JPH06233741A - Ophthalmologic instrument having automatic fogging device and ophthalmoscopic measuring method - Google Patents

Ophthalmologic instrument having automatic fogging device and ophthalmoscopic measuring method

Info

Publication number
JPH06233741A
JPH06233741A JP5021574A JP2157493A JPH06233741A JP H06233741 A JPH06233741 A JP H06233741A JP 5021574 A JP5021574 A JP 5021574A JP 2157493 A JP2157493 A JP 2157493A JP H06233741 A JPH06233741 A JP H06233741A
Authority
JP
Japan
Prior art keywords
eye
inspected
refractive power
measuring
fog
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5021574A
Other languages
Japanese (ja)
Inventor
Yoichi Iki
洋一 壱岐
Nobuyuki Miyake
信行 三宅
Yasunori Ueno
保典 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP5021574A priority Critical patent/JPH06233741A/en
Publication of JPH06233741A publication Critical patent/JPH06233741A/en
Priority to US08/518,021 priority patent/US5555039A/en
Pending legal-status Critical Current

Links

Landscapes

  • Eye Examination Apparatus (AREA)

Abstract

PURPOSE:To provide the ophthalmologic device having automatic fogging devices and the ophthalmoscopic measuring method capable of accurately measuring both of the ocular refractive power and cornea shape with good accuracy by measuring the cornea shape without subjecting the eye to be examined to sight adjustment, maintaining the relaxation state of the eye to be examined and shortening the fogging time for measuring the ocular refractive power. CONSTITUTION:The ophthalmologic device having the automatic fogging device has refractive power detecting means 1, 5, 6, 7, 8, 9 for measuring the refractive power of the eye to be examined, the fogging devices 10 to 16 for moving the positions of fixed visual target images in the optical axis direction of the eye, a feedback control means for moving the positions of the fixed visual target images of the fogging devices in the direction for relaxing the sight adjusting power of the eye and a cornea shape measuring means for measuring the cornea shape of the eye 3 to be examined during the fogging operation by the fogging devices.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、被検眼の眼屈折力およ
び角膜形状を測定する眼科装置および眼科測定方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ophthalmologic apparatus and an ophthalmic measurement method for measuring the eye refractive power and corneal shape of an eye to be examined.

【0002】[0002]

【従来の技術】近年、被検眼の屈折力測定および角膜形
状測定を連続的に行うことが可能な眼科装置が開発され
ている。このような眼屈折力測定装置(レフラクトメー
タ)と角膜形状測定装置(ケラトメータ)とを組み合わ
せた、いわゆるオートレフケラトメータと呼ばれる眼科
装置では、被検眼を固定且つ弛緩させた状態で屈折力測
定を行う必要がある。そのため、特公平4−31690
号の開示されているように、被検眼を確実に弛緩させた
状態を実現するための自動雲霧装置を有する眼科装置が
提案されている。
2. Description of the Related Art In recent years, an ophthalmologic apparatus capable of continuously measuring the refractive power and the corneal shape of an eye to be examined has been developed. A combination of such an eye refractive power measuring device (refractometer) and a corneal shape measuring device (keratometer), in an ophthalmologic device called a so-called auto reflex keratometer, the refractive power is measured with the eye to be examined fixed and relaxed. There is a need to do. Therefore, Japanese Patent Publication 4-31690
As disclosed in the publication, an ophthalmologic apparatus having an automatic fog device for realizing a state where the eye to be inspected is surely relaxed has been proposed.

【0003】上述の従来の自動雲霧装置を有する眼科装
置では、まず眼屈折力測定時に固視標を雲霧状態におい
て被検眼を固定且つ弛緩させた状態で屈折力測定を行
い、次いで、角膜形状測定時には測定した眼屈折力を参
照して被検眼が鮮明に見える位置に固視標を位置決め
し、この固視標を被検眼に中心注視させた状態で角膜形
状測定を行っている。
In the above-mentioned conventional ophthalmologic apparatus having an automatic cloudiness device, at the time of measuring the eye refractive power, the refractive power is measured in a state where the fixation target is in the cloudy state, the eye to be examined is fixed and relaxed, and then the cornea shape is measured. Occasionally, the fixation target is positioned at a position where the eye to be inspected can be clearly seen with reference to the measured eye refractive power, and the corneal shape is measured with the fixation target being focused on the eye.

【0004】[0004]

【発明が解決しようとする課題】一般に自動雲霧装置を
有する眼科装置では、被検眼の固定および弛緩が十分で
ない状態での誤測定を回避しかつ測定値の精度を向上さ
せるために、被検眼の屈折力および角膜形状は複数回に
亘り測定される。しかしながら、上述の従来の眼科装置
では、角膜形状測定時に固視標を被検眼に鮮明に見える
位置に位置決めして被検眼に中心注視させているので、
被検眼は視力調節状態に陥りやすい。したがって、次回
の眼屈折力測定において視力調節の影響が残り雲霧動作
に時間がかかるため、眼屈折力を精度良く確実に測定す
ることが困難であるという不都合があった。
Generally, in an ophthalmologic apparatus having an automatic fog device, in order to avoid erroneous measurement when the fixation and relaxation of the eye to be inspected are insufficient and to improve the accuracy of the measured value, Refractive power and corneal shape are measured multiple times. However, in the above-mentioned conventional ophthalmologic apparatus, since the fixation target is positioned at a position clearly visible to the eye to be inspected during corneal shape measurement, the eye to be inspected is focused.
The eye to be examined is likely to fall into the state of visual acuity adjustment. Therefore, in the next eye refractive power measurement, the influence of the visual acuity adjustment remains and it takes time for the fog operation, which makes it difficult to measure the eye refractive power accurately and surely.

【0005】本発明は、前記の課題に鑑みてなされたも
のであり、被検眼に視力調節をさせることなく角膜形状
測定を行って被検眼の弛緩状態を維持し、眼屈折力測定
のための雲霧時間を短縮することにより、眼屈折力と角
膜形状の双方を精度良く確実に測定することができる、
自動雲霧装置を有する眼科装置および眼科測定方法を提
供することを目的とする。
The present invention has been made in view of the above-mentioned problems, and the corneal shape is measured without adjusting the visual acuity of the subject's eye to maintain the relaxed state of the subject's eye to measure the eye refractive power. By reducing the fog time, it is possible to measure both the eye refractive power and the corneal shape accurately and reliably.
An object of the present invention is to provide an ophthalmologic apparatus having an automatic fog device and an ophthalmic measurement method.

【0006】[0006]

【課題を解決するための手段】前記課題を解決するため
に、本発明においては、被検眼の屈折力を測定するため
の屈折力検出手段と、固視標像の位置を被検眼の光軸方
向に移動させるための雲霧装置と、前記屈折力検出手段
の出力に応じて前記雲霧装置の固視標像の位置を被検眼
の視力調節力を弛緩させる方向に移動させるためのフィ
ードバック制御手段と、前記雲霧装置による雲霧動作中
に被検眼の角膜形状を測定するための角膜形状検出手段
とを備えていることを特徴とする、自動雲霧装置を有す
る眼科装置を提供する。
In order to solve the above-mentioned problems, in the present invention, a refractive power detecting means for measuring the refractive power of the eye to be inspected, and the position of the fixation target image are set to the optical axis of the eye to be inspected. And a feedback control unit for moving the position of the fixation target image of the clouding device in a direction of relaxing the visual acuity adjusting power of the eye to be inspected according to the output of the refractive power detecting unit. An ophthalmologic apparatus having an automatic clouding device, comprising: a corneal shape detecting unit for measuring a corneal shape of an eye to be inspected during a clouding operation by the clouding device.

