JPS63299018A - Manufacture of superconductive material - Google Patents

Manufacture of superconductive material

Info

Publication number
JPS63299018A
JPS63299018A JP62134238A JP13423887A JPS63299018A JP S63299018 A JPS63299018 A JP S63299018A JP 62134238 A JP62134238 A JP 62134238A JP 13423887 A JP13423887 A JP 13423887A JP S63299018 A JPS63299018 A JP S63299018A
Authority
JP
Japan
Prior art keywords
superconducting material
raw material
powder
material according
superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62134238A
Other languages
Japanese (ja)
Inventor
Takeshi Nishikawa
武 西川
Hirobumi Suisa
水砂 博文
Koji Yamaguchi
浩司 山口
Mokichi Nakayama
茂吉 中山
Junichi Matsumoto
純一 松本
Shuji Yatsu
矢津 修示
Tetsuji Jodai
哲司 上代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP62134238A priority Critical patent/JPS63299018A/en
Publication of JPS63299018A publication Critical patent/JPS63299018A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To obtain a superconductive material of a high critical temperature (Tc) having characteristics of excellent shape retention and stability by depositing raw material powder made up of mixture of specific powders on a metallic substrate and heating and sintering both of the substrate and the raw material powder. CONSTITUTION:Raw material powder which is either a powder mixture or baked powder obtained by baking and milling the powder mixture of oxide, nitride, fluoride, carbonate, nitrate, oxalate or sulfate of each of an element selected from group IIa of the periodic table, an element from group IIIa, and an element selected from groups of Ib, IIb, IIIb, IVa, and VIIIa, is deposited on a metallic substrate. Both the metallic substrate and the raw material powder are heated to sinter the raw material powder. This make it possible to form a compound oxide superconductive sintered material having a high Tc with an excellent repeatability.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は超電導性部材の製造方法に関する。より詳細に
は、高い超電導臨界温度を備えた超電導材料をを効に利
用し得る超電導部材の新規な製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for manufacturing superconducting members. More specifically, the present invention relates to a novel method for manufacturing superconducting members that can effectively utilize superconducting materials with high superconducting critical temperatures.

従来の技術 超電導現象下で物質は完全な反磁性を示し、内部で有限
な定常電流が流れているにも関わらず電位差が現れなく
なる。そこで、電力損失の全くない伝送媒体としての超
電導体の各種応用が提案されている。
Conventional technology Under superconducting phenomena, materials exhibit complete diamagnetic properties, and no potential difference appears even though a finite steady-state current flows inside them. Therefore, various applications of superconductors as transmission media with no power loss have been proposed.

即ち、その応用分野は、MHD発電、電力送電、電力貯
蔵等の電力分野、或いは、磁気浮上列車、電磁気推進船
舶等の動力分野、更に、磁場、マイクロ波、放射線等の
超高感度センサとしてNMR1π中間子治療、高エネル
ギー物理実験装置などの計測の分野等、極めて多くの分
野を挙げることができる。
That is, its application fields include power fields such as MHD power generation, power transmission, and power storage, power fields such as magnetic levitation trains and electromagnetic propulsion ships, and NMR1π as an ultra-sensitive sensor for magnetic fields, microwaves, radiation, etc. There are many fields that can be mentioned, such as meson therapy, measurement fields such as high-energy physics experimental equipment, etc.

また、ジョセフソン素子に代表されるエレクトロニクス
の分野でも、単に消費電力の低減のみならず、動作の極
めて高速な素子を実現し得る技術として期待されている
Furthermore, in the field of electronics, typified by Josephson devices, this technology is expected to not only reduce power consumption but also realize devices that operate at extremely high speeds.

ところで、嘗て超電導は超低温下においてのみ観測され
る現象であった。即ち、従来の超電導材料として最も高
い超電導臨界温度Tcを有するといわれていたNb、 
Geにおいても23.2にという極めて低い温度が長期
間に亘って超電導臨界温度の限界とされていた。
By the way, superconductivity was once a phenomenon observed only at extremely low temperatures. That is, Nb, which is said to have the highest superconducting critical temperature Tc among conventional superconducting materials,
Even in Ge, an extremely low temperature of 23.2 was considered to be the limit of superconducting critical temperature for a long period of time.

それ故、従来は、超電導現象を実現するために、沸点が
4.2にの液体ヘリウムを用いて超電導材料をTc以下
まで冷却していた。しかしながら、液体ヘリウムの使用
は、液化設備を含めた冷却設備による技術的負担並びに
コスト的負担が極めて大きく、超電導技術の実用化への
妨げとなっていた。
Therefore, conventionally, in order to realize the superconducting phenomenon, superconducting materials have been cooled to below Tc using liquid helium with a boiling point of 4.2. However, the use of liquid helium imposes an extremely large technical burden and cost burden due to cooling equipment including liquefaction equipment, which has hindered the practical application of superconducting technology.

