズ領域の焦点距離をそれぞれ制御する、請求項2に記載の光学制御装置。
    The lens surface of the optical lens is divided into a plurality of lens regions whose focal length can be controlled independently,
    The optical control device according to claim 2, wherein the control unit controls focal lengths of the plurality of lens regions based on the inter-object distances calculated for the plurality of local regions.
  4.  前記ユーザにより視線を向けられている注目点を前記撮像画像の中から検出する注目点検出部をさらに備え、
     前記制御部は、前記注目点を含む前記局所領域にて算出された前記対象間距離に基づいて、前記光学レンズの焦点距離を制御する、請求項2に記載の光学制御装置。
    A point-of-interest detection unit that detects a point of interest at which the line of sight is directed by the user from the captured image;
    The optical control device according to claim 2, wherein the control unit controls a focal length of the optical lens based on the inter-object distance calculated in the local region including the attention point.
  5.  前記ユーザにより視線を向けられている注目点を前記撮像画像の中から検出する注目点検出部をさらに備え、
     前記制御部は、前記注目点を含む前記局所領域にて算出された前記対象間距離に基づいて、前記注目点を含む前記局所領域に対応する前記レンズ領域の焦点距離のみを制御し、他のレンズ領域の焦点距離は制御しない、請求項3に記載の光学制御装置。
    A point-of-interest detection unit that detects a point of interest at which the line of sight is directed by the user from the captured image;
    The control unit controls only the focal length of the lens region corresponding to the local region including the attention point based on the inter-object distance calculated in the local region including the attention point; The optical control device according to claim 3, wherein the focal length of the lens region is not controlled.
  6.  前記注目点検出部は、前記撮像画像を画像処理することによって前記注目点を検出する、請求項4に記載の光学制御装置。 The optical control device according to claim 4, wherein the attention point detection unit detects the attention point by performing image processing on the captured image.
  7.  前記ユーザがいる環境の照度情報を取得する照度情報取得部をさらに備え、
     前記制御部は、前記照度情報にさらに基づいて、前記光学レンズの焦点距離を制御する、請求項1に記載の光学制御装置。
    An illuminance information acquisition unit that acquires illuminance information of the environment where the user is located,
    The optical control device according to claim 1, wherein the control unit controls a focal length of the optical lens further based on the illuminance information.
  8.  前記制御部は、前記ユーザがいる環境の照度が低いほど、前記光学レンズの焦点距離を小さくする、請求項7に記載の光学制御装置。 The optical control device according to claim 7, wherein the control unit decreases the focal length of the optical lens as the illuminance in the environment where the user is present is lower.
  9.  前記ユーザの視力を測定する視力測定部をさらに備え、
     前記制御部は、前記視力測定部により測定されたユーザの視力に基づいて、前記光学レンズの焦点距離を制御する、請求項1に記載の光学制御装置。
    A visual acuity measuring unit for measuring the visual acuity of the user;
    The optical control device according to claim 1, wherein the control unit controls a focal length of the optical lens based on a user's visual acuity measured by the visual acuity measurement unit.
  10.  前記視力測定部は、所定の時間ごとに前記ユーザの視力を測定し、
     前記制御部は、前記視力測定部により測定された直近のユーザの視力に基づいて、前記光学レンズの焦点距離を制御する、請求項9に記載の光学制御装置。
    The visual acuity measurement unit measures the visual acuity of the user every predetermined time,
    The optical control device according to claim 9, wherein the control unit controls a focal length of the optical lens based on the visual acuity of the latest user measured by the visual acuity measurement unit.
  11.  前記光学レンズは、前記ユーザの乱視を矯正する乱視矯正光学レンズをさらに含む、請求項1に記載の光学制御装置。 The optical control apparatus according to claim 1, wherein the optical lens further includes an astigmatism correcting optical lens that corrects astigmatism of the user.
  12.  画像を生成する画像生成部をさらに備え、
     前記画像生成部は、前記ユーザに対して各種情報を表示する画像を生成する、請求項1に記載の光学制御装置。
    An image generation unit for generating an image;
    The optical control device according to claim 1, wherein the image generation unit generates an image for displaying various types of information to the user.
  13.  前記制御部は、前記ユーザによって入力された前記ユーザの視力に関する情報に基づいて、前記光学レンズの焦点距離を制御する、請求項1に記載の光学制御装置。 The optical control device according to claim 1, wherein the control unit controls a focal length of the optical lens based on information on the visual acuity of the user input by the user.
  14.  演算処理装置によって、ユーザの視点における撮像画像に写った対象とユーザとの対象間距離を前記撮像画像から算出することと、
     前記撮像画像から算出された対象間距離、および前記ユーザの視力に基づいて、前記ユーザの視力を矯正する光学レンズの焦点距離を制御することと、
    を含む、光学制御方法。
    Calculating a distance between the target and the target in the captured image at the user's viewpoint from the captured image by the arithmetic processing device;
    Controlling the focal length of an optical lens that corrects the visual acuity of the user based on the distance between the objects calculated from the captured image and the visual acuity of the user;
    An optical control method.
PCT/JP2015/061136 2014-07-01 2015-04-09 Optical control device and optical control method WO2016002296A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014135718 2014-07-01
JP2014-135718 2014-07-01