【0007】また、本発明においては、被検眼の屈折力
および角膜形状を自動的に測定する眼科測定方法におい
て、被検眼の所定径線方向に屈折力の予備測定を行い、
該予備測定値に基づいて被検眼の視力調節力を弛緩させ
る方向に固視標像を逐次移動させる雲霧動作を行い、該
雲霧動作中に被検眼の視力調節力が弛緩した状態で被検
眼の角膜形状を測定し、被検眼の複数径線方向、好まし
くは全径線方向に屈折力の正式測定を行うことを特徴と
する方法を提供する。
Further, in the present invention, in an ophthalmologic measuring method for automatically measuring the refractive power and corneal shape of an eye to be inspected, preliminary measurement of the refractive power in a predetermined radial direction of the eye to be inspected,
Based on the preliminary measurement value, a fog operation for sequentially moving the fixation target image in a direction of relaxing the visual acuity of the eye to be inspected is performed, and the visual acuity of the eye to be inspected is relaxed during the fog operation. Provided is a method characterized in that a corneal shape is measured, and a formal measurement of refractive power is performed in a plurality of radial line directions of an eye to be examined, preferably in a total radial line direction.

【0008】[0008]

【作用】本願発明では、被検眼の所定径線方向の眼屈折
力測定値すなわち予備測定値に基づき、この値に被検眼
の遠点に指向する方向に適当な雲霧値を加えた位置に固
視標を逐次移動させながら予備雲霧動作を行う。そし
て、この予備雲霧動作期間中の適当なタイミングで、た
とえば予備雲霧動作期間の終了直前に被検眼の角膜形状
を測定する。次いで、予備雲霧動作終了後、すなわち予
備測定値が安定したところで被検眼の複数径線方向、好
ましくは全径線方向の眼屈折力の正式測定を行う。こう
した測定サイクルを所要の回数繰り返す。
According to the present invention, based on the eye refractive power measurement value in the direction of the predetermined radial line of the eye to be examined, that is, the preliminary measurement value, a fixed fog value is added to this value in the direction toward the far point of the eye to be examined. Preliminary fog operation is performed while sequentially moving the target. Then, the corneal shape of the eye to be inspected is measured at an appropriate timing during the preliminary fog operation period, for example, immediately before the end of the preliminary fog operation period. Next, after the preliminary fog operation is completed, that is, when the preliminary measurement value becomes stable, the formal measurement of the eye refractive power of the eye to be inspected in the radial direction, preferably in the radial direction, is performed. Such measurement cycle is repeated a required number of times.

【0009】このように、本発明では、予備雲霧状態に
おいて角膜形状を測定するので、角膜形状測定時に被検
眼の視力調節力を作用させることはなく、被検眼が固定
かつほぼ弛緩した状態が持続される。したがって、引き
続き行われる雲霧動作に悪影響を及ぼすこともなく、雲
霧時間を短縮することが可能になる。
As described above, according to the present invention, since the corneal shape is measured in the pre-fog state, the visual acuity of the eye to be inspected is not applied during the corneal shape measurement, and the eye to be inspected is fixed and almost relaxed. To be done. Therefore, it is possible to shorten the cloud time without adversely affecting the cloud operation that is continuously performed.

【0010】[0010]

【実施例】本発明の実施例を、添付図面に基づいて説明
する。図1は、本発明の実施例にかかる眼科装置の光学
系の構成を示す図である。本実施例の眼科装置は、屈折
力検出器と雲霧装置と角膜形状検出器とからなる。屈折
力検出器の測定原理は検影法によるものであり、瞳孔上
における陰影の動きの速度を検出することにより眼屈折
力を測定するものである。検影法を用いた他覚的眼屈折
力検出器は、例えば特開昭55−86437号に開示さ
れている。
Embodiments of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a diagram showing a configuration of an optical system of an ophthalmologic apparatus according to an embodiment of the present invention. The ophthalmologic apparatus of this embodiment includes a refractive power detector, a fog device, and a corneal shape detector. The measurement principle of the refractive power detector is based on the screening method, and the eye refractive power is measured by detecting the speed of movement of the shadow on the pupil. An objective eye refractive power detector using a screening method is disclosed, for example, in JP-A-55-86437.

【0011】図示の装置は、赤外光を射出する発光ダイ
オード1を備えている。発光ダイオード1から射出され
た赤外光の像は、コンデンサレンズ2の作用により被検
眼3の瞳孔上に結像するように構成されている。発光ダ
イオード1およびコンデンサレンズ2は、中空円筒体か
らなるチョッパ4によって包囲されている。チョッパ4
には、スリット状の開口Sが円周に沿って複数個形成さ
れている。開口Sの長手方向は、図の紙面に垂直であ
る。
The illustrated device comprises a light emitting diode 1 which emits infrared light. The image of infrared light emitted from the light emitting diode 1 is formed on the pupil of the eye 3 to be inspected by the action of the condenser lens 2. The light emitting diode 1 and the condenser lens 2 are surrounded by a chopper 4 made of a hollow cylinder. Chopper 4
A plurality of slit-shaped openings S are formed along the circumference. The longitudinal direction of the opening S is perpendicular to the paper surface of the figure.

【0012】チョッパ4は、図示を省略した駆動系によ
って発光ダイオード1を中心として回転することができ
るように構成されている。チョッパ4に形成されたスリ
ット状の開口Sを透過した線状光束は、ハーフミラー5
に入射する。ハーフミラー5は、発光ダイオード1から
の赤外光を被検眼3の方向に反射し、被検眼3からの反
射光を透過する。
The chopper 4 is constructed so as to be rotatable about the light emitting diode 1 by a drive system (not shown). The linear luminous flux transmitted through the slit-shaped opening S formed in the chopper 4 is reflected by the half mirror 5
Incident on. The half mirror 5 reflects infrared light from the light emitting diode 1 toward the eye 3 to be inspected and transmits light reflected from the eye 3 to be inspected.

【0013】図示の装置はさらに、プリズム6aとミラ
ー6bとからなる測定径線回転系6を備えている。測定
径線回転系6は、被検眼3の乱視状態を観察するための
ものであり、これを光軸AXを中心として回転させるこ
とにより、被検眼3に入射する線状光束の径線方向が変
化する。被検眼3からの反射光は、上述の測定径線回転
系6およびハーフミラー5を透過した後、対物レンズ7
に入射する。対物レンズ7を透過した被検眼3の瞳孔面
の像は、絞り9を介して受光部8上に結像される。絞り
9は長手方向が図の紙面に垂直な長方形の開口を有し、
この開口は対物レンズ7のほぼ焦点上に位置決めされて
いる。
The device shown in the drawing further comprises a measuring radial line rotation system 6 comprising a prism 6a and a mirror 6b. The measurement radial line rotation system 6 is for observing the astigmatic state of the eye 3 to be inspected, and by rotating this around the optical axis AX, the radial direction of the linear light beam incident on the eye 3 to be inspected is changed. Change. The reflected light from the subject's eye 3 is transmitted through the measurement radial line rotation system 6 and the half mirror 5 described above, and then the objective lens 7
Incident on. The image of the pupil plane of the subject's eye 3 that has passed through the objective lens 7 is formed on the light receiving unit 8 via the diaphragm 9. The diaphragm 9 has a rectangular opening whose longitudinal direction is perpendicular to the plane of the drawing,
This aperture is positioned almost on the focus of the objective lens 7.

【0014】受光部8は、基板8aと、基板8a上に固
定された屈折力測定用の光電変換素子8b、8cと、位
置ずれ検出用の4分割光電変換素子8dとを備えてい
る。図より明らかなように、光電変換素子8b、8c
は、被検眼3上での線状光束の走査方向に配置されてい
る。光電変換素子8b、8cの間に配置された4分割光
電変換素子8dは、対物レンズ7の方向から受光部8を
見た図である図2に示すように配列された4つの光電変
換素子8d1 乃至8d4 から構成されている。さらに、
4つの光電変換素子8d1 乃至8d4 の中心Oは、対物
レンズ7の光軸Aに一致するようになっている。
The light receiving portion 8 includes a substrate 8a, photoelectric conversion elements 8b and 8c for measuring the refractive power, which are fixed on the substrate 8a, and a four-division photoelectric conversion element 8d for detecting a positional deviation. As is clear from the figure, the photoelectric conversion elements 8b and 8c
Are arranged in the scanning direction of the linear light beam on the eye 3 to be inspected. The four-division photoelectric conversion element 8d arranged between the photoelectric conversion elements 8b and 8c is a view of the light receiving unit 8 viewed from the direction of the objective lens 7, and the four photoelectric conversion elements 8d arranged as shown in FIG. It is composed of 1 to 8d 4 . further,
The center O of the four photoelectric conversion elements 8d 1 to 8d 4 is adapted to coincide with the optical axis A of the objective lens 7.