ところが、近年に到って■a族元素あるいはma族元素
の酸化物を含む焼結体が極めて高いTcで超電導体とな
り得ることが報告され、非低温超電導体による超電導技
術の実用化が俄かに促進されようとしている。既に報告
されている例では、オルソロンビック構造等のペロブス
カイト型酸化物と類似した結晶構造を有すると考えられ
る(La。
However, in recent years, it has been reported that sintered bodies containing oxides of Group A elements or Group Ma elements can become superconductors at extremely high Tc, and the practical application of superconducting technology using non-low-temperature superconductors has been delayed for some time. is about to be promoted. Examples that have already been reported are thought to have crystal structures similar to perovskite oxides such as orthorombic structures (La.

Da) zcuoaあるいは(La、 Sr) 、CL
I04等のいわば擬似ペロブスカイト型の結晶構造を有
する複合酸化物が挙げられる。これらの物質では、30
乃至50にという従来に比べて飛躍的に高いTcが観測
され、更に、Ba5YSCuの複合酸化物からなる超電
導材料では70に以上のTcも報告されている。
Da) zcuoa or (La, Sr), CL
Composite oxides having a so-called pseudo-perovskite crystal structure, such as I04, can be mentioned. For these substances, 30
A Tc of 50 to 50, which is significantly higher than that of conventional materials, has been observed, and a Tc of 70 or more has also been reported for superconducting materials made of Ba5YSCu complex oxides.

発明が解決しようとする問題点 上述のような超電導材料は一般に焼結体として得られる
が、元来焼結体は微視的には組成が不均一である上に、
現状では得られた超電導焼結体の特性が不安定で、常に
確実に高いTcを示すとは限らない。また、焼結体とし
ても非常に脆く、容易に破損するので側底実用には・供
し得ないのが現状である。  。
Problems to be Solved by the Invention The above-mentioned superconducting materials are generally obtained as sintered bodies, but sintered bodies are originally microscopically non-uniform in composition.
At present, the properties of the obtained superconducting sintered body are unstable and do not always reliably exhibit a high Tc. Furthermore, as a sintered body, it is very brittle and easily damaged, so it cannot currently be used for practical use as a side sole. .

そこで、本発明の目的は、上記従来技術の問題点を解決
し、形状の維持に優れるとともに安定な特性を発揮する
ように高いTcを有する超電導材を製造する新規な方法
を提供することにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to solve the above-mentioned problems of the prior art and to provide a new method for producing a superconducting material having a high Tc so as to maintain its shape well and exhibit stable characteristics. .

問題点を解決するための手段 即ち、本発明に従い、周期律表第1Ia族がら選択され
た1種の元素α、周期律表第1[Ia族から選択された
1種の元素β、並びに周期律表第1b。
Means for solving the problem, namely, according to the present invention, one element α selected from Group 1 Ia of the periodic table, one element β selected from Group 1 Ia of the periodic table, and periodic Table 1b.

lIb5 I[Ib% rva、■a族から選択された
1種の、元素Tのそれぞれの酸化物、窒化物、弗化物、
炭酸塩、硝酸塩、蓚酸塩または硫酸塩の粉末混合物、あ
るいは該混合物を焼成した後粉砕して得た焼成体粉末の
何れかである原料粉末を金属基板上に付着し、該金属基
板並びに原料粉末を加熱して、該原料粉末を焼結するこ
とによって超電導材料を形成することを特徴とする超電
導材の製造方法が提供される。
lIb5 I[Ib% rva, ■ oxide, nitride, fluoride of element T selected from group a,
A raw material powder, which is either a powder mixture of carbonate, nitrate, oxalate, or sulfate, or a fired powder obtained by firing and pulverizing the mixture, is deposited on a metal substrate, and the metal substrate and the raw material powder are Provided is a method for producing a superconducting material, characterized in that the superconducting material is formed by heating and sintering the raw material powder.

立j 本発明者等は、従来の製造方法における各工程を詳細に
検討した結果、特に焼結体の酸素含有量の制御が重要で
あるとの結論を得、本発明を完成したものである。
As a result of a detailed study of each step in the conventional manufacturing method, the present inventors concluded that it is particularly important to control the oxygen content of the sintered body, and completed the present invention. .

