JPH0196815A - Magneto-resistance effect type magnetic head - Google Patents

Magneto-resistance effect type magnetic head

Info

Publication number
JPH0196815A
JPH0196815A JP25363387A JP25363387A JPH0196815A JP H0196815 A JPH0196815 A JP H0196815A JP 25363387 A JP25363387 A JP 25363387A JP 25363387 A JP25363387 A JP 25363387A JP H0196815 A JPH0196815 A JP H0196815A
Authority
JP
Japan
Prior art keywords
thin film
alloy thin
magnetoresistive
magnetic head
magneto
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25363387A
Other languages
Japanese (ja)
Other versions
JP2510625B2 (en
Inventor
Hideo Tanabe
英男 田辺
Masahiro Kitada
北田 正弘
Noboru Shimizu
昇 清水
Hitoshi Nakamura
斉 中村
Masayoshi Waki
脇 政義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP25363387A priority Critical patent/JP2510625B2/en
Publication of JPH0196815A publication Critical patent/JPH0196815A/en
Application granted granted Critical
Publication of JP2510625B2 publication Critical patent/JP2510625B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Magnetic Heads (AREA)

Abstract

PURPOSE:To impress a prescribed bias magnetic field to a magneto-resistance effect type element as needed and to suppress the generation of a noise by using an Ni-Fe alloy thin film body, in which the composition of Ni is 82-92wt.% and a magneto- striction in an Ni range is negative, for the magneto-resistance effect type element of a magneto-resistance effect type magnetic head. CONSTITUTION:On a substrate 1 used also as a lower part magnetic shield by a magnetic body, an insulating layer 2 is laminated, an Ni-Fe alloy thin film body 3 is formed on it and further, a shunt bias film 4 is laminated. A magneto-resistance effect element part 7 having a signal magnetic field detecting part 5 and a detecting current introducing conductor part 6, in which the laminating film of the thin film body 3 and a bias film 4 is a prescribed size, is formed and further, an insulating layer 8 and an upper part magnetic shielding body 9 are laminated. As the magneto-resistance effect element 7, an Ni-Fe alloy thin film body is used in which the Ni composition is 82wt.%-92wt.% and a magneto-striction in an Ni range is negative. The difference between the thermal expansion coefficient of the substrate 1 and the thermal expansion coefficient of the Ni-Fe alloy thin film body used for the resistance effect element 7 is within + or -3X10<-6>/ deg.C.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は磁気記録再生専用の磁気ヘッドである磁気抵抗
効果型磁気ヘッドに係り、特に高密度記録再生に好適で
高出力が可能な磁気抵抗効果型磁気ヘッドに関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a magnetoresistive magnetic head, which is a magnetic head exclusively used for magnetic recording and reproduction, and is particularly suitable for high-density recording and reproduction and capable of high output. This invention relates to an effective magnetic head.

〔従来の技術〕[Conventional technology]

今後、磁気記録の高密度化とともにこれに対応する磁気
抵抗効果型磁気ヘッドの再生出力も高めていく必要があ
る。再生出力を高める方法の一つとして考えられること
は、磁気抵抗効果型磁気ヘッドの磁気抵抗効果素子部に
使用する強磁性薄膜体の磁気抵抗効果率自体を高めると
いうことである。従来、当該強磁性薄膜体には磁歪界か
あるいは特開昭55−105822号に記載されている
ようにNi組成が81.0wt%以下(残りFe)の磁
歪が正でO〜+1.3X10−6の範囲内にあるNi−
Fe合金薄膜体が使用されている。しかし、このN i
 −F e合金薄膜体向体の磁気抵抗効果率(Δρ/ρ
)は、通常上記磁気抵抗効果型磁気ヘッドに使用される
30〜50nmの膜厚範囲内では2〜2.5 %と小さ
く、今後さらに高密度化が進んだ場合にはこの程度のΔ
ρ/ρでは充分な出力を得ることができないという問題
がある。さらにまた、上記m歪が正のN i −F e
合金薄膜体を使用した磁気抵抗効果型磁気ヘッドでは、
出力を増大するために検出電流を増加した場合ある検出
電流値からノイズが急激に増加し始め、この電流値が上
記N i −F e合金薄膜体の内部応力の変化あるい
は温度の変化に対して大幅に変動するためあまり高い検
出電流を流すことができないという欠点がある。したが
って、この点からも高密度化に対応した充分な出力を得
ることができないという問題がある。
In the future, as the density of magnetic recording becomes higher, it will be necessary to increase the reproduction output of magnetoresistive magnetic heads to meet this trend. One possible way to increase the reproduction output is to increase the magnetoresistive efficiency itself of the ferromagnetic thin film used in the magnetoresistive element portion of the magnetoresistive head. Conventionally, the ferromagnetic thin film has a magnetostrictive field, or as described in JP-A-55-105822, the magnetostriction is positive when the Ni composition is 81.0 wt% or less (remaining Fe) and is O~+1.3X10- Ni− within the range of 6
A Fe alloy thin film body is used. However, this N i
-Fe alloy thin film magnetoresistance effect ratio (Δρ/ρ
) is usually as small as 2 to 2.5% within the film thickness range of 30 to 50 nm used in the above-mentioned magnetoresistive magnetic head.
There is a problem that sufficient output cannot be obtained with ρ/ρ. Furthermore, N i −F e where the m strain is positive
In a magnetoresistive magnetic head using a thin alloy film,
When the detection current is increased to increase the output, noise starts to increase rapidly from a certain detection current value, and this current value is caused by changes in the internal stress or temperature of the Ni-Fe alloy thin film body. The disadvantage is that it is not possible to flow a very high detection current because it fluctuates significantly. Therefore, also from this point of view, there is a problem in that it is not possible to obtain a sufficient output that corresponds to higher density.