【0015】このように、屈折力検出器の光学系は、発
光ダイオード1、コンデンサレンズ2、チョッパ4、ハ
ーフミラー5、測定径線回転系6、対物レンズ7、受光
部8および絞り9によって構成されている。
As described above, the optical system of the refractive power detector is composed of the light emitting diode 1, the condenser lens 2, the chopper 4, the half mirror 5, the measuring radius line rotating system 6, the objective lens 7, the light receiving portion 8 and the diaphragm 9. Has been done.

【0016】一方、雲霧装置の光学系は、固視標11と
これを照射するために可視光線を射出する可視光源10
とを備えている。固視標11および可視光源10は保持
部材32により一体に保持され、この保持部材32は後
述するパルスモータの作用により光軸方向(図中矢印で
示す方向)に往復移動されるようになっている。可視光
源10によって照射された固視標11の像は、投影レン
ズ12および絞り13を介し、ミラー14によって反射
された後レンズ15に入射する。レンズ15を通過した
固視標11の像は、ハーフミラー16によって被検眼3
の方向に反射され、被検眼3のレンズを介して網膜上に
投影される。レンズ15は、絞り13を被検眼3の瞳孔
に対して光学的に共役な位置に位置決めするためのもの
である。換言すれば、レンズ15の作用により、被検眼
3が変わっても瞳孔の大きさを光学的に一定に保持し、
ひいては被写界深度を一定にすることができる。
On the other hand, the optical system of the fog device includes a fixation target 11 and a visible light source 10 for emitting visible light to illuminate the fixation target 11.
It has and. The fixation target 11 and the visible light source 10 are integrally held by a holding member 32, and the holding member 32 is reciprocally moved in the optical axis direction (direction shown by an arrow in the figure) by the action of a pulse motor described later. There is. The image of the fixation target 11 emitted by the visible light source 10 is reflected by a mirror 14 and then enters a lens 15 via a projection lens 12 and a diaphragm 13. The image of the fixation target 11 that has passed through the lens 15 is reflected by the half mirror 16 on the subject's eye 3
And is projected on the retina via the lens of the eye 3 to be inspected. The lens 15 is for positioning the diaphragm 13 at a position optically conjugate with the pupil of the eye 3 to be inspected. In other words, the action of the lens 15 keeps the size of the pupil optically constant even if the eye 3 to be inspected changes,
As a result, the depth of field can be made constant.

【0017】被検眼3のレンズの屈折状態がある一定の
状態であれば、被検眼3の網膜上に像が結像する固視標
11の位置は光軸上のある特定の1点だけである。すな
わち、網膜上に像が結像する固視標11の光軸上の位置
と被検眼3のレンズの屈折力とは一対一対応の関係にあ
る。このように、雲霧装置の光学系は、可視光源10、
固視標11、保持部材32、投影レンズ12、絞り1
3、ミラー14、レンズ15、ハーフミラー16により
構成されている。
If the refractive state of the lens of the eye 3 to be inspected is constant, the position of the fixation target 11 on the retina of the eye 3 to be inspected is only one specific point on the optical axis. is there. That is, the position on the optical axis of the fixation target 11 on which an image is formed on the retina and the refractive power of the lens of the subject's eye 3 have a one-to-one correspondence. As described above, the optical system of the fog device includes the visible light source 10,
Fixation target 11, holding member 32, projection lens 12, diaphragm 1
3, a mirror 14, a lens 15, and a half mirror 16.

【0018】最後に、角膜形状検出器の光学系では、被
検眼3の光軸AXと対称に角度θをなす一対の投影光学
系の光軸が設けられ、この光軸上に光源37a、37b
およびコリメータレンズ38a、38bが配設されてい
る。また、図1のA−A矢視図である図2から明らかな
ように、被検眼3の光軸AXを含む図1の紙面に垂直な
面内にも同様に、被検眼3の光軸と対称に角度θをなす
一対の投影光学系の光軸が設けられ、この光軸上に光源
37c、37dおよびコリメータレンズ38c、38d
が配設されている。換言すれば、4つの光源37a乃至
37dおよび対応する4つのコリメータレンズ38a乃
至38dは、それぞれ被検眼3の光軸AXを中心とし且
つこの光軸に垂直な円周上に等間隔を隔てて位置決めさ
れている(図2参照)。
Finally, the optical system of the corneal shape detector is provided with a pair of optical axes of the projection optical system forming an angle θ symmetrical to the optical axis AX of the eye 3 to be inspected, and the light sources 37a and 37b are located on this optical axis.
And collimator lenses 38a and 38b are provided. Further, as is clear from FIG. 2 which is a view taken along the line AA of FIG. 1, the optical axis of the eye 3 to be inspected is also similarly included in a plane perpendicular to the paper surface of FIG. An optical axis of a pair of projection optical systems that forms an angle θ symmetrically with is provided, and the light sources 37c and 37d and the collimator lenses 38c and 38d are located on this optical axis.
Is provided. In other words, the four light sources 37a to 37d and the corresponding four collimator lenses 38a to 38d are positioned at equal intervals on the circumference centered on the optical axis AX of the eye 3 to be inspected and perpendicular to the optical axis. (See FIG. 2).

【0019】各光源37a乃至37dを射出した光束
は、対応するコリメータレンズ38a乃至38dによっ
て平行光束にされた後、被検眼3の角膜に投影される。
このように、各光源37a乃至37dは、対応するコリ
メータレンズ38a乃至38dの焦点位置に位置決めさ
れている。
The light beams emitted from the respective light sources 37a to 37d are collimated by the corresponding collimator lenses 38a to 38d and then projected onto the cornea of the eye 3 to be examined.
In this way, each of the light sources 37a to 37d is positioned at the focal position of the corresponding collimator lens 38a to 38d.

【0020】被検眼3の角膜表面からの反射光は、ハー
フミラー16で反射され、ハーフミラー14を透過し、
ミラー39で反射された後、対物レンズ40に入射す
る。対物レンズ40の後側焦点位置には、絞り41が設
けられている。対物レンズ40を通過した反射光は絞り
41を透過した後、受光素子42上に結像する。このと
き、上述の一対の投影光学系によりそれぞれ生じた像の
間隔h1 およびh2 は、直交する2つの径線方向(たと
えば水平方向および鉛直方向)における角膜の曲率半径
に対応する。被検眼の角膜が球面である場合にはh1
2 であるが、トーリック面であるときにはh1 ≠h2
となる。受光素子42としてCCD等の素子を用いるこ
とができ、CCD等の素子から出力される座標に応じた
信号から像間隔h1 およびh2 、ひいては角膜の曲率半
径を求めることができる。
The light reflected from the corneal surface of the subject's eye 3 is reflected by the half mirror 16 and transmitted through the half mirror 14.
After being reflected by the mirror 39, the light enters the objective lens 40. A diaphragm 41 is provided at the rear focal position of the objective lens 40. The reflected light passing through the objective lens 40 passes through the diaphragm 41 and then forms an image on the light receiving element 42. At this time, the distances h 1 and h 2 between the images respectively generated by the pair of projection optical systems described above correspond to the radius of curvature of the cornea in two orthogonal radial directions (for example, the horizontal direction and the vertical direction). If the cornea of the eye to be inspected is spherical, h 1 =
h 2 , but when it is a toric surface, h 1 ≠ h 2
Becomes An element such as a CCD can be used as the light receiving element 42, and the image intervals h 1 and h 2 , and thus the radius of curvature of the cornea, can be obtained from the signal output from the element such as the CCD according to the coordinates.