即ち、超電導特性を有する複合酸化物焼結体は、一般に
、一般式 = (αl−X βx>ry δ2(但し、
元素αは周期律表[a族から選択された1種の元素であ
り、元素βは周期律表IIIa族か、ら選択された1種
の元素であり、元素γは周期律表I b、IIb、I[
b、■a族から選択された1種の元素であり、δは○で
あり、Xはα+βに対するβの原子比であり、yおよび
2は(αI−翼β8)を1としたときに0.4≦y≦3
.0.1≦2≦5となる原子比であ る)で示されるが、特にOの含有量に精密な制御が要求
される。これは、上述の複合酸化物において、適切な量
の酸素欠陥の形成が超電導特性を実現するために必須で
あるためであると思われる。ところが、一方で、特に焼
結時の高温に曝されると上記複合酸化物からは過剰に酸
素が離脱することが知られている。また、特にBa2 
YCus Oy等の複合酸化物では、高温度相から低温
度相へ変態する際に酸素が不足することが知られており
、上述のような操作が有効であることが推測される。
That is, a composite oxide sintered body having superconducting properties generally has the general formula = (αl-X βx>ry δ2 (however,
Element α is an element selected from group A of the periodic table, element β is an element selected from group IIIa of the periodic table, and element γ is an element selected from group I b of the periodic table. IIb, I[
b, ■It is one type of element selected from the a group, δ is ○, X is the atomic ratio of β to α + β, and y and 2 are 0 when (αI - wing β8) is 1. .4≦y≦3
.. The atomic ratio satisfies 0.1≦2≦5), but precise control is particularly required for the O content. This seems to be because, in the above-mentioned composite oxide, formation of an appropriate amount of oxygen vacancies is essential for realizing superconducting properties. However, on the other hand, it is known that excessive oxygen is released from the above composite oxide especially when exposed to high temperatures during sintering. In addition, especially Ba2
It is known that in complex oxides such as YCus Oy, oxygen is insufficient when transforming from a high temperature phase to a low temperature phase, and it is presumed that the above-described operation is effective.

そこで、本発明の好ましい態様に従えば、金属基板の表
面を予め酸化しておくことによって、焼結時に基板から
原料粉末に酸素を供給することができる。即ち、後述す
るような特定の金属の酸化物には、所定の温度範囲で酸
素と分解する性質を有するものがあり、この分解温度と
焼結温度との組合せを適宜選択することによって、焼結
時に複合酸化物から離脱する酸素を補うことができる。
Therefore, according to a preferred embodiment of the present invention, by oxidizing the surface of the metal substrate in advance, oxygen can be supplied from the substrate to the raw material powder during sintering. In other words, some oxides of specific metals as described below have the property of decomposing with oxygen within a predetermined temperature range, and by appropriately selecting the combination of this decomposition temperature and sintering temperature, sintering Oxygen sometimes released from the composite oxide can be supplemented.

焼結温度は、焼成体の融点を上限とし、この融点との差
が100℃以内の温度であることが望ましい。何故なら
ば、焼結温度が上記範囲よりも低いと、焼成体粉末の焼
結反応が進行せず得られた焼結体の強度が極端に低くな
る。〒方、焼結温度が上記範囲を越えると、焼結中に液
相が生じ、焼成体の溶融あるいは分解が発生する。この
ような反応を経た焼結体のTcは大きく低下する。
The upper limit of the sintering temperature is the melting point of the fired body, and it is desirable that the difference from this melting point be within 100°C. This is because if the sintering temperature is lower than the above range, the sintering reaction of the sintered body powder will not proceed and the strength of the obtained sintered body will be extremely low. On the other hand, if the sintering temperature exceeds the above range, a liquid phase will be generated during sintering, causing melting or decomposition of the fired body. The Tc of the sintered body that has undergone such a reaction is greatly reduced.

尚、上述のような複合酸化物としては、特にBa−Y−
CuSBa−La−CuあるいはSr −La−Cu等
の複合酸化物が特に優れた特性を示すものとして挙げら
れ、これらはオルソロンピック構造等のいわば擬似ペロ
ブスカイト型の結晶構造を有しているものと思われる。
In addition, as the above-mentioned complex oxide, especially Ba-Y-
Composite oxides such as CuSBa-La-Cu or Sr-La-Cu are cited as exhibiting particularly excellent properties, and these are said to have a so-called pseudo-perovskite crystal structure such as an orthorhombic structure. Seem.

一方、上述のように高温下で分解する酸化物を形成し得
る金属としては、特に、Ag1Pd、 Rh等の酸化物
が挙げられる。
On the other hand, examples of metals that can form oxides that decompose at high temperatures as described above include oxides such as Ag1Pd and Rh.

また、同様に酸素含有雰囲気との関係から、焼結体とし
ての製品の寸法は、0.8mm以下の厚さであることが
好ましい。これは、雰囲気に含有される酸素が、焼結時
の原料粉末に好ましく影響するため、表面付近のみに有
効な超電導材料を形成されるのを有効に利用するためで
ある。同様の理由で、バインダで混練したペーストを基
板に塗布する方法を用いる場合も、ペーストの厚さを1
mm以下とすることが好ましい。ここで成形体の厚さと
焼結体の厚さとに差があるのは、乾燥、脱バインダの各
処理において製品の寸法が減縮するためである。
Similarly, in view of the oxygen-containing atmosphere, the dimensions of the product as a sintered body are preferably 0.8 mm or less in thickness. This is because the oxygen contained in the atmosphere has a favorable effect on the raw material powder during sintering, so the formation of an effective superconducting material only near the surface is to be effectively utilized. For the same reason, when using a method of applying paste kneaded with a binder to a substrate, the thickness of the paste is reduced to 1
It is preferable to set it to below mm. The reason why there is a difference between the thickness of the molded body and the thickness of the sintered body is that the dimensions of the product are reduced during the drying and binder removal processes.

