JPH0197320A - Formation of superconductive wiring pattern - Google Patents
Formation of superconductive wiring patternInfo
- Publication number
- JPH0197320A JPH0197320A JP62254967A JP25496787A JPH0197320A JP H0197320 A JPH0197320 A JP H0197320A JP 62254967 A JP62254967 A JP 62254967A JP 25496787 A JP25496787 A JP 25496787A JP H0197320 A JPH0197320 A JP H0197320A
- Authority
- JP
- Japan
- Prior art keywords
- wiring pattern
- forming
- superconducting wiring
- pattern according
- superconducting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000015572 biosynthetic process Effects 0.000 title claims description 7
- 238000000034 method Methods 0.000 claims abstract description 49
- 239000000463 material Substances 0.000 claims abstract description 35
- 239000000843 powder Substances 0.000 claims abstract description 33
- 239000000758 substrate Substances 0.000 claims abstract description 33
- 230000000737 periodic effect Effects 0.000 claims abstract description 18
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 14
- 150000001875 compounds Chemical class 0.000 claims abstract description 11
- 239000000203 mixture Substances 0.000 claims abstract description 10
- 238000000206 photolithography Methods 0.000 claims abstract description 6
- 238000010304 firing Methods 0.000 claims description 30
- 239000002994 raw material Substances 0.000 claims description 19
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 13
- 239000013078 crystal Substances 0.000 claims description 13
- 239000001301 oxygen Substances 0.000 claims description 13
- 238000002844 melting Methods 0.000 claims description 10
- 230000008018 melting Effects 0.000 claims description 10
- 238000010298 pulverizing process Methods 0.000 claims description 9
- 238000010438 heat treatment Methods 0.000 claims description 8
- 239000002245 particle Substances 0.000 claims description 8
- 239000002131 composite material Substances 0.000 claims description 7
- 238000004519 manufacturing process Methods 0.000 claims description 7
- LTPBRCUWZOMYOC-UHFFFAOYSA-N Beryllium oxide Chemical group O=[Be] LTPBRCUWZOMYOC-UHFFFAOYSA-N 0.000 claims description 6
- 238000011049 filling Methods 0.000 claims description 5
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 4
- 239000011347 resin Substances 0.000 claims description 4
- 229920005989 resin Polymers 0.000 claims description 4
- 238000001816 cooling Methods 0.000 claims description 3
- 229910052594 sapphire Inorganic materials 0.000 claims description 3
- 239000010980 sapphire Substances 0.000 claims description 3
- 239000002904 solvent Substances 0.000 claims description 3
- VXQBJTKSVGFQOL-UHFFFAOYSA-N 2-(2-butoxyethoxy)ethyl acetate Chemical compound CCCCOCCOCCOC(C)=O VXQBJTKSVGFQOL-UHFFFAOYSA-N 0.000 claims description 2
- 239000004925 Acrylic resin Substances 0.000 claims description 2
- 229920000178 Acrylic resin Polymers 0.000 claims description 2
- 239000001856 Ethyl cellulose Substances 0.000 claims description 2
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 claims description 2
- 238000001354 calcination Methods 0.000 claims description 2
- 150000004649 carbonic acid derivatives Chemical class 0.000 claims description 2
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 claims description 2
- 229920001249 ethyl cellulose Polymers 0.000 claims description 2
- 235000019325 ethyl cellulose Nutrition 0.000 claims description 2
- 150000002823 nitrates Chemical class 0.000 claims description 2
- 150000003467 sulfuric acid derivatives Chemical class 0.000 claims description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 claims 1
- 229910002651 NO3 Inorganic materials 0.000 claims 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 claims 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 claims 1
- 230000007704 transition Effects 0.000 abstract description 3
- 239000002887 superconductor Substances 0.000 description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 239000007788 liquid Substances 0.000 description 5
- 239000012071 phase Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 239000000523 sample Substances 0.000 description 3
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- AYJRCSIUFZENHW-UHFFFAOYSA-L barium carbonate Chemical compound [Ba+2].[O-]C([O-])=O AYJRCSIUFZENHW-UHFFFAOYSA-L 0.000 description 2
- 239000002826 coolant Substances 0.000 description 2
- 239000001307 helium Substances 0.000 description 2
- 229910052734 helium Inorganic materials 0.000 description 2
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 2
- 230000005291 magnetic effect Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- OAYXUHPQHDHDDZ-UHFFFAOYSA-N 2-(2-butoxyethoxy)ethanol Chemical compound CCCCOCCOCCO OAYXUHPQHDHDDZ-UHFFFAOYSA-N 0.000 description 1
- 229910000750 Niobium-germanium Inorganic materials 0.000 description 1
- 229920005822 acrylic binder Polymers 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- WUOACPNHFRMFPN-UHFFFAOYSA-N alpha-terpineol Chemical compound CC1=CCC(C(C)(C)O)CC1 WUOACPNHFRMFPN-UHFFFAOYSA-N 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- SQIFACVGCPWBQZ-UHFFFAOYSA-N delta-terpineol Natural products CC(C)(O)C1CCC(=C)CC1 SQIFACVGCPWBQZ-UHFFFAOYSA-N 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000005292 diamagnetic effect Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000005339 levitation Methods 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- XNGIFLGASWRNHJ-UHFFFAOYSA-L phthalate(2-) Chemical compound [O-]C(=O)C1=CC=CC=C1C([O-])=O XNGIFLGASWRNHJ-UHFFFAOYSA-L 0.000 description 1
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000007261 regionalization Effects 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 238000010583 slow cooling Methods 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 229940116411 terpineol Drugs 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 230000009974 thixotropic effect Effects 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Parts Printed On Printed Circuit Boards (AREA)
- Compositions Of Oxide Ceramics (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Superconductor Devices And Manufacturing Methods Thereof (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は超電導性配線パターンの形成方法に関する。よ
り詳細には、高い超電導臨界温度並びにこの臨界温度と
の差が小さい相転移の終了温度を具備する新規な超電導
材料によって形成された配線の作製方法に関する。DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for forming superconducting wiring patterns. More specifically, the present invention relates to a method for producing a wiring made of a novel superconducting material that has a high superconducting critical temperature and a phase transition termination temperature that has a small difference from this critical temperature.
尚、以下の記述においては、超電導臨界温度をTC1超
電導体の電気抵抗が全く零となる相転移の終了温度をT
ci、TcとTciとの差を△Tとして著す。In the following description, the superconducting critical temperature is defined as the end temperature of the phase transition at which the electrical resistance of the TC1 superconductor becomes completely zero.
ci, the difference between Tc and Tci is marked as ΔT.
従来の技術
超電導現象下で物質は完全な反磁性を示し、内部で有限
な定常電流が流れているにも関わらず電位差が現れなく
なる。そこで、超電導体は電力損失の全くない伝送媒体
とする各種の応用が提案されている。Conventional technology Under superconducting phenomena, materials exhibit complete diamagnetic properties, and no potential difference appears even though a finite steady-state current flows inside them. Therefore, various applications have been proposed for superconductors as transmission media with no power loss.