これに対し、例えばアイ・イー・イー・イー。On the other hand, for example, I.E.E.E.

トランザクション オン マグネチックスケエムニー 
ジー11,197.5.第1018頁から第1038頁
(丁E E E 、 Trans、 、 Haにnet
ics。
TRANSACTION ON MAGNETIC SKYMNY
G11, 197.5. Pages 1018 to 1038 (DingEEE, Trans, , Ha to net
ics.

MAGll(1975)、pP1018〜1038)に
記載されているように、82wt%Nj以上のNi゛組
成を持つN i −Fe合金薄膜体のΔρ/ρは、89
wt%Ni近傍で4.8 %程度にもなることが知られ
ている。しかし、このNi組成のNi−Fe合金薄膜体
は磁歪が負のため、上記磁気ヘッドに使用した場合これ
に起因した上記薄膜体内の磁化分布の乱れからバルクハ
ウゼンノイズが増加するおそれがあるとされていたため
、これまで上記磁気抵抗効果型磁気ヘッドに使用された
例はなく、実際にこのNi組成のNi−Fe合金薄膜体
を上記磁気ヘッドに使用した場合にどの程度の出力が得
られるかはわからないという現状であった。
MAGll (1975), pP1018-1038), the Δρ/ρ of a Ni-Fe alloy thin film having a Ni composition of 82 wt% Nj or more is 89
It is known that the content is around 4.8% near wt%Ni. However, since this Ni-Fe alloy thin film with Ni composition has negative magnetostriction, when used in the above magnetic head, it is said that Barkhausen noise may increase due to the disturbance of the magnetization distribution within the thin film caused by this. Therefore, it has never been used in the above magnetoresistive magnetic head, and it remains to be seen how much output can be obtained if this Ni-Fe alloy thin film with Ni composition is actually used in the above magnetic head. The current situation was that I did not understand.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述したように、従来のNi組成が81wt%Ni以下
で磁歪が正のN1−Fe合金薄膜体の磁気抵抗効果率(
Δρ/ρ)は2〜2.5 %と小さく、当該Ni−Fe
合金薄膜体を使用した磁気抵抗効果型磁気ヘッドでは、
今後さらに高密度化が進んだ場合には充分な出力を得る
ことができないという問題があった。さらにまた、上記
磁気抵抗効果型磁気ヘッドではノイズ発生を抑えるため
にあまり高い検出電流を流すことができないという欠点
があり、この点からも高密度化に対応した充分な出力を
得ることができないという問題があった。
As mentioned above, the magnetoresistance effect rate (
Δρ/ρ) is small at 2 to 2.5%, and the Ni-Fe
In a magnetoresistive magnetic head using a thin alloy film,
There has been a problem that if the density increases further in the future, it will not be possible to obtain sufficient output. Furthermore, the above-mentioned magnetoresistive magnetic head has the disadvantage that a very high detection current cannot be passed in order to suppress noise generation, and from this point as well, it is difficult to obtain sufficient output to cope with higher density. There was a problem.

本発明の目的は上記問題を解決し、高密度化に好適な高
出力化が可能な磁気抵抗効果型磁気ヘッドを提供するこ
とにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above problems and provide a magnetoresistive magnetic head suitable for high density and capable of high output.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、該磁気抵抗効果型磁気ヘッドの磁気抵抗効
果素子に使用されるNi−Fe合金薄膜体のNiML成
を82wt%〜92wt%Ni  (残りFe)範囲内
とし、また、上記磁気抵抗効果型磁気ヘッドに使用する
基板と該基板上に形成される上記N1−Fe合金薄膜体
との熱膨張係数の差が±3 X 10−6/”C以内と
なるようにすると同時に、100〜350℃の範囲内の
基板温度で上記Ni−F e合金薄膜体を作製し、さら
にまた、必要に応じて上記磁気抵抗効果素子に流す検出
電流の方向と平行に1〜200 eのバイアス磁界を印
加することにより、達成される。
The above object is to set the NiML composition of the Ni-Fe alloy thin film used in the magnetoresistive element of the magnetoresistive head within the range of 82wt% to 92wt%Ni (remaining Fe), and to achieve the magnetoresistive effect described above. The difference in thermal expansion coefficient between the substrate used in the type magnetic head and the N1-Fe alloy thin film formed on the substrate is within ±3 x 10-6/''C, and at the same time, The above-mentioned Ni-Fe alloy thin film body is produced at a substrate temperature within the range of °C, and furthermore, if necessary, a bias magnetic field of 1 to 200 e is applied in parallel to the direction of the detection current flowing through the above-mentioned magnetoresistive element. This is achieved by doing so.