【0021】図3は、本実施例にかかる眼科装置の電気
処理系の構成を示す図である。図3を参照して、本実施
例の装置の信号処理手順を説明する。受光した4つの光
電変換素子8d1 乃至8d4 にそれぞれ発生した光電流
は、それぞれ対応する4つの増幅器20d1 乃至20d
4 においてインピーダンスの低い電圧信号に変換され
る。増幅器20d1 乃至20d4 の出力した電圧信号
は、加減算器21に入力される。加減算器21は、4つ
の光電変換素子8d1 乃至8d4 の出力から、角膜反射
光のX方向(図中矢印の方向)の位置ずれに対応したX
信号と、角膜反射光のY方向(図中矢印の方向)の位置
ずれに対応したY信号と、角膜反射光の強さを示す総和
信号Zとを出力する。なお、X、Yの方向は測定光軸A
に垂直な面内にある。
FIG. 3 is a diagram showing the configuration of the electrical processing system of the ophthalmologic apparatus according to this embodiment. The signal processing procedure of the apparatus according to the present embodiment will be described with reference to FIG. The photocurrents generated in the four received photoelectric conversion elements 8d 1 to 8d 4 are converted into the corresponding four amplifiers 20d 1 to 20d.
At 4 it is converted to a low impedance voltage signal. The voltage signals output from the amplifiers 20d 1 to 20d 4 are input to the adder / subtractor 21. The adder / subtractor 21 corresponds to the displacement of the corneal reflected light in the X direction (the direction of the arrow in the figure) from the outputs of the four photoelectric conversion elements 8d 1 to 8d 4 .
A signal, a Y signal corresponding to the positional deviation of the corneal reflected light in the Y direction (the direction of the arrow in the drawing), and a sum signal Z indicating the intensity of the corneal reflected light are output. The X and Y directions are the measurement optical axis A.
In a plane perpendicular to.

【0022】増幅器20d1 乃至20d4 の出力をそれ
ぞれv1 乃至v4 とすれば、X信号は(v1 +v2 )−
(v 3+v4 )であり、Y信号は(v1 +v4 )−(v
2+v3 )である。加減算器21から出力された3つの
信号X、YおよびZは、それぞれ低域フィルタ22a乃
至22cにおいてチョッピング周波数成分が押さえられ
直流電圧に変換される。アナログ割算器23a、23b
は、角膜反射率の違いにより座標信号が変化するのを防
ぐために、X信号およびY信号をそれぞれ正規化してい
る。
If the outputs of the amplifiers 20d 1 to 20d 4 are v 1 to v 4 , respectively, the X signal is (v 1 + v 2 )-
(V 3 + v 4 ), and the Y signal is (v 1 + v 4 ) − (v
2 + v 3 ). The three signals X, Y, and Z output from the adder / subtractor 21 are converted into DC voltages with their chopping frequency components suppressed by the low-pass filters 22a to 22c. Analog divider 23a, 23b
In order to prevent the coordinate signal from changing due to the difference in corneal reflectance, the X signal and the Y signal are each normalized.

【0023】このようにアナログ割算器23aおよび2
3bを介してそれぞれ正規化されたX座標信号およびY
座標信号並びに総和信号Zは、アナログスイッチ24に
交互に連続して取り出される。取り出された信号は、A
−D変換器25においてディジタル信号に変換された
後、コンピュータ26に入力される。コンピュータ26
は、A−D変換器25においてディジタル化されたX座
標信号およびY座標信号を表示すべく表示回路36を駆
動する。
In this way, the analog dividers 23a and 2
3b respectively normalized X coordinate signal and Y
The coordinate signal and the summation signal Z are continuously and alternately taken out by the analog switch 24. The extracted signal is A
After being converted into a digital signal in the -D converter 25, it is input to the computer 26. Computer 26
Drives the display circuit 36 to display the digitized X and Y coordinate signals in the AD converter 25.

【0024】一方、屈折力の検出は、2つの光電変換素
子8b、8cの出力する信号間の位相差を測定すること
によって行われる。すなわち、チョッパ4の回転によっ
て被検眼3の眼底は線状光束によって走査されるから、
被検眼3が正視眼の場合には、スリット9の位置はちょ
うど中和点に相当する。このため、スリット9の開口を
射出する光束は一様に明るくなったり暗くなったりする
ので、2つの光電変換素子8b、8cの出力信号の位相
は等しくなる。
On the other hand, the refractive power is detected by measuring the phase difference between the signals output from the two photoelectric conversion elements 8b and 8c. That is, since the fundus of the eye 3 to be inspected is scanned by the linear light flux by the rotation of the chopper 4,
When the eye 3 to be inspected is an emmetropic eye, the position of the slit 9 corresponds exactly to the neutralization point. Therefore, the luminous flux emitted from the opening of the slit 9 is uniformly brightened or darkened, so that the phases of the output signals of the two photoelectric conversion elements 8b and 8c become equal.

【0025】被検眼3が正視眼でない場合には、それぞ
れの眼の屈折異常の状態に対応した明暗の縞がスリット
9の開口から射出されることになり、光電変換素子8
b、8cの出力信号の位相は被検眼の屈折異常の状態に
応じて異なってくる。こうして、光電変換素子8b、8
cの出力信号の位相差から被検眼の屈折力を求めること
ができる。
When the eye 3 to be inspected is not an emmetropic eye, bright and dark stripes corresponding to the refractive error state of each eye are emitted from the opening of the slit 9, and the photoelectric conversion element 8
The phases of the output signals b and 8c differ depending on the refractive error state of the eye to be examined. Thus, the photoelectric conversion elements 8b, 8
The refractive power of the eye to be inspected can be obtained from the phase difference between the output signals of c.

【0026】2つの光電変換素子8b、8cの出力は、
それぞれバッファ27b、27aに入力された後、波形
整形回路28b、28aにおいて方形波に整形される。
波形整形回路28b、28aの出力は、位相差カウンタ
29において位相差に対応したパルス数に変換された
後、コンピュータ26に入力される。コンピュータ26
には、上述のA−D変換器25および位相差カウンタ2
9から交互に信号が入力されるようになっている。
The outputs of the two photoelectric conversion elements 8b and 8c are
After being inputted to the buffers 27b and 27a, respectively, they are shaped into a square wave by the waveform shaping circuits 28b and 28a.
The outputs of the waveform shaping circuits 28b and 28a are converted into the number of pulses corresponding to the phase difference in the phase difference counter 29, and then input to the computer 26. Computer 26
Includes the AD converter 25 and the phase difference counter 2 described above.
Signals are alternately input from 9.

【0027】X信号およびY信号がそれぞれほぼ零レベ
ルを示しかつ総和信号Zが所定のレベル以上であるとき
(これがアライメント信号となる)、すなわち被検眼と
装置本体とのアライメントが行われると、位相差カウン
タ29の出力するディジタル信号に応じて所定のパルス
をステッピングモータ30のドライブ回路31に駆動信
号として出力する。ここで、総和信号Zを考慮するの
は、被検眼と装置本体が大きく位置ずれしていてもX信
号およびY信号がそれぞれほぼ零レベルを示すことがあ
るからである。
When the X signal and the Y signal each show almost zero level and the sum signal Z is higher than a predetermined level (this becomes an alignment signal), that is, when the eye to be inspected and the apparatus main body are aligned, A predetermined pulse is output as a drive signal to the drive circuit 31 of the stepping motor 30 according to the digital signal output from the phase difference counter 29. Here, the summation signal Z is taken into consideration because the X signal and the Y signal may show almost zero level even if the eye to be inspected and the apparatus body are largely displaced.

【0028】ステッピングモータ30は、可視光源10
と固視標11を一体に保持する部材32を駆動する。上
述したように、被検眼3の屈折力と網膜に結像する固視
標11の位置とは一対一対応の関係にある。被検眼3を
弛緩させるには、被検眼3が遠点を指向するように、固
視標像を網膜よりもわずか前方に結像させる必要があ
る。したがって、この点を考慮しながら、被検眼3の屈
折力に対応した信号(本実施例では光電変換素子8b、
8cの出力信号の位相差に対応した信号)に応じて保持
部材32の位置すなわち固視標11の位置が定められる
(詳細は後述)。
The stepping motor 30 is a visible light source 10.
And a member 32 that holds the fixation target 11 together is driven. As described above, the refractive power of the eye 3 to be inspected and the position of the fixation target 11 imaged on the retina have a one-to-one correspondence. In order to relax the eye 3 to be inspected, it is necessary to form the fixation target image slightly ahead of the retina so that the eye 3 to be inspected points to the far point. Therefore, in consideration of this point, a signal corresponding to the refractive power of the eye 3 to be examined (in the present embodiment, the photoelectric conversion element 8b,
The position of the holding member 32, that is, the position of the fixation target 11 is determined according to the signal corresponding to the phase difference of the output signal of 8c) (details will be described later).