即ち、電力分野におけるMHD発電、電力送電、電力貯
蔵等、或いは、動力分野における磁気浮上列車、電磁気
推進船舶等の動力分野、更に、医療あるいは計測の分野
における磁場、マイクロ波、放射線等の超高感度センサ
としてNMR1π中間子治療、高エネルギー物理実験装
置など極めて多くの適用を挙げることができる。In other words, MHD power generation, power transmission, power storage, etc. in the power field, power fields such as magnetic levitation trains and electromagnetic propulsion ships, and ultra-high energy fields such as magnetic fields, microwaves, and radiation in the medical and measurement fields. As a sensitive sensor, there are many applications such as NMR 1π meson therapy, high energy physical experiment equipment, etc.
また、ジョセフソン素子に代表されるエレクトロニクス
素子の分野でも、単なる消費電力の低減のみならず、極
めて高速な動作を実現し得る技術として期待されている
。Furthermore, in the field of electronic devices such as Josephson devices, this technology is expected to not only reduce power consumption but also realize extremely high-speed operation.
ところで、従来、超電導現象は極端な低温下においての
み観測されていた。従来の超電導材料として最も高い超
電導臨界温度Tcを有するといわれていたNb3Geに
ふいても23.2に程度であった。By the way, superconducting phenomena have conventionally been observed only at extremely low temperatures. Even compared to Nb3Ge, which is said to have the highest superconducting critical temperature Tc among conventional superconducting materials, it was only 23.2.
そこで、従来は、超電導現象を実現するために、沸点が
4.2にの液体ヘリウムを用いて超電導材料をTc以下
まで冷却していた。しかしながら、液体ヘリウムの使用
は、液化設備を含めた冷却設備による技術的負担並びに
コスト的負担が極めて大きく、超電導技術の実用化への
妨げとなっていた。Therefore, conventionally, in order to realize the superconducting phenomenon, superconducting materials were cooled to below Tc using liquid helium with a boiling point of 4.2. However, the use of liquid helium imposes an extremely large technical burden and cost burden due to cooling equipment including liquefaction equipment, which has hindered the practical application of superconducting technology.
一方、近年に到ってla族元素あるいはIIIa族元素
の酸化物を含む焼成体が高いTcを有する超電導体とな
り得ることが報告され、非低温超電導体による超電導体
の実用化が俄かに促進されている。On the other hand, in recent years, it has been reported that fired bodies containing oxides of LA group elements or IIIa group elements can become superconductors with high Tc, and the practical application of superconductors using non-low temperature superconductors has suddenly accelerated. has been done.
既に報告されている例では、オルソロンピック構造等の
ペロブスカイト型酸化物と類似した結晶構造を有すると
考えられる〔La、 Ba) 2CUO4あるいは〔1
、a、、 Sr〕2cuoa等の複合酸化物がある。こ
れらの物質では、30乃至50にという従来のTcに比
べて飛躍的に高いTcが観測され、更に、80に以上の
Tcが報告されている。In the examples that have already been reported, it is thought that they have a crystal structure similar to that of perovskite oxides such as an orthorhombic structure [La, Ba) 2CUO4 or [1
There are complex oxides such as , a, , Sr]2cuoa. In these substances, a Tc much higher than the conventional Tc of 30 to 50 has been observed, and a Tc of 80 or higher has also been reported.
このように、超電導材料のTcが向上すると、人手が容
易で廉価な液体窒素を冷却媒体として用いることができ
、超電導現象を産業的に利用することが可能となる。In this way, when the Tc of the superconducting material is improved, liquid nitrogen, which is easy to use and inexpensive, can be used as a cooling medium, and the superconducting phenomenon can be used industrially.
発明が解決しようとする問題点
ところが、上述のようなペロブスカイト型または擬似ペ
ロブスカイト型酸化物はいわゆる焼成体として得られる
ので取扱が不便である。何故ならば、焼成体は一般に脆
く、僅かな機械的負荷に対しても容易に破損する。殊に
、超電導材料は、電力の伝送媒体としての利用が多いの
で細い線状の形状で用いる必要があり、上述のように機
械的負荷に対して脆弱な超電導材料は実用的に用いるこ
とができない。従って、電気抵抗が零であるという極め
て有利な特徴を有しながら、超電導材料を電力あるいは
信号の伝送媒体として実用的に利用することができなか
った。Problems to be Solved by the Invention However, the above-mentioned perovskite type or pseudo-perovskite type oxide is obtained as a so-called fired product, which is inconvenient to handle. This is because fired bodies are generally brittle and easily break even under a slight mechanical load. In particular, since superconducting materials are often used as power transmission media, they must be used in the form of thin lines, and as mentioned above, superconducting materials that are vulnerable to mechanical loads cannot be used practically. . Therefore, although superconducting materials have the extremely advantageous feature of zero electrical resistance, they have not been able to be used practically as power or signal transmission media.
更に、エレクトロニクス素子の分野において、ジョセフ
ソン素子に代表される素子を形成することは可能であっ
ても、その素子と他の回路とを結合するボンディングワ
イヤを超電導材料によって形成することは望むべくもな
く、超電導材料素子の優れた特性を有効に活かし切るこ
とができなかった。Furthermore, in the field of electronic devices, although it is possible to form devices such as Josephson devices, it is difficult to form bonding wires that connect the device and other circuits using superconducting materials. Therefore, the excellent characteristics of superconducting material elements could not be effectively utilized.
そこで、本発明は、上記従来技術の問題点を解決し、高
いTc並びにTciを有する超電導材料を、配線材料と
して機械的に安定な使用を可能とすることを目的として
いる。また、超電導材料による微細な配線パターン形成
を可能にする方法を提供することも目的のひとつである
。SUMMARY OF THE INVENTION Therefore, the present invention aims to solve the above problems of the prior art and to enable mechanically stable use of a superconducting material having high Tc and Tci as a wiring material. Another objective is to provide a method that enables the formation of fine wiring patterns using superconducting materials.