また、原料粉末の堆積に際して、金属基板を予め焼結温
度まで加熱しておくことも好ましい。即ち、このような
操作によって、金属基板上に堆積される原料粉末が順次
焼結するので、常に表面と同じ条件で、焼結体の全厚さ
に亘って焼結反応が進行するからである。この方法を実
施する場合は、原料粉末の粒径は5μm以下であること
が好ましく、原料粉末を細粒化することによって有効な
焼結反応と組織の均一化、更に超電導特性において重要
な機能を果たす結晶粒界面積の増加が実現される。また
、予め基板を加熱しておくことによって、得られた焼結
体と基板との熱膨張率差は、焼結体に対して圧縮応力と
して作用するので、この点からも好ましい。
It is also preferable to heat the metal substrate to a sintering temperature in advance when depositing the raw material powder. In other words, by such an operation, the raw material powder deposited on the metal substrate is sequentially sintered, so that the sintering reaction always proceeds over the entire thickness of the sintered body under the same conditions as on the surface. . When implementing this method, it is preferable that the particle size of the raw material powder is 5 μm or less, and by making the raw material powder finer, it is possible to achieve an effective sintering reaction, uniformity of the structure, and important functions in superconducting properties. An increase in grain boundary area is realized. Further, by heating the substrate in advance, the difference in coefficient of thermal expansion between the obtained sintered body and the substrate acts as compressive stress on the sintered body, which is also preferable from this point of view.

一方、付着工程において原料粉末をペーストとして基板
に付着させる場合に用いるバインダとしては、ジブチル
フタレー) (DBP)を可塑剤として用いたポリビニ
ルブチラール(PVB)あるいは水を溶剤とし元ポリビ
ニノげルコール(PVA)等を挙げることができる。こ
れらのバインダは、400℃乃至700℃程度の加熱で
容易に除去することができる。
On the other hand, when attaching the raw material powder to the substrate as a paste in the attachment process, the binder used is polyvinyl butyral (PVB) using dibutyl phthalate (DBP) as a plasticizer, or polyvinyl gelcol (PVB) using water as a solvent. ) etc. These binders can be easily removed by heating at about 400°C to 700°C.

また、金属基板形成する金属としては、ステンレス、C
u、^gSAuSPt、 Pd、 Rh、 Fe5Pb
SSn、 Cd。
In addition, metals for forming the metal substrate include stainless steel, C
u, ^gSAuSPt, Pd, Rh, Fe5Pb
SSn, Cd.

TiSWSMoSZr、 Hf5TaSNbからなる群
より選択した1種の金属またはその合金を挙げることが
できる。Cu、 Fe等は加工が容易で廉価であるとい
う点で有利であり、ステンレスやPtは安定な金属で超
電導材料に化学的な影響を与えないという点で有利であ
り、更に、Ag5Pd、 Rh等は、その酸化物に温度
変化によって0を放出するものがあり、積極的な酸素濃
度の制御に利用することができる。
One metal selected from the group consisting of TiSWSMoSZr and Hf5TaSNb or an alloy thereof can be used. Cu, Fe, etc. are advantageous in that they are easy to process and inexpensive, stainless steel and Pt are advantageous in that they are stable metals and do not have a chemical effect on superconducting materials, and in addition, Ag5Pd, Rh, etc. Some of its oxides release 0 depending on temperature changes, and can be used to proactively control oxygen concentration.

例えば、酸化銀(I)  [:Ag*O)は、160℃
程度で分解して酸素を放出し、酸化ロジウム(III)
(Rh O)あるいは(III)  (RhzO3)は
、1100℃以上で分解して酸素を放出する。また、酸
化鉛(rV)(Pb O、)は290℃以上で2段階に
亘って酸素を放出する。従って、これら基板材料は、超
電導材の用途並びにそれを形成する元素等によって応じ
て適宜選択すべきである。
For example, silver(I) oxide [:Ag*O) is heated at 160℃
Rhodium(III) oxide decomposes to release oxygen
(Rh 2 O) or (III) (RhzO3) decomposes at 1100° C. or higher and releases oxygen. Furthermore, lead oxide (rV) (Pb 2 O,) releases oxygen in two stages at temperatures above 290°C. Therefore, these substrate materials should be appropriately selected depending on the use of the superconducting material and the elements forming it.

また、本発明者等の知見によれば、原料粉末に、さらに
、VSNb、 TaSMo、W、 TiSCrSMn5
Ga。
Furthermore, according to the findings of the present inventors, the raw material powder further contains VSNb, TaSMo, W, TiSCrSMn5.
Ga.