〔作用〕[Effect]

上記Ni組成が82%+1%〜92警t%Ni(残りF
e)の範囲内にあるN i −F e合金薄膜体の磁気
抵抗変化率(Δρ/ρ)は3.5〜4.8%である。上
記N x  F e合金薄膜体を磁気抵抗効果型磁気ヘ
ッドに使用すれば、磁気抵抗効果型磁気ヘッドの出力は
理論的にはこれに使用するNi−Fe合金薄膜体のΔρ
/ρに比例するので、従来のΔρ/ρが2〜2.5 %
であるN i −F e合金@膜体を使用した磁気抵抗
効果型磁気ヘッドの出力よりも2.4倍高いヘッド出力
が期待できる。
The above Ni composition is 82% + 1% ~ 92%Ni (remaining F
The rate of change in magnetoresistance (Δρ/ρ) of the Ni-Fe alloy thin film within the range e) is 3.5 to 4.8%. If the above N x Fe alloy thin film body is used in a magnetoresistive magnetic head, the output of the magnetoresistive magnetic head will theoretically be equal to Δρ of the Ni-Fe alloy thin film body used therein.
/ρ, so the conventional Δρ/ρ is 2 to 2.5%.
A head output that is 2.4 times higher than that of a magnetoresistive magnetic head using a N i -Fe alloy@film body can be expected.

しかし実際のヘッド出力は、上記磁気ヘッドに使用する
基板とその上に形成される上記Ni−Fe合金薄膜体と
の熱膨張係数の差および形成された上記N i −F 
e合金薄膜体の結晶構造欠陥等に起因する内部応力によ
り上記N i −F e合金薄膜体内部の磁化の向きが
磁化容量方向(上記磁気抵抗効果素子に流す検出電流方
向と平行)から乱れるために、理論値よりは低下する。
However, the actual head output depends on the difference in thermal expansion coefficient between the substrate used in the magnetic head and the Ni-Fe alloy thin film formed thereon, and the difference in thermal expansion coefficient between the substrate used in the magnetic head and the Ni-Fe alloy thin film formed thereon.
Because the direction of magnetization inside the N i -F e alloy thin film is disturbed from the magnetization capacitance direction (parallel to the direction of the detection current flowing through the magnetoresistive element) due to internal stress caused by crystal structure defects in the e alloy thin film. , it is lower than the theoretical value.

この影響は、特に上記Ni−Fe合金薄膜体の磁歪が負
で大きい程強く、したがって出力低下も大きい。しかし
This influence is particularly strong as the magnetostriction of the Ni--Fe alloy thin film body is negative and large, and the output decreases accordingly. but.

本発明では、上記82wt%〜92νt%NiのNi−
Fe合金薄膜体を形成する際の基板温度を100〜35
0℃の範囲とし、さらに基板と上記Ni−Fe合金薄膜
体との熱膨張係数の差を±3X10−’以内にすること
で上記内部応力を非常に小さくすることができ、これに
よって上記薄膜体内部の磁化の乱れも小さくなり、実際
のヘッド出力の低下も小さく抑えることができるので、
上記82wt%〜92wt%Ni組成のN i −F 
e合金薄膜体を使用した磁気抵抗効果型磁気ヘッドの出
力は理論値に近づく。
In the present invention, the Ni-
The substrate temperature when forming the Fe alloy thin film body is 100 to 35
0° C. range, and furthermore, by setting the difference in thermal expansion coefficient between the substrate and the Ni-Fe alloy thin film within ±3×10−′, the internal stress can be made extremely small. Disturbances in internal magnetization are also reduced, and the drop in actual head output can be kept to a minimum.
Ni-F with the above 82 wt% to 92 wt% Ni composition
The output of the magnetoresistive magnetic head using the e-alloy thin film body approaches the theoretical value.

また、上記検出電流方向と平行に印加するバイアス磁界
は、上記N i −F e合金簿膜体内部の磁化の向き
を該バイアス磁界の方向に添えるように作用するので、
該バイアス磁界を印加することによって上記内部応力の
影響で乱れている磁化の向きはさらにバイアス磁界の方
向、すなわち検出電流の方向に添うようになる。これに
よって、実際の磁気ヘッドの出力の低下をさらに抑える
ことが可能であり、上記磁気抵抗効果型磁気ヘッドの出
力はほぼ理論値と同等になる。
Furthermore, the bias magnetic field applied parallel to the direction of the detection current acts to align the direction of magnetization inside the N i -Fe alloy film body with the direction of the bias magnetic field.
By applying the bias magnetic field, the direction of magnetization, which has been disturbed due to the influence of the internal stress, becomes further aligned with the direction of the bias magnetic field, that is, the direction of the detection current. As a result, it is possible to further suppress a decrease in the output of the actual magnetic head, and the output of the magnetoresistive magnetic head becomes approximately equal to the theoretical value.

さらにまた、上記N i −F e合金薄膜体を使用し
た磁気抵抗効果型磁気ヘッドの検出電流を増加した場合
、上記Ni−Fe合金薄膜体はジュール熱により膨張す
るが、上記薄膜体の両端は電極で固定されているために
上記薄膜体内部には圧縮応力が誘起される。そしてこの
圧縮応力は従来の磁歪圧の薄膜体に対しては磁化の方向
を乱すように作用するので従来の磁気ヘッドはあまり高
い検出電流を流すことはできなかったが、これに対し。
Furthermore, when the detection current of the magnetoresistive magnetic head using the Ni-Fe alloy thin film body is increased, the Ni-Fe alloy thin film body expands due to Joule heat, but both ends of the thin film body expand. Compressive stress is induced inside the thin film body because it is fixed with electrodes. This compressive stress acts on conventional magnetostrictive thin film bodies to disturb the direction of magnetization, so conventional magnetic heads were unable to flow a very high detection current.