問題点を解決するための手段
即ち、本発明に従い、フォトリソグラフィ法により平坦
な基板の表面に所定のパターンに従って溝を形成し、周
期律表11a族から選択された少なくとも1種の元素α
または該元素αを含む化合物と、周期律表■a族から選
択された少なくとも1種の元素βまたは該元素βを含む
化合物と、周期律表Ib、nb、llIb、IVa、■
a族から選択された少なくとも1種の元素Tまたは該元
素Tを含む化合物と、の粉末を原料粉末として該原料粉
末をビヒクルと混合して得たペーストとし、前記基板上
の溝に該ペーストを充填した後該ペーストからビヒクル
を揮散・除去し、更に、該ペーストを塗布した基板を加
熱して本焼成することによって、一般式 :αWβMT
y δ2
(但し、元素αは周期律表1a族から選択された1種の
元素であり、元素βは周期律表IIIa族から選択され
た1種の元素であり、元素Tは周期律表1b、nb、m
b、■a族から選択された1種の元素であり、元素δは
0(酸素)であり、WSX% VN zはそれぞれ1≦
W≦5.1≦X≦5.1≦y≦15.1≦2≦20を満
たす数である)
で表される組成の複合酸化物配線パターンを該基板上に
形成することを特徴とする超電導性配線パターンの形成
方法が提供される。In order to solve the problem, according to the present invention, grooves are formed according to a predetermined pattern on the surface of a flat substrate by photolithography, and at least one element α selected from group 11a of the periodic table is formed.
or a compound containing the element α, at least one element β selected from group IV a of the periodic table, or a compound containing the element β, and a compound containing the element β, Ib, nb, llIb, IVa, IVa of the periodic table;
At least one element T selected from group a or a compound containing the element T is used as a raw material powder, and the raw material powder is mixed with a vehicle to obtain a paste, and the paste is applied to the groove on the substrate. After filling, the vehicle is volatilized and removed from the paste, and the substrate coated with the paste is further heated and fired to obtain the general formula: αWβMT
y δ2 (However, element α is an element selected from group 1a of the periodic table, element β is an element selected from group IIIa of the periodic table, and element T is an element selected from group 1b of the periodic table. ,nb,m
One type of element selected from groups b and ■a, element δ is 0 (oxygen), and WSX% VN z is 1≦, respectively.
A complex oxide wiring pattern having a composition expressed by W≦5.1≦X≦5.1≦y≦15.1≦2≦20 (a number satisfying W≦5.1≦X≦5.1≦y≦15.1≦2≦20) is formed on the substrate. A method of forming a superconducting wiring pattern is provided.
九月
本発明に従う超電導性配線パターンの形成方法は、優れ
た超電導特性を有する超電導材料の原料粉末をペースト
状に形成し、これを用いて基板上にパターンを形成した
後に焼成して超電導性配線とるすことをその主要な特徴
としている。また、本発明の更に主要な特徴として、上
述のパターン形成を基板表面にフォトリングラフィ法に
よって形成した溝によって行うことが挙げられる。SeptemberThe method for forming a superconducting wiring pattern according to the present invention involves forming a raw material powder of a superconducting material having excellent superconducting properties into a paste form, forming a pattern on a substrate using this paste, and then baking it to form a superconducting wiring pattern. Its main feature is to take Further, a further main feature of the present invention is that the above-described pattern formation is performed by grooves formed on the surface of the substrate by photolithography.
即ち、このようにして作製された超電導性配線は、基板
上に密着して形成されているので、一般的な取り扱いに
おいても破損することがない。また、一般的な配線の他
、小型のコイル、ヨーク等配線以外の小部品の作製にも
応用できる。That is, since the superconducting wiring produced in this manner is formed in close contact with the substrate, it will not be damaged even during general handling. In addition to general wiring, it can also be applied to the production of small parts other than wiring, such as small coils and yokes.
また、フォ) IJソグラフイ法を用いて基板に微細な
パターンに従った溝を形成し、これにペーストを充填す
るというその特徴的な方法により、極めて微細な配線パ
ターンを描くことができる。Furthermore, by using the IJ lithography method, which is a unique method of forming grooves according to a fine pattern on a substrate and filling the grooves with paste, extremely fine wiring patterns can be drawn.
尚、このような超電導性配線を形成する超電導材料とし
ては、
一般式 :α買βイγ、δ・
(但し、元素αは周期律表[a族から選択された1種の
元素であり、元素βは周期律表■a族から選択された1
種の元素であり、元素Tは周期律表Ib、nb、mb、
■a族から選択された1種の元素であり、元素δは0(
酸素)であり、wSxSy、zはそれぞれ1≦W≦5.
1≦X≦5.1≦y≦15.1≦2≦20を満たす数で
ある)
で表される組成の複合酸化物が好ましい。この材料は液
体窒素温度以上の温度領域で有効な超電導特性を有して
いる。The superconducting material forming such superconducting wiring has the following general formula: α, β, γ, δ (However, element α is an element selected from group A of the periodic table, Element β is 1 selected from group a of the periodic table.
Element T is a species element, and element T is a member of the periodic table Ib, nb, mb,
■It is one type of element selected from group a, and element δ is 0 (
oxygen), and wSxSy and z are each 1≦W≦5.
1≦X≦5.1≦y≦y≦15.1≦2≦20) A composite oxide having a composition represented by the following is preferable. This material has effective superconducting properties in the temperature range above liquid nitrogen temperature.
このような複合酸化物配線を形成する原料としては、上
述の元素α、β並びにγを含有する化合物を粉末として
用いる。即ち具体的には上記元素の酸化物、炭酸塩、硫
酸塩または硝酸塩の粉末が入手も容易で廉価である。As a raw material for forming such a composite oxide wiring, a powdered compound containing the above-mentioned elements α, β, and γ is used. Specifically, powders of oxides, carbonates, sulfates, or nitrates of the above elements are easily available and inexpensive.
また、本発明の好ましい態様に従えば、超電導配線を形
成する原料として、上記各元素の化合物粉末を焼成して
予め複合酸化物を形成したものを粉末として用いる。こ
の場合は、予め複合酸化物の形成を有効な制御下で形成
することができるので、配線として形成された後の超電
導特性が安定する。Further, according to a preferred embodiment of the present invention, as a raw material for forming the superconducting wiring, a compound oxide of each of the above elements is fired to form a composite oxide in advance. In this case, since the complex oxide can be formed in advance under effective control, the superconducting properties after it is formed as a wiring are stabilized.
即ち、まず、予備焼成付す原料粉末の粒径を15μm以
下、特に好ましくは5μm以下とする。これは、平均粒
径が5μmを越えると、焼成後の粉砕工程を経た後も結
晶粒径の微細化が不十分となるからである。従って、完
成後の配線内の結晶粒径の微細化を図るためには、原料
粉末の粒径が上記範囲内であることが好ましい。That is, first, the particle size of the raw material powder to be subjected to preliminary firing is set to 15 μm or less, particularly preferably 5 μm or less. This is because if the average particle size exceeds 5 μm, the crystal grain size will not be sufficiently refined even after the pulverization step after firing. Therefore, in order to reduce the crystal grain size in the completed wiring, it is preferable that the particle size of the raw material powder is within the above range.
また、予備焼成後の粉砕工程は、後の本焼成後の結晶粒
径に直接的な影響があり、10μmを越えると、本焼成
後の焼成体の結晶粒径が大きくなり結晶粒界面積が減少
する。前述のように、結晶粒界の減少は、高いTcの達
成に好ましくない。In addition, the crushing process after preliminary firing has a direct effect on the crystal grain size after main firing, and if it exceeds 10 μm, the grain size of the fired body after main firing will increase and the grain boundary area will increase. Decrease. As mentioned above, grain boundary reduction is unfavorable for achieving high Tc.