In5CdSSn、 Tl、 Pb、 Znからなる群
から選択した少なくとも1種の元素の酸化物、炭酸塩、
硫酸塩または硝酸塩の粉末を、添加物として元素Tに対
して原子比で0.01〜0.15程度の範囲で混入する
ことによってより優れた超電導特性が得られる。尚、添
加物の混入量が上記範囲をに達しない場合は、第5元素
添加の有意な効果がみられず、一方上記範囲を越えた場
合は却って超電導特性が低下する。
an oxide or carbonate of at least one element selected from the group consisting of In5CdSSn, Tl, Pb, and Zn;
By incorporating sulfate or nitrate powder as an additive in an atomic ratio of about 0.01 to 0.15 to element T, better superconducting properties can be obtained. It should be noted that if the amount of the additive is less than the above range, no significant effect of the addition of the fifth element will be observed, while if it exceeds the above range, the superconducting properties will deteriorate.

以下に本発明を実施例により具体的に説明するが、以下
の実施例は本発明の単なる例示であり、これらの開示に
よって本発明の技術的範囲は回答制限されるものではな
い。
EXAMPLES The present invention will be specifically explained below using examples, but the following examples are merely illustrative of the present invention, and the technical scope of the present invention is not limited by these disclosures.

実施例 純度3N以上、平均粒径5μ以下のBaCO3・Y2O
3、CuOの各々の粉末を、焼成後の組成がBa2YC
usOtとなるように混合した混合粉末を原料粉末〔A
〕として用意した。
Example BaCO3/Y2O with a purity of 3N or more and an average particle size of 5μ or less
3. The composition of each CuO powder after firing is Ba2YC.
The mixed powder mixed to give usOt is used as raw material powder [A
] was prepared.

また、原料粉末(A)を酸素気流中900℃で12時間
予備焼成し、ケーキ状に固化した粉末を乳鉢で粗粉砕し
た後、更に高純度アルミナ製ボールミルにより粉砕して
4μmにした。以下、この工程を3回繰り返して、複合
酸化物焼成体の原料粉末CB)を得た。
In addition, the raw material powder (A) was preliminarily calcined at 900° C. for 12 hours in an oxygen stream, and the powder solidified into a cake shape was coarsely ground in a mortar, and then further ground to 4 μm using a ball mill made of high-purity alumina. Hereinafter, this step was repeated three times to obtain a raw material powder CB) for a composite oxide fired body.

更に、上述の原料粉末(A)並びにCB)を、それぞれ
トルエンを主体とする溶媒を用いたPVB(ポリビニル
ブチラール)をバインダとして混練し、それぞれペース
ト〔a〕、及び〔b〕とした。
Furthermore, the above-mentioned raw material powders (A) and CB) were kneaded with PVB (polyvinyl butyral) using a toluene-based solvent as a binder to form pastes [a] and [b], respectively.

一方、金属基板C2群〕として、ステンレス、Pt、 
CuSAg5Rhを材料として各々30mm X 10
0 mm x2mmの板を用意した。また、CuSAg
、 Rhについては予め表面を酸化した金属基板〔Q群
〕を用意した。
On the other hand, as the metal substrate C2 group], stainless steel, Pt,
30mm x 10 each made of CuSAg5Rh
A plate of 0 mm x 2 mm was prepared. Also, CuSAg
, Regarding Rh, metal substrates (group Q) whose surfaces had been oxidized in advance were prepared.

これらの各素材を第1表に示すよ°うに組み合わせたも
のを、935℃にて12時間焼結して試料を得た。尚、
バインダによって混練した原料粉末(a)および(b)
を用いたものについては、焼結に先立って大気中にて6
00℃に加熱してバインダを揮散・除去した。
Samples were obtained by combining these materials as shown in Table 1 and sintering them at 935° C. for 12 hours. still,
Raw material powders (a) and (b) kneaded with a binder
For those using
The binder was volatilized and removed by heating to 00°C.

こうして得られた試料に対して超電導特性を測定した結
果を第1表に併せて示す。尚、臨界温度Tc並びに電気
抵抗が完全に零となる温度TC1の測定は、定法に従っ
て試料の両端にAg導電トーストにて電極を付け、一旦
25に程度まで冷却した後に温度を少しづつ上昇させな
がら抵抗の変化を観察した。タラビオスタット中で直流
4点プローブ法で行った。温度はキャリブレーション済
みのAu(Fe)−Ag熱電対を用いて行った。また、
試料は各5個作製し、第1表にはその平均値を記載した
Table 1 also shows the results of measuring the superconducting properties of the samples thus obtained. To measure the critical temperature Tc and the temperature TC1 at which the electrical resistance becomes completely zero, attach electrodes with Ag conductive toast to both ends of the sample according to the standard method, cool it to about 25°C, and then gradually increase the temperature. Observe the change in resistance. It was performed in a Tarabiostat using a DC four-point probe method. Temperature was measured using a calibrated Au(Fe)-Ag thermocouple. Also,
Five samples were prepared, and Table 1 shows the average values.

第1表(1) 第1表(2) 発明の効果 以上詳述のように、本発明に従う超電導材の製造方法に
よれば、高い臨界温度を有する複合酸化物超電導焼結体
を再現性良く製造することが可能となる。
Table 1 (1) Table 1 (2) Effects of the Invention As detailed above, according to the method for producing a superconducting material according to the present invention, a composite oxide superconducting sintered body having a high critical temperature can be produced with good reproducibility. It becomes possible to manufacture.