82vt%〜92wt%Niの磁歪負の薄膜体に対して
は逆に磁化の方向を添えるように作用するので、磁歪負
のNi−Fe合金薄膜体を使用した磁気ヘッドでは高い
検出電流を流すことが可能である。
For magnetostrictive negative thin film bodies of 82vt% to 92wt%Ni, it acts in the opposite direction to impart magnetization, so a high detection current cannot be passed in a magnetic head using a magnetostrictive negative Ni-Fe alloy thin film body. is possible.

〔実施例〕〔Example〕

実施例1 以下に、実施例を用いて本発明の詳細な説明する。第1
図は本発明を用いた一実施例である磁気抵抗効果型磁気
ヘッドの正面図(第1図(a))と断面図(第1図(b
))である。本実施例では、熱膨張係数が9.2X10
−6/’CであるNi−ZnフェライトあるいはM n
 −Z nフェライトなどの磁性体からなり下部磁気シ
ールドを兼ねた基板1上にA Q 203膜やSiO2
膜からなる絶縁層2をスパッタ法等により約0.6 μ
m積層し、さらにその上に蒸着法あるいはスパッタ法等
により100〜350℃の基板温度で熱膨張係数が11
X10−6/’Cである89wt%Ni(残りFe)組
成のNi−Fe合金薄膜体3を約45nm、続けてTi
あるいはMO9Ta等からなるシャントバイアス膜4を
約130nm積層した。そして、ホトリソグラフィーの
手法とイオンミリング等のエツチング法により、上記N
i−Fe合金薄膜体3とシャントバイアス膜4の積層膜
を所定の大きさの信号磁界検出部5と検出電流導入導体
部6とを持つ磁気抵抗効果素子部7を形成した後、さら
に、AQzOs膜や5iOz膜からなる絶縁層8を0.
2〜0.4μm積層し、最後に上部磁気シールド体9と
してN i −Z nフェライトあるいはM n −Z
nフェライトからなる磁性体を接着剤10によって接着
した。この後記録媒体と対向する摺動面11をラッピン
グして磁気抵抗効果型磁気ヘッド12の作製を終了した
Example 1 The present invention will be described in detail below using examples. 1st
The figure shows a front view (Fig. 1(a)) and a cross-sectional view (Fig. 1(b)) of a magnetoresistive magnetic head which is an embodiment of the present invention.
)). In this example, the coefficient of thermal expansion is 9.2X10
-6/'C Ni-Zn ferrite or M n
-AQ 203 film or SiO
The insulating layer 2 consisting of a film is formed by sputtering or the like to a thickness of approximately 0.6 μm.
m laminated, and on top of that, a material with a thermal expansion coefficient of 11 at a substrate temperature of 100 to 350°C is applied by vapor deposition or sputtering.
A Ni-Fe alloy thin film body 3 having a composition of 89 wt% Ni (remaining Fe), which is
Alternatively, a shunt bias film 4 made of MO9Ta or the like was laminated to a thickness of about 130 nm. Then, using photolithography techniques and etching methods such as ion milling, the above N
After forming a magnetoresistive effect element section 7 having a signal magnetic field detection section 5 of a predetermined size and a detection current introducing conductor section 6 using the laminated film of the i-Fe alloy thin film body 3 and the shunt bias film 4, AQzOs is further formed. The insulating layer 8 made of a film or a 5iOz film has a thickness of 0.
2 to 0.4 μm is laminated, and finally, N i -Z n ferrite or M n -Z is used as the upper magnetic shield body 9.
A magnetic material made of n-ferrite was bonded with adhesive 10. Thereafter, the sliding surface 11 facing the recording medium was lapped to complete the production of the magnetoresistive magnetic head 12.

本発明の磁気抵抗効果型磁気ヘッド12では上記摺動面
11と対向する磁気記録媒体13から漏れ出る信号磁束
14を上記磁気抵抗効果を有するNi−Fe合金薄膜体
3の信号磁界検出部5によって抵抗変化として検出し、
さらに上記検出電流導入導体部6から抵抗変化に対応し
た電圧変化を検出することで上記記録媒体13上の記録
信号を読み取ることができる。また1本発明による磁気
抵抗効果型磁気ヘッド12の分解能は、上記Ni−F 
eフェライト基板lと上部磁気シールド体9との間隔に
よって決まり、本実施例の場合この間隔は0.975〜
1.175μmとしているが、これは決まったものでは
なく、高記録密度化とともに上記間隔を狭くしていって
も何らさしつかえない。さらに、本実施例の第1図では
バイアス印加方式としてシャントバイアス方式を使用し
た例を示したが、本発明による磁気抵抗効果型磁気ヘッ
ドではシャントバイアス方式に限らず各種バイアス方式
の使用が可能であることは言うまでもない。
In the magnetoresistive magnetic head 12 of the present invention, the signal magnetic flux 14 leaking from the magnetic recording medium 13 facing the sliding surface 11 is detected by the signal magnetic field detection section 5 of the Ni-Fe alloy thin film body 3 having the magnetoresistive effect. Detected as resistance change,
Furthermore, by detecting a voltage change corresponding to a resistance change from the detection current introduction conductor 6, the recorded signal on the recording medium 13 can be read. Further, the resolution of the magnetoresistive magnetic head 12 according to the present invention is as follows:
It is determined by the distance between the e-ferrite substrate l and the upper magnetic shield body 9, and in this embodiment, this distance is 0.975 to 0.975.
Although it is set to 1.175 μm, this is not fixed, and there is no problem even if the above-mentioned interval is narrowed as the recording density increases. Furthermore, although FIG. 1 of this embodiment shows an example in which the shunt bias method is used as the bias application method, the magnetoresistive magnetic head according to the present invention is not limited to the shunt bias method, and can use various bias methods. It goes without saying that there is.