【0029】測定者は、被検眼3と装置本体との位置ず
れがないことおよび被検者のまつ毛等が測定光路中にな
いことを確認した後、測定開始スイッチ33をONして
コンピュータ26に測定開始信号を入力する。測定開始
信号が入力されると、コンピュータ26は自動雲霧装置
を作動させる(詳細は後述)。位相差カウンタ29の出
力の変動が小さくなりフィードバック系が安定状態にな
ると、コンピュータ26は位相差カウンタ29の出力信
号を受けてこれを度数に変換しCRTモニタ35のCR
Tコントローラ34に入力する。こうして、CRTモニ
タ35にはほぼ弛緩した状態で測定された被検眼の屈折
力(度数)が表示される。
After confirming that there is no displacement between the eye 3 to be inspected and the main body of the apparatus and that the eyelashes of the person to be inspected are not in the measurement optical path, the measurer turns on the measurement start switch 33 and turns on the computer 26. Input the measurement start signal. When the measurement start signal is input, the computer 26 activates the automatic fog device (details will be described later). When the fluctuation of the output of the phase difference counter 29 becomes small and the feedback system becomes stable, the computer 26 receives the output signal of the phase difference counter 29 and converts it into a frequency, and the CR of the CRT monitor 35.
Input to the T controller 34. In this way, the CRT monitor 35 displays the refractive power (power) of the subject's eye measured in a substantially relaxed state.

【0030】また、角膜形状測定時には、上述した受光
素子42からの出力信号がコンピュータ26に入力され
る。コンピュータ26は、この信号から被検眼の直交す
る2つの径線方向について角膜の曲率半径を算出する。
こうして、プリンタ35には被検眼の角膜形状の測定値
が表示される。
When measuring the shape of the cornea, the output signal from the above-mentioned light receiving element 42 is input to the computer 26. From this signal, the computer 26 calculates the radius of curvature of the cornea in the two radial directions of the eye to be inspected that are orthogonal to each other.
Thus, the measured values of the corneal shape of the eye to be examined are displayed on the printer 35.

【0031】図4は、本発明の実施例にかかる装置の動
作を説明する図である。被検眼3に対して初めての測定
を行う場合には被検眼3の屈折力に関するデータが全く
ないので、大多数の被検眼3にとって十分遠方になりう
る位置たとえば+5乃至+6ヂオプタの位置に固視標1
1を初期配置する。このとき、大多数の被検眼3にとっ
て固視標11は、かなり遠方にぼやけて見える。このよ
うに、被検眼3にとって十分遠方になりうる位置に固視
標11を初期配置する理由は、眼の屈折力が近方側すな
わち調節方向には変化しやすく、固視標を近方側から動
かすと視力調節が起こってしまうからである。
FIG. 4 is a diagram for explaining the operation of the apparatus according to the embodiment of the present invention. When the first measurement is performed on the eye 3 to be inspected, since there is no data regarding the refractive power of the eye 3 to be inspected, the eye 3 is fixed at a position that can be sufficiently far away from the eye 3, for example, +5 to +6 diopters. Mark 1
1 is initially placed. At this time, the fixation target 11 appears to be blurred far away to the majority of the eyes 3 to be examined. As described above, the reason why the fixation target 11 is initially arranged at a position that can be sufficiently distant to the eye 3 to be inspected is that the refractive power of the eye is likely to change in the near side, that is, in the adjustment direction, and the fixation target is moved to the near side. This is because if you move it from, the vision adjustment will occur.

【0032】次いで、測定用の光源すなわち発光ダイオ
ード1を発光させ、眼屈折力の測定が可能な状態にある
か否かを判断する。具体的には、検出したX座標信号お
よびY座標信号により装置本体と被検眼3とのアライメ
ントが適正に行われていること、さらに総和信号Zのレ
ベルにより被検眼3からの反射信号の強度が適正である
ことを確認する。予備測定が可能であればその瞬間(図
中aで示すタイミング)に、測定径線回転系6を装置の
初期位置に固定した状態で被検眼3の一径線方向(たと
えば水平方向)の眼屈折力値(予備測定値)を自動的に
測定する。
Then, the light source for measurement, that is, the light emitting diode 1 is caused to emit light, and it is determined whether or not the eye refractive power can be measured. Specifically, the alignment between the apparatus main body and the eye 3 to be inspected is properly performed by the detected X coordinate signal and Y coordinate signal, and the intensity of the reflection signal from the eye 3 is determined by the level of the total sum signal Z. Make sure it is correct. If preliminary measurement is possible, at that moment (at the timing indicated by a in the figure), the measurement radial line rotation system 6 is fixed to the initial position of the apparatus, and the eye 3 in the radial direction (for example, horizontal direction) of the eye 3 to be inspected is fixed. The refractive power value (preliminary measurement value) is automatically measured.

【0033】このように測定された予備測定値に基づ
き、装置のフィードバック系を作動させて固視標11を
被検眼3が遠点を指向する方向に移動させる。すなわ
ち、本実施例では、予備測定値にある程度遠方となるよ
うな値(予備雲霧値)PFとしてたとえば0.75ヂオ
プタを加えた値に対応する位置(予備雲霧位置)に固視
標11を移動させる。
Based on the preliminary measurement value thus measured, the feedback system of the apparatus is operated to move the fixation target 11 in the direction in which the eye 3 to be inspected points the far point. That is, in the present embodiment, the fixation target 11 is moved to a position (preliminary fog position) corresponding to a value (preliminary fog value) PF that is, for example, 0.75 diopter, which is a distance away from the preliminary measurement value. Let

【0034】さらに、測定が可能であれば引き続き予備
測定(本実施例ではb乃至gのタイミング)を自動的に
行い、上述のフィードバック系による予備雲霧動作を複
数回繰り返す。このように、固視標11は被検眼の屈折
状態から予備雲霧値PFだけ遠方にあるので、被検眼3
はこの固視標11を捕らえようとする。すなわち、被検
眼3の視力調節力を弛緩させて、固視標11の位置変化
に追従しようする。この結果、被検眼は徐々に弛緩しや
がて固視標11の位置変化にほとんど追従しなくなる。
すなわち、予備測定値の変動が小さくなり安定する(図
中gのタイミング)。
Further, if the measurement is possible, the preliminary measurement (timings b to g in the present embodiment) is continuously performed automatically, and the preliminary fog operation by the above feedback system is repeated a plurality of times. In this way, since the fixation target 11 is far from the refraction state of the subject's eye by the preliminary cloud value PF, the subject's eye 3
Tries to capture this fixation target 11. That is, the visual acuity adjustment power of the eye 3 to be inspected is relaxed to follow the position change of the fixation target 11. As a result, the eye to be examined gradually relaxes and hardly follows the change in the position of the fixation target 11.
That is, the variation of the preliminary measurement value becomes small and becomes stable (timing g in the figure).

【0035】装置本体と被検眼3のアライメントが安定
してさえいれば、上述の予備雲霧期間中の任意のタイミ
ングにおいて本発明の角膜形状測定を行うことができ
る。実際には、予備測定値が安定しかつアライメントが
安定している状態、すなわち被検眼が固定されかつ弛緩
した状態になっている予備雲霧動作の終了直前(たとえ
ば図中gのタイミング)に行うのが好ましい。
As long as the alignment between the main body of the apparatus and the eye 3 to be inspected is stable, the corneal shape measurement of the present invention can be performed at any timing during the above-mentioned preliminary fog period. Actually, the preliminary measurement value is stable and the alignment is stable, that is, immediately before the end of the preliminary fog operation in which the eye to be inspected is fixed and relaxed (for example, timing g in the figure). Is preferred.