尚、予備焼成→粉砕の工程は、これを複数回繰り返すこ
とによって原料粉末あるいは焼成体の均質化が一層促進
される。また、特に最後の粉砕工程後の焼成体粉末の粒
径は、特に製品の特性に密接な関係を有し、これを10
μm以下とすることが好ましい。In addition, the homogenization of the raw material powder or the fired body is further promoted by repeating the pre-firing → pulverizing process multiple times. In addition, the particle size of the fired powder after the final pulverization process has a close relationship with the characteristics of the product, and is
It is preferable to set it to below micrometer.
また、本焼成温度は、極めて重要な制御因子であり、同
相反応で焼成が進行すること、並びに、焼成されたペロ
ブスカイト型または擬似ペロブスカイト型酸化物の結晶
成長が過大とならないように制御する必要がある。一方
、有効な焼結反応が促進されなければならないことはい
うまでもなく、これらの観点を総合した結果、本焼成温
度は、原料粉末のうちでもっとも融点の低い原料の融点
を上限とし、この融点との温度差が100℃以内の温度
範囲で行うことが好ましい。特に、上限を融点としたの
は、原料粉末が溶融した場合に原料粉末が液相反応を起
こし、このようなプロセスを経た超電導材料の特性が大
きく劣化するからである。In addition, the main firing temperature is an extremely important control factor, and must be controlled so that the firing proceeds with an in-phase reaction and that the crystal growth of the fired perovskite-type or pseudo-perovskite-type oxide does not become excessive. be. On the other hand, it goes without saying that an effective sintering reaction must be promoted, and as a result of integrating these points, the main firing temperature should be set at the upper limit of the melting point of the raw material with the lowest melting point among the raw material powders, and this It is preferable that the temperature difference between the melting point and the melting point is within 100°C. In particular, the reason why the upper limit is set as the melting point is that when the raw material powder is melted, it causes a liquid phase reaction, and the characteristics of the superconducting material that has undergone such a process are significantly deteriorated.
更に、上述の本焼成の制御と同様の理由で、予備焼成温
度も、上記範囲に達しない場合は、固溶反応が十分に進
行せず、有効なペロブスカイト型または擬似ペロブスカ
イト型酸化物が得られない。Furthermore, for the same reason as controlling the main firing described above, if the pre-calcination temperature does not reach the above range, the solid solution reaction will not proceed sufficiently and an effective perovskite or pseudo-perovskite oxide will not be obtained. do not have.
一方、予備焼成温度が950℃を越えると、本焼成の場
合と同様に、焼成体に固溶相が生じ、あるいは結晶粒の
粗大化が生じ、以後の工程における粉砕による微細化が
困難になる。On the other hand, if the preliminary firing temperature exceeds 950°C, as in the case of main firing, a solid solution phase will occur in the fired body or crystal grains will become coarser, making it difficult to refine them by pulverization in subsequent steps. .
更に、本発明者等の知見によれば、ペロブスカイト型ま
たは擬似ペロブスカイト型酸化物による超電導体は、特
に焼成体の表面近傍において優れた特性を発揮する。こ
れは、材料の表面付近では、焼成時または熱処理時に雰
囲気との反応が超電導特性に好ましく進行し、また、表
面に近い相は歪み効果を受けるので優れた超電導特性が
出現したものと考えられる。従って、本発明の方法にお
いては、配線を形成するペーストの粘度並びに基板に対
する塗膜の厚さを慎重に制御する必要がある。Furthermore, according to the findings of the present inventors, a superconductor made of a perovskite-type or pseudo-perovskite-type oxide exhibits excellent characteristics, particularly near the surface of a fired body. This is thought to be due to the fact that near the surface of the material, the reaction with the atmosphere during firing or heat treatment progresses favorably to achieve superconducting properties, and the phase near the surface is subjected to strain effects, resulting in the appearance of excellent superconducting properties. Therefore, in the method of the present invention, it is necessary to carefully control the viscosity of the paste forming the wiring and the thickness of the coating film on the substrate.
即ち、塗布したペーストの厚さが10μm未満の場合は
、厚さが均一な連続した膜の形成が困難となる。また、
厚さが50μmを越えた場合は、所謂ダレによるパター
ンの変形が生じ易く、また形成された配線の基板近傍と
配線表面との間で特性に差異が生じ易くなる。That is, if the thickness of the applied paste is less than 10 μm, it will be difficult to form a continuous film with a uniform thickness. Also,
If the thickness exceeds 50 μm, the pattern is likely to be deformed due to so-called sag, and the characteristics of the formed wiring tend to differ between the vicinity of the substrate and the surface of the wiring.
また、複合酸化物焼結体による超電導材料は、特に結晶
粒界すなわち結晶粒間の境界面に超電導臨界温度の高い
物質が形成され易(、本発明の方法に従って形成された
超電導配線は、その特徴的な作製方法によって、結晶が
微細組織化されており、極めて高い臨界温度を有する超
電導材料として形成される。In addition, superconducting materials made of composite oxide sintered bodies are particularly susceptible to the formation of substances with high superconducting critical temperatures at grain boundaries, that is, at interfaces between crystal grains. A unique manufacturing method results in a superconducting material with finely structured crystals and an extremely high critical temperature.
尚、ビヒクルとしては、テルピオネールあるいは酢酸ブ
チルカルビトール等を溶剤としたエチルセルロース樹脂
またはアクリル樹脂等を用いることができる。As the vehicle, ethyl cellulose resin or acrylic resin using terpionel or butyl carbitol acetate as a solvent can be used.
また、基板材料としては、アルミナ、ベリリア、窒化ア
ルミニウム等の一般的な材料の他に、5rTiO5、サ
ファイア等を特に有利な材料として挙げることができる
。これらの材料では、超電導複合酸化物と近似した結晶
構造を有する等、直上に形成された超電導性配線の特性
を向」二する効果がある。Further, as the substrate material, in addition to general materials such as alumina, beryllia, and aluminum nitride, particularly advantageous materials include 5rTiO5 and sapphire. These materials have crystal structures similar to those of superconducting composite oxides, and have the effect of improving the characteristics of superconducting interconnects formed directly above them.