また、本発明に従って製造された超電導焼結体は、実際
には基板表面に焼き付いた形で得られるので、このまま
適宜切断して用いれば、機械的な支持部材とクエンチ時
の電流バイパスを予め備えた超電導材として用いること
ができる。
In addition, since the superconducting sintered body manufactured according to the present invention is actually obtained in a form that is baked onto the surface of the substrate, if it is cut and used as it is, it is possible to prepare a mechanical support member and a current bypass during quenching in advance. It can be used as a superconducting material.

Claims (18)

【特許請求の範囲】[Claims] (1)周期律表第IIa族から選択された1種の元素α、
周期律表第IIIa族から選択された1種の元素β、並び
に周期律表第 I b、IIb、IIIb、IVa、VIIIa族から
選択された1種の元素γのそれぞれの酸化物、窒化物、
弗化物、炭酸塩、硝酸塩、蓚酸塩または硫酸塩の粉末混
合物、あるいは該混合物を焼成した後粉砕して得た焼成
体粉末の何れかである原料粉末を金属基板上に付着し、 該金属基板並びに原料粉末を加熱して、該原料粉末を焼
結することによって超電導材料を形成することを特徴と
する超電導材の製造方法。
(1) One type of element α selected from Group IIa of the periodic table,
oxides and nitrides of one element β selected from group IIIa of the periodic table, and one element γ selected from groups Ib, IIb, IIIb, IVa, and VIIIa of the periodic table;
A raw material powder, which is either a powder mixture of fluoride, carbonate, nitrate, oxalate, or sulfate, or a fired powder obtained by firing and pulverizing the mixture, is deposited on a metal substrate, and the metal substrate is heated. Also, a method for producing a superconducting material, which comprises forming a superconducting material by heating a raw material powder and sintering the raw material powder.
(2)前記基板上に形成される前記焼結体および/また
は焼成体が、 一般式:(α_1_−_xβ_x)γ_yδ_z(但し
、元素αは周期律表IIa族から選択された1種の元素で
あり、元素βは周期律表IIIa族から選択された1種の
元素であり、元素γは周期律表 I b、IIb、IIIb、V
IIIa族から選択された1種の元素であり、δはOであ
り、xはα+βに対するβの原子比であり、yおよびz
は(α_1_−_xβ_xを1としたときに0.4≦y
≦3.0、1≦z≦5となる原子比である) で示される複合酸化物焼結体であることを特徴とする特
許請求の範囲第1項に記載の超電導材の製造方法。
(2) The sintered body and/or fired body formed on the substrate has the general formula: (α_1_−_xβ_x)γ_yδ_z (where element α is one type of element selected from Group IIa of the periodic table. Element β is an element selected from group IIIa of the periodic table, and element γ is an element selected from group Ib, IIb, IIIb, V of the periodic table.
One element selected from group IIIa, δ is O, x is the atomic ratio of β to α+β, y and z
is (0.4≦y when α_1_−_xβ_x is 1
The method for producing a superconducting material according to claim 1, wherein the superconducting material is a composite oxide sintered body having an atomic ratio of 3.0 and 1≦z≦5.
(3)前記金属基板が、ステンレス、Cu、Ag、Au
、Pt、Pd、Rh、Fe、Pb、Sn、Cd、Ti、
W、Mo、Zr、Hf、Ta、Nbからなる群より選択
した1種の金属またはその合金により形成されているこ
とを特徴とする特許請求の範囲第1項または第2項に記
載の超電導材の製造方法。 (3)前記金属基板が、予め表面を酸化されていること
を特徴とする特許請求の範囲第1項または第2項に記載
の超電導材の製造方法。
(3) The metal substrate is stainless steel, Cu, Ag, or Au.
, Pt, Pd, Rh, Fe, Pb, Sn, Cd, Ti,
The superconducting material according to claim 1 or 2, characterized in that it is made of one metal selected from the group consisting of W, Mo, Zr, Hf, Ta, and Nb or an alloy thereof. manufacturing method. (3) The method for manufacturing a superconducting material according to claim 1 or 2, wherein the metal substrate has a surface oxidized in advance.
(4)前記金属基板上に付着した原料粉末の厚さが0.
8mm以下であることを特徴とする特許請求の範囲第1
項乃至第3項の何れか1項に記載の超電導材の製造方法
(4) The thickness of the raw material powder deposited on the metal substrate is 0.
Claim 1 characterized in that the diameter is 8 mm or less
3. A method for producing a superconducting material according to any one of Items 3 to 3.
(5)前記原料粉末を、バインダによって前記金属基板
に付着することを特徴とする特許請求の範囲第1項乃至
第4項の何れか1項に記載の超電導材の製造方法。
(5) The method for manufacturing a superconducting material according to any one of claims 1 to 4, characterized in that the raw material powder is attached to the metal substrate using a binder.
(6)前記バインダとして、ポリビニルブチラール(P
VB)を用ることを特徴とする特許請求の範囲第5項に
記載の超電導材の製造方法。
(6) As the binder, polyvinyl butyral (P
6. The method for manufacturing a superconducting material according to claim 5, characterized in that VB) is used.
(7)前記バインダとして、水を溶剤としたポリビニル
アルコール(PVA)を用いることを特徴とする特許請
求の範囲第5項に記載の超電導材の製造方法。
(7) The method for manufacturing a superconducting material according to claim 5, characterized in that polyvinyl alcohol (PVA) using water as a solvent is used as the binder.
(8)前記バインダを含んで前記金属基板上に付着した
原料粉末の厚さが1mm以下であることを特徴とする特
許請求の範囲第5項乃至第7項の何れかに記載の超電導
材の製造方法。