第2図は、250℃の基板温度で蒸着した上記89wt
%Ni[成のN i −F e合金薄膜体3を上記磁気
抵抗効果素子部7に使用した場合の上記本発明の磁気抵
抗効果型磁気ヘッドの出力(曲!1)と、基板1と上記
N i −Fe合金薄膜体3との熱膨張係数の差との関
係を、従来の磁歪圧のN i −Fe合金薄膜体を使用
した磁気抵抗効果型磁気ヘッドの出力(曲線2)と比較
したものである。同図より上記本発明による磁気抵抗効
果型磁気ヘッドの出力は、基板1とNi−Fe合金薄膜
体3との熱膨張係数の差が±3 X 10−8/℃以内
であれば従来の磁気抵抗効果型磁気ヘッドの出力よりも
増大し、最大2倍程度になることがわかる。
Figure 2 shows the above 89wt deposited at a substrate temperature of 250°C.
The output of the magnetoresistive magnetic head of the present invention (song! 1) when the Ni-Fe alloy thin film body 3 made of %Ni [composition] is used for the magnetoresistive element section 7, and the output of the magnetoresistive magnetic head of the present invention (song! 1) The relationship between the difference in thermal expansion coefficient and the Ni-Fe alloy thin film body 3 was compared with the output (curve 2) of a magnetoresistive magnetic head using a conventional magnetostrictive Ni-Fe alloy thin film body. It is something. As can be seen from the figure, the output of the magnetoresistive magnetic head according to the present invention is equal to that of the conventional magnetic head if the difference in thermal expansion coefficient between the substrate 1 and the Ni-Fe alloy thin film body 3 is within ±3 x 10-8/°C. It can be seen that the output is increased compared to the output of the resistive effect type magnetic head, and is about twice as high as the output of the resistive effect type magnetic head.

また、第3図は、上記本実施例の磁気抵抗効果型磁気ヘ
ッドの出力(曲線3)と上記89wt%N i !IL
成のN i −F e合金薄膜休作製時の基板温度との
関係を、従来の磁気抵抗効果型磁気ヘッドの場合(曲線
4)と比較したものである。同図より上記本発明による
磁気抵抗効果型磁気ヘッドの出力は、100〜350℃
の範囲の基板温度で上記Ni−Fe合金薄膜体3を作製
すれば従来の磁気抵抗効果型磁気ヘッドの出力よりも増
大することがわかる。以上のように本発明による磁気抵
抗効果型磁気ヘッドでは、上記基板1と上記Ni−Fe
合合金金膜膜体3の熱膨張係数の差を±3×10−8/
’C以内とし、さらにNi−Fe合金薄膜体3作製時の
基板温度を100〜350℃の範囲とすれば従来のヘッ
ドの出力よりも大きな出力が得られ、発明の効果が大き
いが、これは上記熱膨張係数の差を±3 x 10−”
/℃以内とし、さらに基板温度を100〜350℃とす
ることにより上記Ni−Fe合合金膜膜体3内 を小さく抑えることが可能であるためと考えられる。
Further, FIG. 3 shows the output (curve 3) of the magnetoresistive magnetic head of this embodiment and the 89wt%N i! IL
The relationship between the substrate temperature and the N i -Fe alloy thin film during idle fabrication is compared with that of a conventional magnetoresistive magnetic head (curve 4). From the figure, the output of the magnetoresistive magnetic head according to the present invention is 100 to 350°C.
It can be seen that if the Ni--Fe alloy thin film body 3 is manufactured at a substrate temperature within the range of , the output will be greater than that of the conventional magnetoresistive magnetic head. As described above, in the magnetoresistive magnetic head according to the present invention, the substrate 1 and the Ni-Fe
The difference in thermal expansion coefficient of the alloy film body 3 is ±3×10-8/
' C and furthermore, if the substrate temperature during the production of the Ni-Fe alloy thin film body 3 is in the range of 100 to 350 degrees Celsius, an output larger than that of the conventional head can be obtained, and the invention has a great effect. The difference in the above thermal expansion coefficients is ±3 x 10-”
This is believed to be because the inside of the Ni--Fe alloy film body 3 can be kept small by setting the substrate temperature to 100 to 350°C.

さらにまた、第4図に上記本発明による磁気抵抗効果型
磁気ヘッドにおいて基板1にN i − Z nフェラ
イト磁性体を使用し,上記Ni−Fe合金薄膜体3を2
50℃の基板温度で蒸着した場合のヘッド出力と上記N
i−Fe合金簿膜体のNi組成との関係を示すが、これ
より82vt%〜92vt%Ni範囲の組成のN i 
− F e合金薄膜体を本発明に使用すれば従来の81
vt%以下のN i − F e合金薄膜体を使用した
磁気抵抗効果型磁気ヘッドの出力よりも大きなヘッド出
力が得られることがわかる。
Furthermore, FIG. 4 shows that in the magnetoresistive magnetic head according to the present invention, a Ni--Zn ferrite magnetic material is used for the substrate 1, and the Ni--Fe alloy thin film 3 is used as the substrate 1.
Head output when vapor depositing at a substrate temperature of 50°C and the above N
The relationship with the Ni composition of the i-Fe alloy film body is shown below.
- If the Fe alloy thin film body is used in the present invention, the conventional 81
It can be seen that a larger head output can be obtained than the output of a magnetoresistive magnetic head using a Ni-Fe alloy thin film body of vt% or less.