更に、本発明の好ましい態様に従うと、ペーストは焼成
処理により、実質的に均一な擬似ペロブスカイト型酸化
物となる。この処理により電気紙抗が完全に零となる超
電導臨界温度が著しく上昇する。この熱処理は、ペース
トを形成する原料粉末のうち最も融点の低いものの融点
を上限とし、この融点との差が100℃以内の温度で行
うことが望ましく、更に酸素含有雰囲気下で実施するこ
とがさらに好ましい。すなわち、適切な酸素分圧下での
焼成処理によって焼成体に酸素欠陥が形成され、この欠
陥により生ずるキャリヤによってクーパ一対ができる確
率が高くなり、抵抗が完全に零となる超電導臨界温度が
著しく上昇するものと推定される。Furthermore, according to a preferred embodiment of the present invention, the paste becomes a substantially uniform pseudo-perovskite type oxide by firing treatment. This treatment significantly increases the superconducting critical temperature at which the electrical resistance becomes completely zero. This heat treatment is desirably carried out at a temperature within 100°C, with the upper limit being the melting point of the material powder with the lowest melting point among the raw material powders forming the paste, and more preferably carried out in an oxygen-containing atmosphere. preferable. In other words, by firing under an appropriate oxygen partial pressure, oxygen defects are formed in the fired body, and carriers generated by these defects increase the probability of forming Cooper pairs, and the superconducting critical temperature at which the resistance becomes completely zero increases significantly. It is estimated that
尚、加熱温度が上記範囲に達しない場合は、焼成体が目
的とするペロブスカイト型または擬似ペロブスカイト型
酸化物とならず、所望の超電導臨界温度が得られないか
、あるいは、長時間の熱処理が必要となる。一方、上記
範囲を越える処理温度では超電導効果を有するペロブス
カイト型の結晶構造が消滅して臨界温度は著しく低下す
る。If the heating temperature does not reach the above range, the fired product will not become the desired perovskite-type or pseudo-perovskite-type oxide, and the desired superconducting critical temperature will not be obtained, or a long heat treatment will be required. becomes. On the other hand, at a treatment temperature exceeding the above range, the perovskite crystal structure having a superconducting effect disappears, and the critical temperature drops significantly.
更に、焼成後の熱処理により、△Tは更に3〜5℃向上
する。尚、熱処理は10 ’torr以下の酸素減圧下
で行うことが好ましい。この理由は、これ以上の酸素分
圧下では酸素欠陥の形成に長時間を要するので工業的で
ないこと、および500℃未満あるいは800℃を越え
る温度では、やはり酸素欠陥の形成が過小又は過大とな
り、十分に高いTciが得難いためである。Furthermore, by heat treatment after firing, ΔT is further improved by 3 to 5°C. Note that the heat treatment is preferably performed under a reduced oxygen pressure of 10' torr or less. The reason for this is that if the oxygen partial pressure is higher than this, it will take a long time to form oxygen vacancies, so it is not suitable for industrial use, and if the temperature is below 500°C or above 800°C, the formation of oxygen vacancies will be too small or too large, and it will not be sufficient. This is because it is difficult to obtain a high Tci.
更に本発明の好ましい態様に従うと、上記焼成後、また
は焼成後に500〜800℃の範囲に再加熱してから2
0℃/分以下の冷却速度で徐冷する急冷することによっ
て、さらに超電導臨界温度を向上することができる。ま
た、これらの本発明の好ましい態様に従うことによって
、超電導材料の組成が均一化されると共に安定し、具体
的に後述するように、特性の経時劣化が少ないことも認
められた。Furthermore, according to a preferred embodiment of the present invention, after the above-mentioned firing or after the firing, the heating is performed again to a temperature in the range of 500 to 800°C.
The superconducting critical temperature can be further improved by slow cooling at a cooling rate of 0° C./min or less. Furthermore, it has been found that by following these preferred embodiments of the present invention, the composition of the superconducting material is made uniform and stable, and as will be specifically described later, there is little deterioration of the characteristics over time.
以下に本発明を実施例により具体的に説明するが、以下
の開示によって本発明の技術的範囲は何隻制限されるも
のではない。The present invention will be specifically explained below with reference to Examples, but the technical scope of the present invention is not limited by the following disclosure.
実施例
純度96%のAl2O3基板1に、第1図(a)に示す
ように、レジスト2をパターニングし、弗酸によってエ
ツチングした後、残留したレジストを除去した。EXAMPLE As shown in FIG. 1(a), a resist 2 was patterned on an Al2O3 substrate 1 having a purity of 96%, and after etching with hydrofluoric acid, the remaining resist was removed.
この状態の基板1を顕微鏡によって観察したところ、第
1図(b)に示すように、回路の形状に対応した溝3が
形成されていた。When the substrate 1 in this state was observed using a microscope, it was found that a groove 3 corresponding to the shape of the circuit was formed as shown in FIG. 1(b).
一方、ペーストの調製は以下のようにして行った。On the other hand, the paste was prepared as follows.
純度3N以上、平均粒径3μ以下のBaCO3、¥2(
13、CuOの各々の粉末を、焼成後の組成がBaMY
yCuz O7−δとしたときに、X=2、y=1z=
3、δ″−,0,1となるように混合した混合粉末を用
意した。BaCO3 with a purity of 3N or more and an average particle size of 3μ or less, ¥2 (
13. The composition of each CuO powder after firing is BaMY.
When yCuz O7-δ, X=2, y=1z=
3. A mixed powder was prepared in which the powder was mixed so as to have a ratio of δ″−,0,1.
この粉末を、900℃で12時間大気中で焼成し、ケー
キ状に固化した粉末をアルミナ製のボールミルによって
8時間粉砕し、平均粒径4μmの粉末を得た。この操作
を3回繰り返し、特に最後の工程においては粉末焼成体
が2〜3μmとなるように粉砕した。This powder was fired in the air at 900° C. for 12 hours, and the powder solidified into a cake was ground for 8 hours in an alumina ball mill to obtain a powder with an average particle size of 4 μm. This operation was repeated three times, and especially in the last step, the powder sintered body was pulverized to a size of 2 to 3 μm.
■ 粉末焼成体をポリビニルブチラール及びデブチルフ
タレートと混合し、更に、イソプロピルアルコール1:
メチルエチルケトン2の割合で混合したのちボールミル
で12Hr混合し、その後脱気・粘度調整を行い900
cps(at20℃)のスラリーを作成した。■ Mix the powder sintered body with polyvinyl butyral and debutyl phthalate, and further add 1:1 of isopropyl alcohol.
After mixing at a ratio of 2 parts of methyl ethyl ketone, the mixture was mixed in a ball mill for 12 hours, and then degassed and the viscosity was adjusted to 900
A slurry of cps (at 20°C) was prepared.
■ 粉末焼成体を、テルピネオール及びのブチルカルビ
トールと混合したのち3方ロールで混合した。(2) The powder calcined body was mixed with terpineol and butyl carbitol, and then mixed with a three-way roll.
■ の粉末焼成体を、アクリル系バインダー及びチクソ
トロピ性付与の為シリコーン系添加物を付加し、ボール
ミルで混合した。An acrylic binder and a silicone additive for imparting thixotropic properties were added to the powder fired body of (2) and mixed in a ball mill.
これらのペースト■、■および■を、第2図(a)に示
すようにそれぞれ前述の溝3を形成した基板1上に塗布
した後、第2図(b)に示すように、スキージによって
溝から溢れたペーストを掻き落とすと共に溝の内部にペ
ーストを十分行き渡らせた。After applying these pastes ■, ■, and ■ onto the substrate 1 in which the grooves 3 described above have been formed, as shown in FIG. 2(a), the grooves are formed with a squeegee as shown in FIG. 2(b). The overflowing paste was scraped off and the paste was sufficiently distributed inside the groove.