(8) The superconducting material according to any one of claims 5 to 7, wherein the thickness of the raw material powder including the binder and deposited on the metal substrate is 1 mm or less. Production method.
(9)大気中で400℃乃至700℃の範囲の温度に加
熱して上記溶剤およびバインダを除去することを特徴と
する特許請求の範囲第5項乃至第8項のいずれか1項に
記載の超電導材の製造方法。
(9) The method according to any one of claims 5 to 8, characterized in that the solvent and binder are removed by heating to a temperature in the range of 400°C to 700°C in the atmosphere. Method for manufacturing superconducting materials.
(10)前記原料粉末に、さらに、V、Nb、Ta、M
o、W、Ti、Cr、Mn、Ga、In、Cd、Sn、
Tl、Pb、Znからなる群から選択した少なくとも1
種の元素あるいは該元素の酸化物、炭酸塩、硫酸塩また
は硝酸塩の粉末を添加物として混合することを特徴とす
る特許請求の範囲第1項乃至第9項のいずれか1項に記
載の超電導材の製造方法。
(10) The raw material powder further includes V, Nb, Ta, and M.
o, W, Ti, Cr, Mn, Ga, In, Cd, Sn,
At least one selected from the group consisting of Tl, Pb, and Zn
The superconductor according to any one of claims 1 to 9, characterized in that a powder of a certain element or an oxide, carbonate, sulfate, or nitrate of the element is mixed as an additive. Method of manufacturing wood.
(11)前記添加物を、前記元素γに対して原子比で0
.01〜0.15なる範囲で混入することを特徴とする
特許請求の範囲第10項に記載の超電導材の製造方法。
(11) The additive has an atomic ratio of 0 to the element γ.
.. 11. The method for manufacturing a superconducting material according to claim 10, wherein the amount of the superconducting material is mixed in a range of 0.01 to 0.15.
(12)前記焼結を、前記原料粉末のうち最も融点の低
い材料の融点を上限とし、該融点との差が100℃以内
の温度範囲で行うことを特徴とする特許請求の範囲第1
項乃至第11項のいずれか1項に記載の超電導材の製造
方法。
(12) The sintering is carried out at a temperature within a temperature range of 100°C or less, with the upper limit being the melting point of the material with the lowest melting point among the raw material powders.
A method for producing a superconducting material according to any one of Items 1 to 11.
(13)前記原料粉末の付着時に、前記金属基板が焼結
温度に維持されていることを特徴とする特許請求の範囲
第1項乃至第3項の何れか1項に記載の超電導材の製造
方法。
(13) Manufacturing the superconducting material according to any one of claims 1 to 3, wherein the metal substrate is maintained at a sintering temperature when the raw material powder is attached. Method.
(14)前記原料粉末および/または添加物粉末が粒径
5μm以下であることを特徴とする特許請求の範囲第1
3項に記載の超電導材の製造方法。
(14) Claim 1, wherein the raw material powder and/or additive powder has a particle size of 5 μm or less.
A method for producing a superconducting material according to item 3.
(15)前記焼結を、分圧0.5乃至50気圧の酸素を
含む酸素含有雰囲気中で行うことを特徴とする特許請求
の範囲第1項乃至第14項の何れか1項に記載の超電導
材の製造方法。
(15) The sintering is performed in an oxygen-containing atmosphere containing oxygen at a partial pressure of 0.5 to 50 atm. Method for manufacturing superconducting materials.
(16)前記元素α(但し、元素αは前記定義の通り)
がBaであり、前記元素β(但し、元素βは前記定義の
通り)がYであり、前記元素γ(但し、元素γは前記定
義の通り)がCuであることを特徴とする特許請求の範
囲第1項乃至第15項の何れか1項に記載の超電導材の
製造方法。 法。
(16) The above element α (however, element α is as defined above)
is Ba, the element β (however, element β is as defined above) is Y, and the element γ (however, element γ is as defined above) is Cu. A method for producing a superconducting material according to any one of items 1 to 15. Law.
(17)前記元素α(但し、元素αは前記定義の通り)
がBaであり、前記元素β(但し、元素βは前記定義の
通り)がLaであり、前記元素γ(但し、元素γは前記
定義の通り)がCuであることを特徴とする特許請求の
範囲第1項乃至第15項の何れか1項に記載の超電導材
の製造方法。
(17) The above element α (however, element α is as defined above)
is Ba, the element β (however, element β is as defined above) is La, and the element γ (however, element γ is as defined above) is Cu. A method for producing a superconducting material according to any one of items 1 to 15.
(18)前記元素α(但し、元素αは前記定義の通り)
がSrであり、前記元素β(但し、元素βは前記定義の
通り)がLaであり、前記元素γ(但し、元素γは前記
定義の通り)がCuであることを特徴とする特許請求の
範囲第1項乃至第15項の何れか1項に記載の超電導材
の製造方法。
(18) The above element α (however, element α is as defined above)
is Sr, the element β (however, element β is as defined above) is La, and the element γ (however, element γ is as defined above) is Cu. A method for producing a superconducting material according to any one of items 1 to 15.
JP62134238A 1987-05-29 1987-05-29 Manufacture of superconductive material Pending JPS63299018A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62134238A JPS63299018A (en) 1987-05-29 1987-05-29 Manufacture of superconductive material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62134238A JPS63299018A (en) 1987-05-29 1987-05-29 Manufacture of superconductive material