【0036】操作者は、予備測定値が安定しかつアライ
メントが安定していることを確認した瞬間(図中hのタ
イミング)に測定SWを押し、正式測定のための最終の
雲霧動作(本雲霧動作)を開始させる。本雲霧動作は、
予備測定値に予備雲霧値PFを加えた値に更にある程度
遠方となるような値(本雲霧値)MFとしてたとえば
1.50ヂオプタを加えた値に対応する位置(本雲霧位
置)に固視標11を移動させることからなる。予備雲霧
動作が十分な時間繰り返されかつ被検眼3の乱視の度合
いが小さい場合には、上述の本雲霧動作を省略して直接
正式測定を行ってもよい。しかしながら、予備雲霧動作
に十分な時間がとれない場合や、被検眼3の乱視の度合
いが大きくて固視標の位置が被検眼3の合焦範囲にある
場合には、被検眼3の視力調節力は十分弛緩していない
ことになる。このため、固視標をさらに遠方に移動させ
る本雲霧動作を行って、被検眼をさらに確実に弛緩させ
るのが好ましい。
The operator pushes the measurement SW at the moment when it is confirmed that the preliminary measurement values are stable and the alignment is stable (timing h in the figure), and the final fog operation (main cloud fog) for formal measurement is performed. Operation). This cloud operation is
The fixation target is located at a position (main cloud position) corresponding to a value obtained by adding 1.50 diopter as a value (main cloud fog value) MF that is more distant to some extent than the value obtained by adding the preliminary measurement fog value PF. 11 to move. When the preliminary clouding operation is repeated for a sufficient time and the degree of astigmatism of the eye 3 to be inspected is small, the above main clouding operation may be omitted and the formal measurement may be directly performed. However, when sufficient time is not taken for the preliminary cloud operation, or when the degree of astigmatism of the eye 3 to be inspected is large and the position of the fixation target is within the focus range of the eye 3 to be inspected, the visual acuity adjustment of the eye 3 to be inspected is performed. The force is not relaxed enough. For this reason, it is preferable that the subject's eye be more surely relaxed by performing a main clouding operation for moving the fixation target further away.

【0037】上述の本雲霧動作が完了すると、測定径線
回転系6を一回転させ全径線方向の眼屈折力を正式に測
定する。得られた測定値から、たとえば最強の屈折力、
最弱の屈折力、最強および最弱の屈折力にそれぞれ対応
する径線、球面度数S、乱視度数Cおよび乱視軸角度A
Xのデータがコンピュータの演算により算出される。こ
うして、予備測定開始から測定SWの入力に及ぶ予備雲
霧期間P1、本雲霧動作を行う本雲霧期間P2および正
式測定期間P3を経て第1の測定サイクルが完了する。
第1の測定サイクルを経てしばらくした後、第2の測定
サイクルを開始する。
When the above main cloud fog operation is completed, the measurement radial line rotating system 6 is rotated once to formally measure the eye refractive power in all radial directions. From the measured values obtained, for example, the strongest refractive power,
Weakest refractive power, radial line corresponding to strongest and weakest refractive power, spherical power S, astigmatic power C and astigmatic axis angle A, respectively.
The X data is calculated by a computer. Thus, the first measurement cycle is completed after the preliminary cloud period P1 that extends from the start of the preliminary measurement to the input of the measurement SW, the main cloud period P2 in which the main cloud operation is performed, and the official measurement period P3.
After a while after the first measurement cycle, the second measurement cycle is started.

【0038】第2の測定サイクルの開始時点では、すで
に第1の測定サイクルで正式測定した被検眼3の乱視の
度合いに関するデータが存在する。したがって、第1の
測定サイクルとは異なり、固視標11の初期位置を被検
眼3の乱視情報を考慮して決定することができる。前回
の正式測定値から球面度数Sおよび乱視度数Cを求め、
被検眼3の最遠点位置よりある程度近方、たとえば等価
球面値S+C/2に対応する位置を求める。この位置か
ら被検眼の遠点に指向する方向に予備雲霧値PF(本実
施例では0.75ヂオプタ)を加えた位置を初期位置と
し、この初期位置に固視標11を移動させる。この状態
で予備測定が可能になった瞬間(図中iで示すタイミン
グ)に、第1回目の予備測定を自動的に行う。
At the start of the second measurement cycle, there is already data on the degree of astigmatism of the subject's eye 3 which was officially measured in the first measurement cycle. Therefore, unlike the first measurement cycle, the initial position of the fixation target 11 can be determined in consideration of the astigmatism information of the eye 3 to be inspected. Obtain the spherical power S and the astigmatic power C from the previous official measurement values,
A position somewhat closer to the farthest point position of the eye 3 to be inspected, for example, a position corresponding to the equivalent spherical surface value S + C / 2 is obtained. A position obtained by adding a preliminary fog value PF (0.75 diopter in this embodiment) in a direction pointing from this position to the far point of the eye to be inspected is set as an initial position, and the fixation target 11 is moved to this initial position. At this moment, the first preliminary measurement is automatically performed at the moment when preliminary measurement becomes possible (timing indicated by i in the figure).

【0039】次いで、前記一径線方向(たとえば水平方
向)の正式測定値DH0に対する第1回目の予備測定値
DH1の変化量ΔDH=DH1−DH0を算出し、初期
位置からこの変化量ΔDHに対応する距離だけ離れた位
置に固視標11を移動させ、次の予備測定タイミング
(図中j)に第2回目の予備測定を行う。第2回目の予
備測定値DH2の変化量ΔDH=DH2−DH0を算出
し、初期位置から変化量ΔDHに対応する距離だけ離れ
た位置に固視標11を移動させる。以後、この工程を繰
り返して予備雲霧動作を行う。
Next, the change amount ΔDH = DH1-DH0 of the first preliminary measurement value DH1 with respect to the formal measurement value DH0 in the radial direction (for example, the horizontal direction) is calculated, and this change amount ΔDH is calculated from the initial position. The fixation target 11 is moved to a position distant by a predetermined distance, and the second preliminary measurement is performed at the next preliminary measurement timing (j in the figure). A change amount ΔDH = DH2−DH0 of the second preliminary measurement value DH2 is calculated, and the fixation target 11 is moved to a position away from the initial position by a distance corresponding to the change amount ΔDH. After that, this process is repeated to perform the preliminary clouding operation.

【0040】また、構成によっては、直交する二径線、
例えば水平方向の屈折力および鉛直方向の屈折力が予備
測定値として得られる装置構成も考えられる。この場合
には正式測定による水平方向の成分および鉛直方向の成
分をそれぞれDH0、DV0とし、予備測定による水平
方向の成分と鉛直方向の成分をDHn、DVnとすれ
ば、各測定における水平方向の成分と鉛直方向の成分の
平均値DA0、DAnは次式で与えられる。
Also, depending on the configuration, two radial lines that intersect at right angles,
For example, an apparatus configuration in which the horizontal refractive power and the vertical refractive power are obtained as preliminary measurement values is also conceivable. In this case, if the horizontal component and the vertical component obtained by formal measurement are DH0 and DV0 respectively, and the horizontal component and the vertical component obtained by preliminary measurement are DHn and DVn respectively, the horizontal component in each measurement is obtained. And average values DA0 and DAn of the vertical component are given by the following equation.

【0041】DA0=(DH0+DV0)/2 DAn=(DHn+DVn)/2 正式測定および予備測定における両成分の平均値DA
0、DAnを用いて、平均値の変化量ΔDAは次式で与
えられる。 ΔDA=DAn−DA0 求められた変化量ΔDAを前述のΔDHに代えて使用し
てもよい。
DA0 = (DH0 + DV0) / 2 DAn = (DHn + DVn) / 2 Average value DA of both components in formal measurement and preliminary measurement
Using 0 and DAn, the change amount ΔDA of the average value is given by the following equation. ΔDA = DAn−DA0 The calculated change amount ΔDA may be used instead of the above ΔDH.