これらの基板を900℃で02ガス気流中に保持し12
時間焼成して、ペーストのビヒクルを飛散させると共に
焼成した。かくして、基板1の溝3内には複合酸化物焼
成体の配線が形成される。These substrates were held at 900°C in a gas flow of 12
It was baked for a time to splatter the paste vehicle and bake. Thus, wiring of the composite oxide fired body is formed in the groove 3 of the substrate 1.
尚、こうして得られた配線の臨界温度Tc並びにTci
の測定は、定法に従って試料の両端にAg導電ペースト
にて電極を付け、タラビオスタット中で直流4点プロー
ブ法で行った。温度はキャリブレーション済みの^u
(Fe)−Ag熱電対を用いて行った。温度を少しづつ
上昇させながら抵抗の変化を測定し、測定されたTc並
びにTciを第1表に示す。In addition, the critical temperature Tc and Tci of the wiring obtained in this way
The measurement was carried out using a direct current four-point probe method in a Tarabiostat with electrodes made of Ag conductive paste attached to both ends of the sample according to a standard method. The temperature has been calibrated ^u
This was carried out using a (Fe)-Ag thermocouple. Changes in resistance were measured while gradually increasing the temperature, and the measured Tc and Tci are shown in Table 1.
更に、周期率表I[a族並びに]IIa族の元素を、第
1表に示すような組成で、上述のものと同じ条件で配線
化し、上述の方法で各試料のTc 、 Tciの測定を
行った。また、基板材料についても第1表に示すように
幾つかの種類のものを用いた。Furthermore, elements of group I [a and] group IIa of the periodic table were wired with the composition shown in Table 1 under the same conditions as above, and the Tc and Tci of each sample were measured using the method described above. went. Furthermore, several types of substrate materials were used as shown in Table 1.
尚、基板としてベリリア、サファイア、5rT1o3を
用いた。Note that beryllia, sapphire, and 5rT1o3 were used as the substrate.
第1表(1)
第1表(2)
第1表(3)
発明の詳細
な説明した如く、本発明に従えば、電気抵抗あるいはイ
ンピーダンスが全く存在しないという理想的な特性を有
するセラミックス系超電導材料による配線パターンが形
成される。Table 1 (1) Table 1 (2) Table 1 (3) As described in detail, according to the present invention, a ceramic superconductor having the ideal property of having no electrical resistance or impedance is produced. A wiring pattern is formed using the material.
一方、近年ジョセフソン素子を中心とするデバイスベー
スでの高速化が進められているが、これらデバイスの性
能は当然ながら回路基板や、パッケージに登載されて機
能する。換言すればデバイスでの性能が如何に向上して
もそれに見合った周辺部材としての配線等が完成しなけ
ればその性能を充分に発揮し得ない。On the other hand, in recent years, progress has been made in increasing the speed of devices such as Josephson elements, but the performance of these devices naturally depends on being mounted on circuit boards and packages. In other words, no matter how much the performance of a device improves, its performance cannot be fully demonstrated unless wiring and the like as peripheral components are completed to match the improvement.
本回路基板はこれら超電導を利用したデバイスを登載し
、機能を引き出す為のパターンに利用すると効果的であ
る。It is effective to mount devices using these superconductors on this circuit board and use them as patterns to bring out the functions.
本発明に従って作製された配線は、極めて良好な超電導
特性を示すと共に、その優れた特性が長期間に亘って安
定している。The wiring fabricated according to the present invention exhibits extremely good superconducting properties, and these excellent properties are stable over a long period of time.
これは、本発明の特徴的な製造方法に従って、結晶粒の
微細化による結晶光面長の増加と、酸素欠陥濃度の均一
性が達成されて高いTciと小さな△Tが得られたもの
である。This is because, according to the characteristic manufacturing method of the present invention, the crystal optical surface length is increased by making the crystal grains finer, and the uniformity of the oxygen defect concentration is achieved, resulting in a high Tci and a small ΔT. .
基板上に配線として形成された超電導体は、基板によっ
て支持されているので機械的に安定しており取扱に優れ
る。また、強度を持たせるために、超電導材料を必要以
上に使用する必要がないので経済的でもある。Superconductors formed as wiring on a substrate are mechanically stable and easy to handle because they are supported by the substrate. It is also economical because there is no need to use more superconducting material than necessary to provide strength.
また、基板にフォトリソグラフィ法によって溝を形成し
、これにペーストを充填するという方法により、スクリ
ーン印刷法等に比較して極めて微細なパターンの形成が
可能となる。Further, by forming grooves on the substrate by photolithography and filling the grooves with paste, it is possible to form extremely fine patterns compared to screen printing methods and the like.
この様に、本発明に従えば、高く安定したTcを有する
超電導材料が、使い易い形態で得られるため、経済的な
液体窒素を冷却媒体として用いる超電導性配線が得られ
、超電導技術の実用化が可能となる。As described above, according to the present invention, a superconducting material having a high and stable Tc can be obtained in an easy-to-use form, so that an economical superconducting wiring using liquid nitrogen as a cooling medium can be obtained, and superconducting technology can be put to practical use. becomes possible.
第1図(a)及びら)並びに第2図(a)及び(b)は
、それぞれ本発明による超電導性配線パターンの形成刃
法を工程を追って説明する図である。
〔主な参照番号〕
1・・・基板、
2・・・レジスト、
3・・・溝、
■(■、■)・・・ペースト
特許出願人 住友電気工業株式会社FIGS. 1(a) and 2) and FIGS. 2(a) and 2(b) are diagrams illustrating step-by-step the method for forming a superconducting wiring pattern according to the present invention, respectively. [Main reference numbers] 1...Substrate, 2...Resist, 3...Groove, ■(■,■)...Paste patent applicant Sumitomo Electric Industries, Ltd.
Claims (34)
所定のパターンに従って溝を形成し、 周期律表IIa族から選択された少なくとも1種の元素α
または該元素αを含む化合物と、周期律表IIIa族から
選択された少なくとも1種の元素βまたは該元素βを含
む化合物と、周期律表 I b、IIb、IIIb、IVa、VII
Ia族から選択された少なくとも1種の元素γまたは該
元素γを含む化合物と、の粉末を原料粉末として該原料
粉末をビヒクルと混合して得たペーストとし、 前記基板上の溝に該ペーストを充填した後該ペーストか
らビヒクルを揮散・除去し 更に、該ペーストを塗布した基板を加熱して本焼成する
ことによって、 一般式:α_wβ_xγ_yδ_z (但し、元素αは周期律表IIa族から選択された1種の
元素であり、元素βは周期律表IIIa族から選択された
1種の元素であり、元素γは周期律表 I b、IIb、II
Ib、VIIIa族から選択された1種の元素であり、元素
δはO(酸素)であり、w、x、y、zはそれぞれ1≦
w≦5、1≦x≦5、1≦y≦15、1≦z≦20を満
たす数である) で表される組成の複合酸化物配線パターンを該基板上に
形成することを特徴とする超電導性配線パターンの形成
方法。(1) Grooves are formed according to a predetermined pattern on the surface of a flat substrate by photolithography, and at least one element α selected from group IIa of the periodic table is formed.
or a compound containing the element α, at least one element β selected from group IIIa of the periodic table, or a compound containing the element β, and a compound containing the element β, I b, IIb, IIIb, IVa, VII of the periodic table.