Publications (1)

Publication Number Publication Date
JPS63299018A true JPS63299018A (en) 1988-12-06

Family

ID=15123645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62134238A Pending JPS63299018A (en) 1987-05-29 1987-05-29 Manufacture of superconductive material

Country Status (1)

Country Link
JP (1) JPS63299018A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6430111A (en) * 1987-07-24 1989-02-01 Matsushita Electric Ind Co Ltd Superconductor
JPS6433816A (en) * 1987-07-29 1989-02-03 Matsushita Electric Ind Co Ltd Superconductor
JPH0288410A (en) * 1988-07-25 1990-03-28 Xerox Corp Production of copper oxide superconductor
US4994420A (en) * 1989-10-12 1991-02-19 Dow Corning Corporation Method for forming ceramic materials, including superconductors

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63279528A (en) * 1987-05-11 1988-11-16 Toshiba Corp Manufacture of superconductor device
JPS643062A (en) * 1987-03-24 1989-01-06 Sumitomo Electric Ind Ltd Production of superconducting material
JPS646329A (en) * 1987-03-26 1989-01-10 Toray Industries Manufacture of superconductor
JPS646330A (en) * 1987-03-25 1989-01-10 Sumitomo Electric Industries Manufacture of superconductive thick film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS643062A (en) * 1987-03-24 1989-01-06 Sumitomo Electric Ind Ltd Production of superconducting material
JPS646330A (en) * 1987-03-25 1989-01-10 Sumitomo Electric Industries Manufacture of superconductive thick film
JPS646329A (en) * 1987-03-26 1989-01-10 Toray Industries Manufacture of superconductor
JPS63279528A (en) * 1987-05-11 1988-11-16 Toshiba Corp Manufacture of superconductor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6430111A (en) * 1987-07-24 1989-02-01 Matsushita Electric Ind Co Ltd Superconductor
JPS6433816A (en) * 1987-07-29 1989-02-03 Matsushita Electric Ind Co Ltd Superconductor
JPH0288410A (en) * 1988-07-25 1990-03-28 Xerox Corp Production of copper oxide superconductor
US4994420A (en) * 1989-10-12 1991-02-19 Dow Corning Corporation Method for forming ceramic materials, including superconductors

Similar Documents

Publication Publication Date Title
JP2754564B2 (en) Method for producing superconducting composite
US5470821A (en) Superconductors having continuous ceramic and elemental metal matrices
JP2571789B2 (en) Superconducting material and its manufacturing method
JPS63299018A (en) Manufacture of superconductive material
JPH013015A (en) Superconducting materials and their manufacturing methods
JP2514690B2 (en) Superconducting wire manufacturing method
US5041414A (en) Superconductor composite
JP2519742B2 (en) Manufacturing method of superconducting material
JP2694921B2 (en) Oxide superconducting wire and method for producing the same
EP0345358A1 (en) Target material for forming superconductive film
JP2590131B2 (en) Superconducting material
JP3448597B2 (en) Bismuth-based oxide superconducting composite and method for producing the same
JPS63285813A (en) Manufacture of superconductive material with metallized surface
JPH0196988A (en) Forming method for superconducting wiring
JPH04124032A (en) Superconductor and its synthesis
JP2519741B2 (en) Manufacturing method of superconducting material
JPH013056A (en) Method for manufacturing superconducting materials
JPS63264823A (en) Manufacture of superconductive material with metallized surface
JPS63277551A (en) Production of superconductive material having high critical temperature
JPH03112812A (en) Substrate for producing oxide superconducting film and its production
JPS63274027A (en) Manufacture of superconductive material
JPH01159363A (en) Production of superconducting material
JPS63265853A (en) Production of superconductive material
JPH013059A (en) Method for manufacturing superconducting materials
JPS63285158A (en) Production of superconductive material