【0042】このように、本発明における予備測定で
は、一径線方向のみの測定に限らず複数の径線方向につ
いて測定を行うことも可能であり、装置に固有の所定径
線方向での測定を行う。このように、上述の予備雲霧動
作では前回の正式測定で得られた被検眼の乱視情報を雲
霧動作に反映することができるので、予備雲霧期間P4
が著しく短縮され且つ確実に被検眼の弛緩状態を実現す
ることができる。この予備雲霧動作中も、装置本体と被
検眼3とのアライメントが安定した状態で角膜形状測定
を再度行うことができる。
As described above, in the preliminary measurement according to the present invention, not only the measurement in one radial line direction but also the measurement in a plurality of radial line directions is possible, and the measurement in the predetermined radial line direction unique to the apparatus is possible. I do. As described above, in the above-described preliminary cloud operation, the astigmatism information of the eye to be inspected obtained in the previous formal measurement can be reflected in the cloud operation, so the preliminary cloud period P4
Is significantly shortened and the relaxed state of the eye to be inspected can be reliably realized. Even during the preliminary fog operation, the corneal shape measurement can be performed again in a state where the alignment between the apparatus body and the eye 3 to be inspected is stable.

【0043】第2の測定サイクル以降の本雲霧動作およ
び正式測定動作は第1の測定サイクルの動作と基本的に
同じであり、説明を省略する。こうして、所要の回数だ
け測定サイクルを繰り返して本発明の装置の動作は終了
する。
The main cloud fog operation and the formal measurement operation after the second measurement cycle are basically the same as the operation of the first measurement cycle, and the description thereof will be omitted. Thus, the measurement cycle is repeated the required number of times, and the operation of the apparatus of the present invention is completed.

【0044】なお、本実施例では、予備測定値に予備雲
霧値PFを加えた値に更に本雲霧値MFを加えた値に対
応する位置に固視標を移動させることからなる本雲霧動
作を行っている。この本雲霧動作は、上述のとおり本発
明に必須の動作ではない。したがって、被検者が幼児で
あったり眼に疾患があって長時間に亘る固視が困難な場
合には、操作者は本雲霧動作を省略し予備雲霧動作終了
後に速やかに正式測定を行って眼屈折力を確実に測定す
ることもできる。
In the present embodiment, the main cloud fog operation is performed by moving the fixation target to a position corresponding to a value obtained by adding the main cloud fog value MF to the value obtained by adding the preliminary cloud fog value PF to the preliminary measurement value. Is going. This main cloud operation is not essential to the present invention as described above. Therefore, if the subject is an infant or has eye problems and it is difficult to fixate for a long time, the operator omits the main cloud operation and immediately performs formal measurement after completing the preliminary cloud operation. It is also possible to reliably measure the eye refractive power.

【0045】[0045]

【効果】以上説明したごとく、本発明の自動雲霧装置を
有する眼科装置および眼科測定方法では、被検眼に視力
調節をさせることなく角膜形状測定を行うので、被検眼
の視力調節力が弛緩した状態が維持される。したがっ
て、眼屈折力測定のための雲霧時間を短縮することが可
能になり、眼屈折力と角膜形状の双方を精度良く確実に
測定することができる。
[Effect] As described above, in the ophthalmologic apparatus and the ophthalmic measurement method having the automatic fog device of the present invention, the cornea shape is measured without adjusting the visual acuity of the eye to be inspected. Is maintained. Therefore, the fog time for measuring the eye refractive power can be shortened, and both the eye refractive power and the corneal shape can be measured accurately and reliably.

【0046】また、本発明の別の態様によれば、正式測
定で得られた被検眼の乱視情報を雲霧動作に反映するこ
とができるので、雲霧動作時間が短縮され且つ被検眼が
十分弛緩された状態で眼屈折力を精度良く確実に測定す
ることができる。
According to another aspect of the present invention, since the astigmatism information of the eye to be inspected obtained by the formal measurement can be reflected in the fog operation, the fog operation time is shortened and the eye to be inspected is sufficiently relaxed. The eye refractive power can be measured accurately and reliably in the closed state.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例にかかる眼科装置の光学系の構
成を示す図である。
FIG. 1 is a diagram showing a configuration of an optical system of an ophthalmologic apparatus according to an embodiment of the present invention.

【図2】図1のA−A矢視図である。FIG. 2 is a view on arrow AA of FIG.

【図3】本実施例にかかる眼科装置の電気処理系の構成
を示す図である。
FIG. 3 is a diagram showing a configuration of an electric processing system of the ophthalmologic apparatus according to the present embodiment.

【図4】本実施例にかかる眼科装置の基本動作を説明す
る図である。
FIG. 4 is a diagram illustrating a basic operation of the ophthalmologic apparatus according to the present embodiment.

【符号の説明】 1 発光ダイオード 2 コンデンサレンズ 4 チョッパ 6 測定径線回転系 8 受光部 8d 光電変換素子 10 可視光源 11 固視標 12 投影レンズ 37 光源 38 コリメータレンズ 40 対物レンズ 41 絞り 42 受光素子[Explanation of reference numerals] 1 light emitting diode 2 condenser lens 4 chopper 6 measuring diameter line rotating system 8 light receiving part 8d photoelectric conversion element 10 visible light source 11 fixation target 12 projection lens 37 light source 38 collimator lens 40 objective lens 41 diaphragm 42 light receiving element