実施例2 第5図は本発明を用いた他の実施例である磁気抵抗効果
型磁気ヘッドの正面図(第5図(a))と断面図(第5
図(b))である。本実施例の構成は,上記実施例1で
示した磁気抵抗効果型磁気ヘッドに検出電流の方向と平
行にバイアス磁界を印加するためのGo−Pt膜等から
なる膜厚2。
Embodiment 2 FIG. 5 shows a front view (FIG. 5(a)) and a cross-sectional view (FIG. 5(a)) of a magnetoresistive magnetic head which is another embodiment of the present invention.
Figure (b)). The structure of this embodiment consists of a Go--Pt film or the like having a thickness of 2 to apply a bias magnetic field parallel to the direction of the detection current to the magnetoresistive magnetic head shown in the first embodiment.

〜1100nの永久磁石膜15を上記89wt%Ni組
成のN i − F e合金薄膜体3の下に膜厚0、1
〜0.4μmのAQxOs膜やSiO2膜からなる絶縁
層16を介して設けたものであり、他の構成は実施例1
と全く同様である。さらに、本実施例による磁気抵抗効
果型磁気ヘッドの動作も上記実施例1による磁気抵抗効
果型磁気ヘッドの動作と同様であるが、本実施例では永
久磁石膜15を用いて検出電流の方向と平行にバイアス
磁界を印加することによりヘッド出力をさらに増加する
ことができる。
A permanent magnet film 15 of ~1100n is placed under the Ni-Fe alloy thin film body 3 having a Ni composition of 89wt% with a film thickness of 0 or 1.
It is provided through an insulating layer 16 made of an AQxOs film or a SiO2 film of ~0.4 μm, and the other configuration is the same as in Example 1.
It is exactly the same. Further, the operation of the magnetoresistive magnetic head according to this embodiment is similar to that of the magnetoresistive head according to the first embodiment, but in this embodiment, the permanent magnet film 15 is used to adjust the direction of the detection current. The head output can be further increased by applying a parallel bias magnetic field.

第6図はこの効果を示したもので、Ni−Znフェライ
ト磁性体を基板1としてその上に82wt%,89wt
%,92wt%Ni組成のN i − F e合金薄膜
体をそれぞれ上記磁気抵抗効果素子部7に使用した場合
である。これよりバイアス磁界を200eまで印加すれ
ば82〜92vt%Ni組成に対してヘッド出力を飽和
させることが可能であリ、この飽和した値はほぼ理論値
と一致する。また、上記バイアス磁界は、上記永久磁石
膜15の膜厚とN i −F e合金薄膜体3と永久磁
久膜15との間の絶縁層16の膜厚を変えることによっ
て1〜200eの間の任意の値に調節することが可能で
ある6 なお本実施例ではバイアス磁界印加に永久磁石膜を使用
したが、この他F e −M n合金膜やFears膜
を上記Ni−Fe合金薄膜体3に直接接触させて交換相
互作用を利用してバイアス磁界を印加させる方法を使用
しても本発明の効果は何ら変わることはない。
Figure 6 shows this effect, with Ni-Zn ferrite magnetic material as substrate 1 and 82wt%, 89wt%
% and 92 wt% Ni compositions are respectively used in the magnetoresistive element section 7. From this, it is possible to saturate the head output for a Ni composition of 82 to 92 vt% by applying a bias magnetic field up to 200e, and this saturated value almost matches the theoretical value. The bias magnetic field can be adjusted between 1 and 200 e by changing the thickness of the permanent magnet film 15 and the thickness of the insulating layer 16 between the Ni-Fe alloy thin film 3 and the permanent magnetic film 15. It is possible to adjust to any value of 6. In this example, a permanent magnet film was used to apply the bias magnetic field, but in addition, an Fe-Mn alloy film or a Fears film could be used to apply the Ni-Fe alloy thin film. The effects of the present invention do not change in any way even if a method is used in which a bias magnetic field is applied by making direct contact with 3 and utilizing exchange interaction.