At least one element γ selected from Group Ia or a compound containing the element γ is used as a raw material powder, and the raw material powder is mixed with a vehicle to obtain a paste, and the paste is applied to the grooves on the substrate. After filling, the vehicle is volatilized and removed from the paste, and the substrate coated with the paste is heated to perform main firing. Element β is a type of element selected from group IIIa of the periodic table, and element γ is a type of element selected from group IIIa of the periodic table.
One type of element selected from groups Ib and VIIIa, element δ is O (oxygen), and w, x, y, and z are each 1≦
A complex oxide wiring pattern having a composition expressed by the following formulas (w≦5, 1≦x≦5, 1≦y≦15, 1≦z≦20) is formed on the substrate. A method for forming superconducting wiring patterns.
の酸化物、炭酸塩、硫酸塩または硝酸塩の粉末であるこ
とを特徴とする特許請求の範囲第1項に記載の超電導性
配線パターンの形成方法。(2) The superconducting wiring pattern according to claim 1, wherein the raw material powder is a powder of oxide, carbonate, sulfate, or nitrate of each of the elements α, β, and γ. How to form.
の酸化物、炭酸塩、硫酸塩または硝酸塩の粉末を混合し
た粉末混合物を予備焼成し、得られた焼成体を粉砕して
得た焼成体粉末であることを特徴とする特許請求の範囲
第1項に記載の超電導性配線パターンの形成方法。(3) The raw material powder is obtained by pre-calcining a powder mixture of powders of oxides, carbonates, sulfates or nitrates of elements α, β and γ, and pulverizing the resulting fired body. The method for forming a superconducting wiring pattern according to claim 1, wherein the superconducting wiring pattern is a fired powder.
することを特徴とする特許請求の範囲第3項に記載の超
電導性配線パターンの形成方法。(4) The method for forming a superconducting wiring pattern according to claim 3, wherein the preliminary firing is performed at a temperature in the range of 700 to 950°C.
を少なくとも3回繰り返すことを特徴とする特許請求の
範囲第3項乃至第4項の何れか1項に記載の超電導性配
線パターンの形成方法。(5) Formation of a superconducting wiring pattern according to any one of claims 3 to 4, characterized in that a series of steps including preliminary firing and pulverization of raw material powder is repeated at least three times. Method.
に粉砕することを特徴とする特許請求の範囲第3項乃至
第5項の何れか1項に記載の超電導性配線パターンの形
成方法。(6) Formation of a superconducting wiring pattern according to any one of claims 3 to 5, characterized in that the fired body after the final preliminary firing is pulverized to an average particle size of 8 μm or less. Method.
する特許請求の範囲第3項乃至第6項の何れか1項に記
載の超電導性配線パターンの形成方法。(7) The method for forming a superconducting wiring pattern according to any one of claims 3 to 6, wherein the pulverization is performed using a ball mill.
間以上粉砕を行うことを特徴とする特許請求の範囲第7
項に記載の超電導性配線パターンの形成方法。(8) Claim 7, characterized in that pulverization is carried out for at least 5 hours using Al_2O_3 balls.
The method for forming a superconducting wiring pattern as described in .
とする特許請求の範囲第3項乃至第6項の何れか1項に
記載の超電導性配線パターンの形成方法。(9) The method for forming a superconducting wiring pattern according to any one of claims 3 to 6, wherein the pulverization is performed using a jet mill.
2O_3のターゲットにジェット流を衝突させることを
特徴とする特許請求の範囲第9項に記載の高臨界温度を
有する超電導性配線パターンの形成方法。(10) Using air, Ar or N_2 as a medium, Al_
The method for forming a superconducting wiring pattern having a high critical temperature according to claim 9, characterized in that a jet stream is made to collide with a target of 2O_3.
しくは5μm以下であることを特徴とする特許請求の範
囲第1項乃至第10項の何れか1項に記載の超電導性配
線パターンの形成方法。(11) Formation of a superconducting wiring pattern according to any one of claims 1 to 10, wherein each of the raw material powders has a particle size of 15 μm or less, preferably 5 μm or less. Method.
特徴とする特許請求の範囲第1項乃至第11項に記載の
超電導性配線パターンの形成方法。(12) The method for forming a superconducting wiring pattern according to any one of claims 1 to 11, wherein the vehicle is made of a resin and a solvent.
ル樹脂であることを特徴とする特許請求の範囲第12項
に記載の超電導性配線パターンの形成方法。(13) The method for forming a superconducting wiring pattern according to claim 12, wherein the resin is an ethyl cellulose resin or an acrylic resin.
ルカルビトールであることを特徴とする特許請求の範囲
第12項または第13項に記載の超電導性配線パターン
の形成方法。(14) The method for forming a superconducting wiring pattern according to claim 12 or 13, wherein the solvent is terpionel or butyl carbitol acetate.
することを特徴とする特許請求の範囲第1項乃至第14
項の何れか1項に記載の超電導性配線パターンの形成方
法。(15) Claims 1 to 14, characterized in that the viscosity of the paste is 100 to 1000 poise.
The method for forming a superconducting wiring pattern according to any one of the above items.
ことを特徴とする特許請求の範囲第1項乃至第15項の
何れか1項に記載の超電導性配線パターンの形成方法。(16) The method for forming a superconducting wiring pattern according to any one of claims 1 to 15, wherein the filling of the paste is performed using a squeegee.
特許請求の範囲第1項乃至第16項の何れか1項に記載
の超電導性配線パターンの形成方法。(17) The method for forming a superconducting wiring pattern according to any one of claims 1 to 16, wherein the substrate is made of alumina.
る特許請求の範囲第1項乃至第16項の何れか1項に記
載の超電導性配線パターンの形成方法。(18) The method for forming a superconducting wiring pattern according to any one of claims 1 to 16, wherein the substrate is beryllia.
特徴とする特許請求の範囲第1項乃至第16項の何れか
1項に記載の超電導性配線パターンの形成方法。(19) The method for forming a superconducting wiring pattern according to any one of claims 1 to 16, wherein the substrate is made of aluminum nitride.
徴とする特許請求の範囲第1項乃至第16項の何れか1
項に記載の超電導性配線パターンの形成方法。(20) Any one of claims 1 to 16, characterized in that the substrate is SrTiO_3.
The method for forming a superconducting wiring pattern as described in .
する特許請求の範囲第1項乃至第16項の何れか1項に
記載の超電導性配線パターンの形成方法。(21) The method for forming a superconducting wiring pattern according to any one of claims 1 to 16, wherein the substrate is sapphire.
ることを特徴とする特許請求の範囲第1項乃至第21項
の何れか1項に記載の超電導性配線パターンの形成方法
。(22) The method for forming a superconducting wiring pattern according to any one of claims 1 to 21, wherein the depth of the groove is in a range of 10 to 50 μm.