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 被検眼の屈折力を測定するための屈折力
検出手段と、固視標像の位置を被検眼の光軸方向に移動
させるための雲霧装置と、前記屈折力検出手段の出力に
応じて前記雲霧装置の固視標像の位置を被検眼の視力調
節力を弛緩させる方向に移動させるためのフィードバッ
ク制御手段と、前記雲霧装置による雲霧動作中に被検眼
の角膜形状を測定するための角膜形状検出手段とを備え
ていることを特徴とする、自動雲霧装置を有する眼科装
置。
1. A refracting power detecting means for measuring a refracting power of an eye to be inspected, a fog device for moving a position of a fixation target image in an optical axis direction of the eye to be inspected, and an output of the refracting power detecting means. According to the feedback control means for moving the position of the fixation target image of the fog device in the direction of relaxing the visual acuity adjustment force of the eye to be inspected, and measuring the corneal shape of the eye to be inspected during the fog operation by the fog device. An ophthalmologic apparatus having an automatic fog device, comprising:
【請求項2】 被検眼の屈折力および角膜形状を自動的
に測定する眼科測定方法において、被検眼の所定径線方
向に屈折力の予備測定を行い、該予備測定値に基づいて
被検眼の視力調節力を弛緩させる方向に固視標像を逐次
移動させる雲霧動作を行い、該雲霧動作中に被検眼の視
力調節力が弛緩した状態で被検眼の角膜形状を測定し、
被検眼の複数径線方向に屈折力の正式測定を行うことを
特徴とする方法。
2. An ophthalmologic measuring method for automatically measuring the refractive power and corneal shape of an eye to be inspected, the refractive power is preliminarily measured in a predetermined radial direction of the eye to be inspected, and the eye to be inspected based on the preliminary measurement value. Performing a fog operation of sequentially moving the fixation target image in a direction of relaxing the visual acuity, measuring the corneal shape of the eye to be inspected while the visual acuity of the eye to be inspected is relaxed during the fog operation,
A method characterized by performing formal measurement of refractive power in a plurality of radial directions of an eye to be inspected.
【請求項3】 前記角膜形状測定は、前記雲霧動作の終
了直前に行うことを特徴とする請求項2に記載の方法。
3. The method according to claim 2, wherein the corneal shape measurement is performed immediately before the end of the fog operation.
【請求項4】 被検眼の屈折力および角膜形状を自動的
に測定する眼科測定方法において、被検眼の所定径線方
向に屈折力の第1の予備測定を行い、該第1の予備測定
値に基づいて被検眼の視力調節力を弛緩させる方向に固
視標像を逐次移動させる第1の雲霧動作を行い、該第1
の雲霧動作中に被検眼の視力調節力が弛緩した状態で被
検眼の角膜形状を測定し、被検眼の複数径線方向に屈折
力の第1の正式測定を行い、被検眼の所定径線方向に屈
折力の第2の予備測定を行い、前記正式測定値から得ら
れた被検眼の乱視情報と前記所定径線方向の正式測定値
に対する第2の予備測定値の変化量とに基づいて被検眼
の視力調節力を弛緩させる方向に固視標を逐次移動させ
る第2の雲霧動作を行い、該第2の雲霧動作中に被検眼
の視力調節力が弛緩した状態で被検眼の角膜形状を測定
し、被検眼の屈折力を複数径線方向に第2の正式測定を
行うことを特徴とする方法。
4. In an ophthalmologic measuring method for automatically measuring the refractive power and corneal shape of an eye to be inspected, a first preliminary measurement of the refractive power is performed in a predetermined radial direction of the eye to be inspected, and the first preliminary measurement value is obtained. A first fog operation for sequentially moving the fixation target image in a direction in which the visual acuity adjustment force of the eye to be inspected is relaxed.
The corneal shape of the eye to be inspected is measured while the eye's visual acuity is relaxed during the cloud operation, and the first formal measurement of the refractive power is performed in the plural radial directions of the eye to be inspected. The second preliminary measurement of the refractive power is performed in the direction, and based on the astigmatism information of the subject's eye obtained from the formal measurement value and the change amount of the second preliminary measurement value with respect to the formal measurement value in the predetermined radial direction. A second fog operation in which the fixation target is sequentially moved in a direction of relaxing the visual acuity adjustment power of the eye to be inspected is performed, and the corneal shape of the eye to be inspected in a state in which the visual acuity adjustment force of the eye to be inspected is relaxed during the second fog operation. And a second formal measurement of the refractive power of the eye to be inspected in a plurality of radial directions.
【請求項5】 前記第1の正式測定値から被検眼の球面
度数(S)および乱視度数(C)を求め、球面度数
(S)に対応する位置と球面度数と乱視度数との総和
(S+C)に対応する位置との間で選択された位置から
被検眼の視力調節力を弛緩させる方向に所定距離だけ移
動した位置を固視標像の初期位置とし、該初期位置を前
記所定径線方向の正式測定値に対する第2の予備測定値
の変化量に応じて逐次移動させて第2の雲霧動作を行う
ことを特徴とする請求項4に記載の方法。
5. The spherical power (S) and the astigmatic power (C) of the eye to be examined are obtained from the first official measurement value, and the position corresponding to the spherical power (S) and the sum of the spherical power and the astigmatic power (S + C). ) To the position corresponding to the position corresponding to (a) is moved by a predetermined distance in the direction in which the visual acuity adjusting force of the eye to be inspected is relaxed, and the initial position of the fixation target image is defined as the initial position. 5. The method according to claim 4, wherein the second fog operation is performed by sequentially moving the second preliminary measurement value according to the change amount of the second preliminary measurement value with respect to the official measurement value.
【請求項6】 前記選択位置は、前記第1の正式測定値
から算出された被検眼の等価球面値に対応する位置であ
ることを特徴とする請求項5に記載の方法。
6. The method according to claim 5, wherein the selected position is a position corresponding to an equivalent spherical surface value of the eye to be inspected, which is calculated from the first official measurement value.
【請求項7】 固視標像を被検眼の視力調節力を弛緩さ
せる方向に所定距離だけさらに移動させて正式測定を行
うことを特徴とする請求項4乃至6のいずれか1項に記
載の方法。
7. The formal measurement is performed by further moving the fixation target image by a predetermined distance in a direction in which the visual acuity adjusting force of the eye to be inspected is relaxed. Method.
JP5021574A 1993-02-10 1993-02-10 Ophthalmologic instrument having automatic fogging device and ophthalmoscopic measuring method Pending JPH06233741A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP5021574A JPH06233741A (en) 1993-02-10 1993-02-10 Ophthalmologic instrument having automatic fogging device and ophthalmoscopic measuring method
US08/518,021 US5555039A (en) 1993-02-10 1995-08-22 Eye measuring apparatus having an automatic fogging producing mechanism and method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5021574A JPH06233741A (en) 1993-02-10 1993-02-10 Ophthalmologic instrument having automatic fogging device and ophthalmoscopic measuring method

Publications (1)

Publication Number Publication Date
JPH06233741A true JPH06233741A (en) 1994-08-23

Family

ID=12058805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5021574A Pending JPH06233741A (en) 1993-02-10 1993-02-10 Ophthalmologic instrument having automatic fogging device and ophthalmoscopic measuring method

Country Status (1)

Country Link
JP (1) JPH06233741A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005000113A1 (en) * 2003-06-30 2005-01-06 Right Mfg, Co., Ltd. Ocular refractive power measuring instrument
JP2010240486A (en) * 2010-08-04 2010-10-28 Canon Inc Ophthalmologic examination apparatus
JP2017077418A (en) * 2015-10-22 2017-04-27 株式会社トーメーコーポレーション Ophthalmologic apparatus
WO2019187490A1 (en) * 2018-03-27 2019-10-03 株式会社トプコン Ophthalmic device and method for controlling ophthalmic device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005000113A1 (en) * 2003-06-30 2005-01-06 Right Mfg, Co., Ltd. Ocular refractive power measuring instrument
EP1639937A4 (en) * 2003-06-30 2008-07-30 Right Mfg Co Ltd Ocular refractive power measuring instrument
CN100431480C (en) * 2003-06-30 2008-11-12 株式会社来易特制作所 Ocular refractive power measuring instrument
JP2010240486A (en) * 2010-08-04 2010-10-28 Canon Inc Ophthalmologic examination apparatus
JP2017077418A (en) * 2015-10-22 2017-04-27 株式会社トーメーコーポレーション Ophthalmologic apparatus
WO2019187490A1 (en) * 2018-03-27 2019-10-03 株式会社トプコン Ophthalmic device and method for controlling ophthalmic device
JP2019170461A (en) * 2018-03-27 2019-10-10 株式会社トプコン Ophthalmologic apparatus and control method of ophthalmologic apparatus
CN111787844A (en) * 2018-03-27 2020-10-16 株式会社拓普康 Ophthalmologic apparatus and control method for ophthalmologic apparatus
CN111787844B (en) * 2018-03-27 2024-01-12 株式会社拓普康 Ophthalmic apparatus and control method of ophthalmic apparatus
US11896307B2 (en) 2018-03-27 2024-02-13 Topcon Corporation Ophthalmologic apparatus and method of controlling same

Similar Documents

Publication Publication Date Title
US5555039A (en) Eye measuring apparatus having an automatic fogging producing mechanism and method thereof
JP4510534B2 (en) Optical characteristic measuring device and fundus image observation device
US7416301B2 (en) Eye refractive power measurement apparatus
US11813022B2 (en) Ophthalmic apparatus, controlling method thereof, and recording medium
US20190059723A1 (en) Ophthalmologic apparatus and method of controlling the same
JP2013006068A (en) System and method for non-contacting measurement of axis length and/or cornea curvature and/or anterior chamber depth of eye, preferably for intraocular lens calculation
KR20120074232A (en) Eye refractive power measurement apparatus
EP2422691A1 (en) Ophthalmologic device
JPH10108837A (en) Ophthalmologic measuring device
JPH09135811A (en) Ophthalmic device
JPH08103413A (en) Ophthalmological measuring instrument
US7219999B2 (en) Device for measuring optical characteristic of eye
JP2017213125A (en) Ophthalmologic apparatus
US5781275A (en) Eye refractometer and eye refractive power measuring apparatus for electro-optically measuring the refractive power of the eye
JPH06233741A (en) Ophthalmologic instrument having automatic fogging device and ophthalmoscopic measuring method
JP2911452B2 (en) Ophthalmic equipment
JPH06233740A (en) Objective ocular refractive power measuring instrument having automatic fogging device and objective ocular refractive power measuring method
JP2019058441A (en) Ophthalmologic apparatus and control method
CN111787844B (en) Ophthalmic apparatus and control method of ophthalmic apparatus
JPH0554325B2 (en)
JPH0554326B2 (en)
JP4412998B2 (en) Eye refractive power measuring device
JP4436914B2 (en) Eye refractive power measuring device
JP3068626B2 (en) Objective eye refractometer
JPH0439332B2 (en)