Publications (1)

Publication Number Publication Date
WO2016002296A1 true WO2016002296A1 (en) 2016-01-07

Family

ID=55018854

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/061136 WO2016002296A1 (en) 2014-07-01 2015-04-09 Optical control device and optical control method

Country Status (1)

Country Link
WO (1) WO2016002296A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021182074A (en) * 2020-05-19 2021-11-25 コニカミノルタ株式会社 Focus adjustment tool and focus adjustment set
JP2021196426A (en) * 2020-06-10 2021-12-27 伊藤忠テクノソリューションズ株式会社 Variable focus glasses, and method and program for controlling variable focus glasses

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0928727A (en) * 1995-07-21 1997-02-04 Matsushita Electric Ind Co Ltd Visual acuity correction device
JP2004518167A (en) * 2001-01-17 2004-06-17 イー・ビジョン・エルエルシー Electro-optic lens with integrated components
JP2007503008A (en) * 2003-08-15 2007-02-15 イー・ビジョン・エルエルシー Improved electroactive lens system
JP2008537608A (en) * 2005-04-04 2008-09-18 マサチューセッツ・アイ・アンド・イア・インファーマリー Extraocular vision prosthesis with adaptive focus
JP2010110388A (en) * 2008-11-04 2010-05-20 Nidek Co Ltd Eye refractive power measuring apparatus
JP2010154323A (en) * 2008-12-25 2010-07-08 Casio Computer Co Ltd Image processing apparatus, image extraction method, and, program
JP2013197827A (en) * 2012-03-19 2013-09-30 Nec Casio Mobile Communications Ltd Photography auxiliary device and method, and photographing device and camera-equipped portable terminal mounting the photography auxiliary device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0928727A (en) * 1995-07-21 1997-02-04 Matsushita Electric Ind Co Ltd Visual acuity correction device
JP2004518167A (en) * 2001-01-17 2004-06-17 イー・ビジョン・エルエルシー Electro-optic lens with integrated components
JP2007503008A (en) * 2003-08-15 2007-02-15 イー・ビジョン・エルエルシー Improved electroactive lens system
JP2008537608A (en) * 2005-04-04 2008-09-18 マサチューセッツ・アイ・アンド・イア・インファーマリー Extraocular vision prosthesis with adaptive focus
JP2010110388A (en) * 2008-11-04 2010-05-20 Nidek Co Ltd Eye refractive power measuring apparatus
JP2010154323A (en) * 2008-12-25 2010-07-08 Casio Computer Co Ltd Image processing apparatus, image extraction method, and, program
JP2013197827A (en) * 2012-03-19 2013-09-30 Nec Casio Mobile Communications Ltd Photography auxiliary device and method, and photographing device and camera-equipped portable terminal mounting the photography auxiliary device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021182074A (en) * 2020-05-19 2021-11-25 コニカミノルタ株式会社 Focus adjustment tool and focus adjustment set
JP7392569B2 (en) 2020-05-19 2023-12-06 コニカミノルタ株式会社 Focus adjustment tools and focus adjustment sets
JP2021196426A (en) * 2020-06-10 2021-12-27 伊藤忠テクノソリューションズ株式会社 Variable focus glasses, and method and program for controlling variable focus glasses
JP7425678B2 (en) 2020-06-10 2024-01-31 伊藤忠テクノソリューションズ株式会社 Variable focus glasses, control method and control program for variable focus glasses

Similar Documents

Publication Publication Date Title
CN103595912B (en) The imaging method and device of local scale
US10048513B2 (en) Continuous autofocusing eyewear
CN103499886B (en) Imaging device and method
CN103499885B (en) Imaging device and method
US10048750B2 (en) Content projection system and content projection method
US10551638B2 (en) Imaging apparatus and imaging method
CN107890336B (en) Diopter detecting system based on intelligent handheld device
US20170068119A1 (en) Apparatus and Method for Improving, Augmenting or Enhancing Vision
KR20170136582A (en) A method for operating an eye tracking device and an eye tracking device
JP6422954B2 (en) Adjusting the focal length
US10168549B2 (en) Optical visual aid with additional astigmatism
ES2932157T3 (en) Determination of a refractive error of an eye
US10959615B2 (en) Eye-fatigue examining device and eye-fatigue examining method
KR20220088678A (en) Apparatus and method for mapping a visual scene to a projection plane
CN113840566A (en) Apparatus, system and method for determining one or more parameters of refractive error of an eye under test
WO2016002296A1 (en) Optical control device and optical control method
CN114340472B (en) Joint determination of accommodation and vergence
JP2000249902A (en) Automatic focusing spectacles
CN110520788B (en) Optical device adapted to be worn by a wearer
JP6764745B2 (en) Ophthalmic equipment
JP2004298290A (en) Three-dimensional observation state measuring apparatus and method
WO2016067433A1 (en) Lens system and contact lens
EP4364642A1 (en) Computer-implemented methods and devices for determining refractive errors
US9585561B2 (en) Ophthalmic surgical microscope with adaptive optics for optical wavefront compensation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15814380

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15814380

Country of ref document: EP

Kind code of ref document: A1