さらにまた、上記実施例1および2では基板および上部
磁気シールド体として磁性体を使用しているが、この代
わりに非磁性基板とその上に絶縁層を介して磁束シール
ド用の軟磁性薄膜体を積層したものを使用しても本実施
例の効果には変わりはない。
Furthermore, in Examples 1 and 2 above, a magnetic material is used as the substrate and the upper magnetic shield, but instead of this, a soft magnetic thin film for magnetic flux shielding is used on a non-magnetic substrate and an insulating layer thereon. Even if a laminated structure is used, the effect of this embodiment remains the same.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、3.5〜4.8%と従来使用されてい
るよりも非常に大きな磁気抵抗効果率(Δρ/ρンを持
つ82〜92wt%Ni組成のN i −F e合金薄
膜体を上記磁気抵抗効果素子部7に使用する。そして、
上記基FJ、1と上記Ni −Fe合金薄膜体との熱膨
張係数の差を±3X10−G/℃以内とし、さらに上記
Ni−Fe合合金膜膜体作製時基板温度を100〜35
0℃の範囲内とすることにより上記Ni−Fe合金薄膜
体内に生ずる内部応力を非常に小さく抑えることができ
、これによって該内部応力が上記N i −F e合金
薄膜体内部の磁化の分散に及ぼす影響も抑えることが可
能となるので、磁気抵抗効果型磁気ヘッドの出力を従来
よりも2倍程度高める効果がある。また1本発明によれ
ば、検出電流の方向、−すなわち上記N i −F a
合金薄膜体の磁化容易方向に1〜200 eのバイアス
磁界を印加し、このバイアス磁界によって上記Ni−F
e合金薄膜体内の内部応力によってわずかに乱れていた
磁化の向きを全て磁化容易方向にそろえることができる
ので、上記磁気抵抗効果型磁気ヘッドの出力をさらに高
め、はぼ理論値と同等にする効果がある。
According to the present invention, a Ni-Fe alloy thin film with a Ni composition of 82 to 92 wt% has a magnetoresistive effect ratio (Δρ/ρ) of 3.5 to 4.8%, which is much larger than that conventionally used. The body is used for the magnetoresistive element section 7. Then,
The difference in thermal expansion coefficient between the above group FJ, 1 and the above Ni-Fe alloy thin film body is within ±3X10-G/°C, and the substrate temperature when producing the above Ni-Fe alloy film body is 100 to 35°C.
By setting the temperature within the range of 0°C, the internal stress generated within the Ni-Fe alloy thin film body can be suppressed to a very low level, and this internal stress causes the dispersion of magnetization inside the Ni-Fe alloy thin film body. Since it is also possible to suppress the influence of the magnetoresistive magnetic head, it has the effect of increasing the output of the magnetoresistive magnetic head by about twice that of the conventional one. Further, according to one aspect of the present invention, the direction of the detection current, - that is, the above N i -F a
A bias magnetic field of 1 to 200 e is applied in the direction of easy magnetization of the alloy thin film, and this bias magnetic field causes the Ni-F
Since the direction of magnetization, which was slightly disturbed due to internal stress within the e-alloy thin film, can be aligned in the direction of easy magnetization, the output of the above-mentioned magnetoresistive magnetic head can be further increased, making it almost equal to the theoretical value. There is.

さらにまた、本発明による82〜92νt%Niの磁歪
負の組成のNi−Fe合金薄膜体を上記磁気抵抗効果素
子部7に使用した場合、検出電流を増加した時でも、上
記N i −F e合金薄膜体はジュール熱により膨張
し該Ni−Fe合金薄膜体の両端が検出電流導入導体部
6で固定されているため該N i −F e合金薄膜体
内部には圧縮応力が誘起されるが、該圧縮応力は上記磁
歪負のNi−Fe合金薄膜体に対しては磁化の方向を磁
化容易方向にそろえるように働くので、高い検出電流ま
で流すことが可能となり、その分ヘッド出力を高められ
るという効果が得られる。
Furthermore, when the Ni-Fe alloy thin film body having a negative magnetostriction composition of 82 to 92 νt% Ni according to the present invention is used in the magnetoresistive element section 7, even when the detection current is increased, the Ni-Fe The alloy thin film expands due to Joule heat, and since both ends of the Ni-Fe alloy thin film are fixed by the detection current introduction conductor 6, compressive stress is induced inside the Ni-Fe alloy thin film. Since the compressive stress acts on the magnetostrictive negative Ni-Fe alloy thin film body so as to align the direction of magnetization to the direction of easy magnetization, it is possible to flow a high detection current, and the head output can be increased accordingly. This effect can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例になるヘッドの正面図(a)
および断面図(b)、第2図、第3図および第4図は本
発明の効果を示す特性曲線図、第5図は本発明の他の実
施例になるヘッドの正面図(a)および断面図(b)、
第6図は本発明の他の実施例の効果を示す特性曲線図で
ある。 1・・・基板、2,8.16・・・絶縁層、3・・・N
 i −Fe合金薄膜体、4・・・シャントバイアス膜
、5・・・信号磁界検出部、6・・・検出電流導入導体
部、7・・・磁気抵抗効果素子部、9・・・上部シール
ド体、12・・・磁気抵抗効果型磁気ヘッド、13・・
・磁気記録媒体、14・・・信号磁束、15・・・永久
磁石膜。 ヘット′七勿 ((1−di、)
FIG. 1 is a front view (a) of a head according to an embodiment of the present invention.
and sectional view (b), FIG. 2, FIG. 3, and FIG. 4 are characteristic curve diagrams showing the effects of the present invention, and FIG. 5 is a front view (a) and Cross-sectional view (b),
FIG. 6 is a characteristic curve diagram showing the effects of another embodiment of the present invention. 1... Substrate, 2,8.16... Insulating layer, 3... N
i-Fe alloy thin film body, 4... Shunt bias film, 5... Signal magnetic field detection section, 6... Detection current introducing conductor section, 7... Magnetoresistive effect element section, 9... Upper shield body, 12... magnetoresistive magnetic head, 13...
- Magnetic recording medium, 14... Signal magnetic flux, 15... Permanent magnet film. Het'nanamu ((1-di,)

Claims (1)