℃の範囲で行うことを特徴とする特許請求の範囲第1項
乃至第22項の何れか1項に記載の超電導性配線パター
ンの形成方法。(23) Dry the applied paste for 100 to 200 minutes.
23. The method for forming a superconducting wiring pattern according to any one of claims 1 to 22, characterized in that the method is carried out at a temperature in the range of .degree.
うち、最も融点の低い材料の融点を上限とし、該融点と
の差が100℃以内の温度で行うことを特徴とする特許
請求の範囲第1項乃至第23項の何れか1項に記載の超
電導性配線パターンの形成方法。(24) A claim characterized in that the main firing is carried out at a temperature with the upper limit being the melting point of the material with the lowest melting point among the raw material powders forming the paste, and the difference from the melting point being within 100°C. The method for forming a superconducting wiring pattern according to any one of Items 1 to 23.
気圧の酸素含有雰囲気下で行うことを特徴とする特許請
求の範囲第1項乃至第24項に記載の超電導性配線パタ
ーンの形成方法。(25) Perform main firing at O_2 partial pressure of 0.1 atm to 0.5
25. The method for forming a superconducting wiring pattern according to any one of claims 1 to 24, characterized in that the method is carried out in an oxygen-containing atmosphere at atmospheric pressure.
求の範囲第25項に記載の超電導性配線パターンの形成
方法。(26) The method for forming a superconducting wiring pattern according to claim 25, wherein the main firing is performed in the atmosphere.
行うことを特徴とする特許請求の範囲第26項に記載の
超電導性配線パターンの形成方法。(27) The method for forming a superconducting wiring pattern according to claim 26, wherein the main firing is performed in an oxygen atmosphere of 5 atm to 10 atm.
熱処理することを特徴とする特許請求の範囲第1項乃至
第27項に記載の超電導性配線パターンの形成方法。(28) The method for forming a superconducting wiring pattern according to any one of claims 1 to 27, characterized in that the fired body after main firing is heat-treated in a range of 400 to 700°C.
以下であることを特徴とする特許請求の範囲第28項に
記載の超電導性配線パターンの形成方法。(29) O_2 partial pressure during heat treatment is 10^-^1Torr
The method for forming a superconducting wiring pattern according to claim 28, characterized in that:
00℃の範囲に再加熱し、20℃/分以下の冷却速度で
徐冷することを特徴とする特許請求の範囲第1項乃至第
29項の何れか1項にに記載の超電導性配線パターンの
形成方法。(30) Immediately after the above firing or after firing 500 to 8
The superconducting wiring pattern according to any one of claims 1 to 29, characterized in that the superconducting wiring pattern is reheated to a temperature in the range of 00°C and slowly cooled at a cooling rate of 20°C/min or less. How to form.
5μm以下であることを特徴とする特許請求の範囲第1
項乃至第30項の何れか1項に記載の超電導性配線パタ
ーンの形成方法。(31) The crystal grain size of the composite oxide forming the wiring is 1
Claim 1 characterized in that it is 5 μm or less
31. The method for forming a superconducting wiring pattern according to any one of Items 30 to 30.
り、前記元素γがCuであることを特徴とする特許請求
の範囲第1項乃至第31項の何れか1項に記載の超電導
性部材の製造方法。(32) The element α is Ba, the element β is Y, and the element γ is Cu according to any one of claims 1 to 31. A method for manufacturing a superconducting member.
あり、前記元素γがCuであることを特徴とする特許請
求の範囲第1項乃至第31項の何れか1項に記載の超電
導性部材の製造方法。(33) The element α is Ba, the element β is Dy, and the element γ is Cu according to any one of claims 1 to 31. A method for manufacturing a superconducting member.
あり、前記元素γがCuであることを特徴とする特許請
求の範囲第1項乃至第31項の何れか1項に記載の超電
導性部材の製造方法。(34) The element α is Sr, the element β is La, and the element γ is Cu according to any one of claims 1 to 31. A method for manufacturing a superconducting member.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62254967A JPH0197320A (en) | 1987-10-09 | 1987-10-09 | Formation of superconductive wiring pattern |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62254967A JPH0197320A (en) | 1987-10-09 | 1987-10-09 | Formation of superconductive wiring pattern |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0197320A true JPH0197320A (en) | 1989-04-14 |
Family
ID=17272356
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62254967A Pending JPH0197320A (en) | 1987-10-09 | 1987-10-09 | Formation of superconductive wiring pattern |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0197320A (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5485375A (en) * | 1977-12-21 | 1979-07-06 | Fujitsu Ltd | Method of producing ceramic multiilayer circuit base board |
JPS54106164A (en) * | 1978-02-09 | 1979-08-20 | Toppan Printing Co Ltd | Method of fabricating plasma display panel electrode plate |
-
1987
- 1987-10-09 JP JP62254967A patent/JPH0197320A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5485375A (en) * | 1977-12-21 | 1979-07-06 | Fujitsu Ltd | Method of producing ceramic multiilayer circuit base board |
JPS54106164A (en) * | 1978-02-09 | 1979-08-20 | Toppan Printing Co Ltd | Method of fabricating plasma display panel electrode plate |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4992415A (en) | Method for fabricating ceramic superconductors | |
JP2571789B2 (en) | Superconducting material and its manufacturing method | |
JPH0197320A (en) | Formation of superconductive wiring pattern | |
JPH0196988A (en) | Forming method for superconducting wiring | |
US5089465A (en) | Process for producing oxide superconducting thick films by screen printing | |
JPS63299018A (en) | Manufacture of superconductive material | |
JPH0816025B2 (en) | Superconducting thick film manufacturing method | |
JPH01230405A (en) | Production of oxide superconducting thick film | |
JP2703227B2 (en) | Superconductor device | |
US6140275A (en) | Ceramic substrate for bi-cuprate superconductors and a process for preparing the same | |
JPH01234305A (en) | Superconducting material and its production | |
GB2204033A (en) | Method of forming superconductive ceramic material | |
JPH01203258A (en) | Production of oxide superconducting sintered body | |
JP2590370B2 (en) | Superconducting material and manufacturing method thereof | |
JPH03146471A (en) | Production of aluminum nitride sintered body | |
EP0844677B1 (en) | A novel ceramic substrate for bi-cuprate superconductors and a process for preparing the same | |
JPH01238190A (en) | Manufacture of superconductor thick film | |
Grader et al. | Forming methods for high Tc superconductors | |
JPH03252348A (en) | Production of superconductive oxide paste and oxide superconductor | |
JPS63279524A (en) | Formation of superconductive thin film | |
JPH01149309A (en) | Superconductive electric circuit | |
JPH03112810A (en) | Production of oxide superconducting film | |
JPH05330900A (en) | Production of ceramic superconductor | |
JPH01167218A (en) | Production of superconducting thin film | |
JPH03252350A (en) | Production of superconductive oxide paste and oxide superconductor |