【特許請求の範囲】 1、磁気記録媒体に記録された信号磁束を検出する磁気
抵抗効果素子と該磁気抵抗効果素子に検出電流を流すた
めに設けられた導電体とさらに上記磁気抵抗効果素子に
バイアス磁界を印加するバイアス印加手段とを有する磁
気抵抗効果型磁気ヘッドにおいて、Ni組成が82wt
%〜92wt%Ni範囲にある磁歪が負のNi−Fe合
金薄膜体を上記磁気抵抗効果素子に使用したことを特徴
とする磁気抵抗効果型磁気ヘッド。 2、上記磁気抵抗効果型磁気ヘッドに使用する基板の熱
膨張係数と該基板上に形成される上記磁気抵抗効果素子
に使用されるNi−Fe合金薄膜体の熱膨張係数との差
が±3×10^−^6/℃以内となるようにし、100
〜350℃の範囲内の基板温度で該Ni−Fe合金薄膜
体を作製したことを特徴とする特許請求の範囲第1項記
載の磁気抵抗効果型磁気ヘッド。 3、上記磁気抵抗効果素子に流す検出電流の方向と平行
に1〜200eのバイアス磁界を印加したことを特徴と
する特許請求の範囲第1項および第2項記載の磁気抵抗
効果型磁気ヘッド。
[Claims] 1. A magnetoresistive element for detecting signal magnetic flux recorded on a magnetic recording medium, a conductor provided for passing a detection current through the magnetoresistive element, and further a magnetoresistive element for detecting a signal magnetic flux recorded on a magnetic recording medium. In a magnetoresistive magnetic head having a bias applying means for applying a bias magnetic field, the Ni composition is 82 wt.
% to 92 wt% Ni. A magnetoresistive magnetic head characterized in that a Ni--Fe alloy thin film body having negative magnetostriction in the range of 92 wt% Ni is used for the magnetoresistive element. 2. The difference between the thermal expansion coefficient of the substrate used in the magnetoresistive magnetic head and the thermal expansion coefficient of the Ni-Fe alloy thin film used in the magnetoresistive element formed on the substrate is ±3. ×10^-^6/℃ or less, 100
2. The magnetoresistive magnetic head according to claim 1, wherein the Ni--Fe alloy thin film body is manufactured at a substrate temperature within a range of 350 DEG C. to 350 DEG C. 3. The magnetoresistive magnetic head according to claims 1 and 2, wherein a bias magnetic field of 1 to 200 e is applied in parallel to the direction of the detection current flowing through the magnetoresistive element.
JP25363387A 1987-10-09 1987-10-09 Magnetoresistive magnetic head Expired - Lifetime JP2510625B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25363387A JP2510625B2 (en) 1987-10-09 1987-10-09 Magnetoresistive magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25363387A JP2510625B2 (en) 1987-10-09 1987-10-09 Magnetoresistive magnetic head

Publications (2)

Publication Number Publication Date
JPH0196815A true JPH0196815A (en) 1989-04-14
JP2510625B2 JP2510625B2 (en) 1996-06-26

Family

ID=17254055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25363387A Expired - Lifetime JP2510625B2 (en) 1987-10-09 1987-10-09 Magnetoresistive magnetic head

Country Status (1)

Country Link
JP (1) JP2510625B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6088204A (en) * 1994-12-01 2000-07-11 International Business Machines Corporation Magnetoresistive magnetic recording head with permalloy sensor layer deposited with substrate heating
US6734671B2 (en) 2001-03-07 2004-05-11 Denso Corporation Magnetic sensor and manufacturing method therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6088204A (en) * 1994-12-01 2000-07-11 International Business Machines Corporation Magnetoresistive magnetic recording head with permalloy sensor layer deposited with substrate heating
US6734671B2 (en) 2001-03-07 2004-05-11 Denso Corporation Magnetic sensor and manufacturing method therefor
US7078238B2 (en) 2001-03-07 2006-07-18 Denso Corporation Method for manufacturing magnetic sensor

Also Published As

Publication number Publication date
JP2510625B2 (en) 1996-06-26

Similar Documents

Publication Publication Date Title
US5508867A (en) Magnetoresistive sensor with flux keepered spin valve configuration
US6633464B2 (en) Synthetic antiferromagnetic pinned layer with Fe/FeSi/Fe system
JPH07326024A (en) Gmr regenerating head
JPH0473201B2 (en)
KR19980071859A (en) Magnetoresistive head
JPH10302227A (en) Magnetoresistive head
JPH0196815A (en) Magneto-resistance effect type magnetic head
JPH06274833A (en) Magneto-resistance effect type magnetic head
JPS63224016A (en) Thin film magnetic head and production thereof
JPS6050612A (en) Magneto-resistance effect type magnetic head
JP2614203B2 (en) Magnetoresistance head
JPH0498608A (en) Magnetic head
JP2833586B2 (en) Magnetoresistive element and method of manufacturing the same
JPH07334819A (en) Thin-film magnetic head
JPS5952425A (en) Magneto-resistance effect type head
JPS61134913A (en) Magnetoresistance type thin film head
JPS63108518A (en) Yoke type thin film magnetic head
JP3028495B2 (en) Thin film magnetic head
JPS5987615A (en) Manufacture of magnetic thin film head
JPH026490Y2 (en)
JPS63138515A (en) Thin film magnetic head and its reproduction system
JPS5987616A (en) Magnetic thin film head
JPS63138512A (en) Thin film magnetic head and its production
JPH06103539A (en) Magneto-resistance effect type head
JPH0198110A (en) Production of thin film magnetic head

Legal Events

Date Code Title Description
R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080416

Year of fee payment: 12